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Summary
In the majority of cases, multiple sclerosis (MS) is characterized by reversible episodes of neurological dysfunction,
often followed by irreversible clinical disability. Accurate diagnostic criteria and prognostic markers are critical to enable
early diagnosis and correctly identify patients with MS at increased risk of disease progression. The 2017 McDonald
diagnostic criteria, which include magnetic resonance imaging (MRI) as a fundamental paraclinical tool, show high
sensitivity and accuracy for the diagnosis of MS allowing early diagnosis and treatment. However, their inappropriate
application, especially in the context of atypical clinical presentations, may increase the risk of misdiagnosis. To further
improve the diagnostic process, novel imaging markers are emerging, but rigorous validation and standardization is still
needed before they can be incorporated into clinical practice. This Series article discusses the current role of MRI in the
diagnosis and prognosis of MS, while examining promising MRI markers, which could serve as reliable predictors of
subsequent disease progression, helping to optimize the management of individual patients with MS. We also explore
the potential of new technologies, such as artificial intelligence and automated quantification tools, to support clinicians
in the management of patients. Yet, to ensure consistency and improvement in the use of MRI in MS diagnosis and
patient follow-up, it is essential that standardized brain and spinal cord MRI protocols are applied, and that interpre-
tation of results is performed by qualified (neuro)radiologists in all countries.

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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Introduction
The diagnosis of multiple sclerosis (MS) requires evi-
dence of a symptomatic demyelinating syndrome with
objective neurologic signs, the evaluation of clinical and
paraclinical findings to demonstrate a focal demyelin-
ating pathology affecting at least two distinct central
nervous system (CNS) areas (i.e., dissemination in space
[DIS]) occurring at separate times (i.e., dissemination in
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Key messages

• Magnetic resonance imaging (MRI) is crucial for diagnosing multiple sclerosis (MS)
due to its ability to detect specific pathological processes with high accuracy.

• The 2017 McDonald diagnostic criteria accurately predict a second MS attack in
patients with typical clinically isolated syndromes, even in pediatric patients,
enabling early diagnosis and treatment. However, they should be used cautiously
after ruling out other potential diagnoses.

• Emerging imaging markers like optic nerve involvement, cortical lesions, lesions
with the central vein sign, and chronic active lesions may improve the accuracy
of diagnostic criteria.

• Primary progressive MS is characterized by gradual progression, with diagnostic
emphasis on cerebrospinal-fluid-specific oligoclonal bands and spinal cord lesions.

• Late-onset MS after 45–50 years may pose diagnostic challenges due to
comorbidities and a more severe course.

• The number and location of white matter lesions in the brainstem and spinal cord
may predict long-term outcomes in early phases of MS. Advanced MRI tech-
niques, including cortical lesions, chronic active lesions, atrophy and brain
microstructural abnormalities can further predict disability progression during the
disease course.

• The 2021 MAGNIMS–CMSC–NAIMS international consensus recommendations
offer updated guidelines on the utilization of MRI for diagnosing,
prognosticating, and monitoring treatment in MS patients.
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time [DIT]),1 and the exclusion of alternative
diagnoses.2–4 Magnetic resonance imaging (MRI) was
formally included in the diagnostic algorithm for pa-
tients presenting with a clinically isolated syndrome
(CIS) suggestive of MS in the 2001 McDonald criteria.5

These criteria, revised several times in the years up to
the most recent revision in 2017,1 rely on the application
of standardized MRI protocols6 to assess the number,
size, and location of brain and spinal cord lesions typical
Contrast mechanism Sequence

T2 (spin–spin or “transverse”) relaxation (fast) spin echo or FL

T1 (spin-lattice or “longitudinal”) relaxation 2D (fast) spin echo a
3D gradient echo at h
(≥3 T)

Two consecutive inversion radiofrequency
pulses act as a T1-filter

2D or 3D (fast) spin

ing Paramagnetic shifts due to iron deposits and
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different acquisition m
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Spin echo sequence w
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d optional sequences for MRI in MS patients.
of MS,2 thus allowing earlier MS diagnosis and to start
treatment.

Recently, uncommon groups within the MS popu-
lation, such as primary progressive (PP) phenotypes,
pediatric or late-onset MS, and radiologically isolated
syndrome (RIS), have gained increased attention.
Furthermore, new potential MRI features for MS diag-
nosis and prognostication have been proposed,
including the assessment of optic nerve involvement,
and the detection of cortical lesions (CLs), central vein
sign (CVS) and chronic active lesions.

In this Series paper, we outline the current role of
MRI in MS diagnosis and prognosis, discussing the
potential application of emerging MRI markers and
tools.
Basic principles of MRI techniques
Clinical MRI relies on the resonance signal of hydrogen
(1H) spins of the intra- and extracellular tissue water. It
offers different sequences and techniques to visualize
changes in the microstructural environment of these
water compartments (Table 1). In MS, most patho-
physiological features (i.e., inflammation, edema,
demyelination, and axonal loss) are associated with an
increase in T2 relaxation time. A T2-weighted spin echo
sequence therefore is the most sensitive approach to
depict MS lesions as hyperintense signal intensities.2

Improved conspicuity of T2 lesions can be achieved
with a fluid-attenuated inversion recovery sequence
(FLAIR),2 especially with three-dimensional (3D) acqui-
sitions.7 FLAIR sequences suppress the cerebrospinal
fluid (CSF) by an inversion radio frequency pulse fol-
lowed by a delay time that corresponds to zero-
magnetization of the CSF during T1 relaxation.
Relevance for MS
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T1 contrast is considered a more sensitive marker for
demyelination and axonal loss since these result in T1

prolongation.8 T1 contrast can be achieved with a short
echo time spin echo sequence and a repetition time that
corresponds to T1 of white matter (WM). However, at
higher field strengths, it is advantageous to use gradient
echoes with shorter repetition times. This permits true
3D imaging with improved T1 contrast and high signal-
to-noise ratio. 3D T1-weighted sequences with isotropic
resolution are also crucial when assessing brain volume
and atrophy. T1-weighted sequences are still the only
way to reliably identify active lesions after gadolinium
(Gd)-based contrast administration, which produces a
strong paramagnetic moment leading to significant T1

shortening. Consequently, active lesions where the
blood–brain-barrier becomes leaky appear bright on
post-Gd T1-weighted images. Whilst inversion recovery
(IR) can suppress tissue with a specific T1 relaxation
time, double inversion recovery (DIR) is used to high-
light a specific tissue while suppressing all other
magnetization. The DIR sequence provides excellent
contrast for the cortex and therefore was introduced to
detect cortical MS lesions with improved sensitivity. The
DIR sequence is usually performed with fast spin echo
readout and provides the best sensitivity when per-
formed in 3D acquisition mode.9

Magnetic susceptibility reflects the ability of tissue to
become magnetized when placed in magnetic field.
Brain tissue is weakly diamagnetic (=non magnetizable)
which corresponds to the magnetic properties of water
as its main component. In contrast, iron can induce
paramagnetic shifts and accentuate MS related features,
including lesions with central veins10 and iron rims, and
iron accumulation in the basal ganglia.11 These features
can be detected with susceptibility-based imaging,
which is performed with T2*-weighted gradient echo
sequences, with different possible acquisition modal-
ities, such as 3D spoiled gradient echo or 3D echo
planar imaging.12 Because susceptibility is encoded
within the phase image, susceptibility-based imaging
combines magnitude with phase. High spatial resolu-
tion and good signal-to-noise ratio are best achieved in
3D acquisition mode and are essential for central vein
and iron rim detection. Among susceptibility-based
imaging, quantitative susceptibility mapping (QSM) in-
cludes imaging techniques that allow to quantify the
absolute concentrations of specific elements including
iron, calcium, and myelin.13 This is achieved by assess-
ing their alterations in local magnetic susceptibility.
QSM may offer a better contrast-to-noise ratio for spe-
cific tissues and structures when compared to T2*-
weighted magnitude images.13

Magnetization transfer (MT) imaging and diffusion
weighted imaging (DWI) are optional sequences that
provide quantitative measures of microstructural tissue
changes. MT imaging is based on the magnetization
exchange between 1H spins bound to macromolecules
www.thelancet.com Vol 44 September, 2024
(including the myelin’s proteins and lipids and also
other macromolecules) and surrounding tissue water.
When using a spoiled gradient echo sequence that is
performed with and without an off-resonant radio-fre-
quency pulse that can saturate (null) the longitudinal
magnetization of the bound protons, a MT ratio (MTR)
can be derived from these two measurements. The MTR
is specific for myelin content,14 even though it correlates
with other pathological substrates, such as axonal den-
sity.15,16 The mobility of intra- and extracellular tissue
water, driven by Brownian motion, is restricted by
cellular structures leading to anisotropic diffusion,
particularly in the intracellular cytoplasm of the axons.
DWI can pick up alterations in water mobility, and
diffusion tensor imaging (DTI) is a fitting model that
can assess orientational features such as fiber orienta-
tion and the degree of diffusion anisotropy. Complex
diffusion models are also able to assess the diffusion
properties for intra- and extra cellular water separately.17

DWI is based on spin echo sequences with diffusion
sensitizing gradients and a segmented or “single shot”
echo planar readout.17 This type of readout is necessary
to limit the impact of physiological and unintentional
motion for this highly motion sensitive sequence.
Diagnostic criteria of MS
In the 2017 revision of the McDonald MRI criteria,1 DIS
can be demonstrated by ≥1 T2-hyperintense lesions in
≥2 of 4 typical areas of the CNS (Table 2, Fig. 1). DIT
can be demonstrated by a simultaneous presence of Gd-
enhancing and non-enhancing lesions at any time or a
new T2-hyperintense and/or Gd-enhancing lesion on
follow-up MRI (Table 2, Fig. 1).1 The modifications
introduced in this last revision1 included the removal of
any distinction between symptomatic and asymptomatic
lesions, and the combination of cortical lesions and
juxtacortical lesions to expand the concept of juxtacort-
ical involvement. Furthermore, in patients with a typical
CIS suggestive of MS fulfilling clinical or radiological
DIS, the presence of CSF-specific oligoclonal bands
(OCBs) supports DIT (Table 2, Fig. 1).1

The 2017 McDonald criteria exhibit higher sensi-
tivity, lower specificity and similar accuracy compared
with the previous 2010 revision of the criteria in pre-
dicting the second clinical attack (i.e., clinically definite
[CD] MS) both in adults and pediatric CIS patients.18–23

Moreover, the 2017 McDonald criteria substantially
shorten time to MS diagnosis, with more CIS patients
being diagnosed with MS already at the time of the first
clinical manifestation and with a single MRI scan.18–20,24

In 785 CIS patients, the 2017 McDonald criteria were
found to reduce the median time to diagnose MS by 4.6
years in comparison to the clinical criterion alone (i.e.,
Poser criteria).20 Additionally, they allowed to diagnose
MS 10 months before than the 2010 McDonald criteria
(3.2 vs 13.0 months).20
3
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Clinical presentation Findings Additional data needed for MS diagnosis

Relapse-onset (CIS) ≥2 clinical relapses and objective clinical evidence of ≥2 lesions;
OR
≥2 clinical relapses and objective clinical evidence of 1 lesion and
clear-cut historical evidence of a prior relapse involving a lesion in a distinct
anatomic location

None

≥2 clinical relapses and objective clinical evidence of 1 lesion DIS, demonstrated by:
A second clinical relapse implicating a different CNS site
OR
demonstration of DIS by MRI (Fig. 1)

1 clinical relapse and objective clinical evidence of 2 or more lesions DIT, demonstrated by:
A second clinical relapse
OR
demonstration of DIT by MRI (Fig. 1)
Demonstration of CSF-specific OCBsa

1 clinical relapse and objective clinical evidence of 1 lesion DIS and DIT, demonstrated by:
For DIS:
A second clinical relapse implicating a different CNS site
OR
demonstration of DIS by MRI (Fig. 1)
For DIT:
A second clinical relapse
OR
Demonstration of DIT by MRI (Fig. 1)
Demonstration of CSF-specific OCBsa

Progressive-onset
(PPMS)

One year of disability progression (retrospectively or prospectively
determined) independent of clinical relapse

≥2 out of 3 of the following criteria:
• ≥1 T2-hyperintense lesions in ≥1 areas in the brain characteristic of MS

(periventricular, cortical/juxtacortical or infratentorial) with no distinction
between symptomatic or asymptomatic lesions

• ≥2 T2-hyperintense WM lesions in the spinal cord, with no distinction
between symptomatic or asymptomatic lesions

• Presence of CSF-specific OCBs

Abbreviations: CIS, clinically isolated syndrome; CNS, central nervous system; DIS, dissemination in space; DIT, dissemination in time; MRI, magnetic resonance imaging; MS, multiple sclerosis; OCB,
oligoclonal band; PPMS, primary progressive multiple sclerosis; WM, white matter. aIn patients with a typical CIS suggestive of MS fulfilling DIS criteria and with no better explanation for the clinical
presentation, the demonstration of CSF-specific OCBs substitutes for the requirement of fulfilling DIT, thus allowing a diagnosis of MS, even if the clinical and MRI findings do not meet the criteria for DIT.

Table 2: The 2017 McDonald criteria for diagnosis of MS.
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An early diagnosis allows starting earlier commence-
ment of disease-modifying therapies (DMTs), limiting
the accumulation of irreversible clinical disability. In
1174 CIS patients,25 the median time from CIS to treat-
ment initiation reduced by 82% from the Poser (i.e.,
clinical criterion alone)26 to the 2017 McDonald criteria1

periods and this was associated with a significantly
lower risk of reaching an Expanded Disability Status
Scale (EDSS) score ≥3.0 for patients diagnosed with the
most recent diagnostic criteria.25

However, the inappropriate application of MRI
diagnostic criteria, especially in the context of atypical
clinical presentations, may increase the risk of
misdiagnosis.2,27–29 To minimize misdiagnosis, stan-
dardized MRI protocols,6 careful determination of which
imaging patterns constitute ‘typical’ or ‘atypical’ MS
features and guidelines for a proper interpretation of
imaging findings2 are crucial.

Careful exclusion of other neurological disorders is
essential in the MS diagnostic work-up since the range
of diseases mimicking clinical manifestations and MRI
features of MS is wide.2–4 A few MS mimicks, such as
neuromyelitis optica spectrum disorder (NMOSD)30 and
myelin oligodendrocyte glycoprotein-associated disease
(MOGAD)31 have been more accurately characterized in
recent years.2–4 Moreover, small-vessel disease (SVD), a
condition associated with aging and frequently observed
in smokers, and in patients with cerebrovascular risk
factors (e.g., hypertension, diabetes, dyslipidemia, etc.),
may represent the most common differential diagnosis
for brain WM hyperintensities especially in older pa-
tients who tend to have a greater prevalence of under-
lying comorbidities.32
Promising MRI measures for MS diagnosis
Recently, more distinctive MRI features have been
proposed to improve the specificity and accuracy of MS
diagnostic work-up, including CLs, the CVS, and
chronic active lesions.

CLs
Cortical involvement is an extremely specific hallmark
of MS and is highly clinically relevant (Fig. 2a). CLs are
present from the early phases of MS, and they accu-
mulate over time.33 Several studies confirmed their role
in the diagnostic work-up,34,35 especially in differenti-
ating MS from other MS mimics,2,36 and supported their
www.thelancet.com Vol 44 September, 2024

http://www.thelancet.com


Fig. 1: 2017 McDonald criteria for demonstration of DIS and DIT in patients with a CIS suggestive of MS. Typical MRI examples (orange
arrowheads) of (a) periventricular, (b) cortical/juxtacortical, (c) infratentorial and (d) spinal cord MS lesions. DIS can be demonstrated by ≥1 T2-
hyperintense lesions in ≥2 of 4 typical areas of the central nervous system (i.e., periventricular, cortical/juxtacortical, infratentorial or spinal
cord). DIT can be demonstrated by (e) a simultaneous presence of Gd-enhancing (orange arrowhead) and non-enhancing (white arrowheads)
lesions at any time; (f) a new T2-hyperintense and/or Gd-enhancing lesion on follow-up MRI (orange arrowheads), with reference to a baseline
scan, irrespective of the timing of the baseline MRI. For the definition of both DIS and DIT, the distinction between symptomatic and
asymptomatic lesions has been removed in the 2017 revision of the McDonald criteria. (g) In patients with a typical CIS suggestive of MS
fulfilling DIS criteria and with no better explanation for the clinical presentation, the demonstration of CSF-specific OCBs, i.e., not present in the
serum but only in the CSF, substitutes for the requirement of fulfilling DIT, thus allowing a diagnosis of MS, even if the clinical and MRI findings
do not meet the criteria for DIT. Abbreviations: CIS, clinically isolated syndrome; CSF, cerebrospinal fluid; DIS, dissemination in space; DIT,
dissemination in time; Gd, gadolinium; MRI, magnetic resonance imaging; MS, multiple sclerosis.
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inclusion in the recent revision of the diagnostic criteria.1

Imaging of CLs, especially subpial lesions, is technically
challenging, mainly because of their characteristics, size
and location. Many CLs are still not detected by any MRI
technique,37 although 7.0 T MRI detects more CLs with
respect to the best performing 3.0 T MRI,38 and imaging
protocols including DIR, phase-sensitive inversion re-
covery (PSIR), magnetization prepared rapid gradient
echo (MPRAGE), magnetization prepared two rapid
acquisition gradient echo (MP2RAGE) and fluid and
white matter suppression (FLAWS) sequences may sub-
stantially improve their in vivo detection.33,39,40

CVS
Perivenous demyelination is a distinctive pathological
feature that is specific of demyelinating disorders of the
CNS, especially MS.41 The association between brain
WM venules and MS lesions (i.e., “CVS”)” can be effi-
ciently visualized in susceptibility-based MRI at varying
MRI field strengths and across scanner manufacturers,
www.thelancet.com Vol 44 September, 2024
taking advantage of the T2*-shortening effect of deoxy-
hemoglobin,42 with improved detection after Gd-based
contrast (Fig. 2b).43,44 The presence of the CVS may
improve the accuracy of MS diagnosis and a threshold of
WM lesions showing the CVS between 35% and 50%
has been established as the best cutoff to separate MS
and non-MS mimics, including SVD, migraine,
NMOSD, MOGAD, and other inflammatory CNS
disorders.36,43,45–47 To facilitate their assessment, a few
studies proposed a threshold of 3 or 6 CVS-
positive lesions, which has shown a high sensitivity and
good specificity for MS diagnosis.47,48

Paramagnetic rim lesions
Histopathologically, several MS lesions show a smoul-
dering inflammatory profile which continues after the
acute inflammatory phase. Chronic active lesions typi-
cally exhibit a combination of ongoing myelin break-
down, remyelination attempts, and infiltrating immune
cells, such as lymphocytes and macrophages.49 They can
5
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Fig. 2: Examples of cortical lesions, the central vein sign and chronic active lesions. (a) Several cortical lesions are visible in a multiple
sclerosis patient on double inversion recovery sequence at 3.0 T. (b) A white matter lesion showing the central vein sign (orange dotted
rectangle) on post-contrast T2-FLAIR* sequence at 3.0 T. (c) Among the T2-hyperintense white matter lesion visible on T2-FLAIR, one lesion
shows an hypointense rim on phase image and SWI sequence at 3.0 T (orange arrow). Abbreviations: FLAIR, fluid-attenuated inversion recovery;
SWI, susceptibility-weighted imaging.

Series
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be visualized with susceptibility-based imaging as le-
sions showing an hypointense rim (i.e., paramagnetic
rim lesions [PRLs]) since they are usually surrounded by
activated microglia, which are rich in iron (Fig. 2c).46

PRLs are specific to MS and their assessment can
potentially improve the differentiation of MS from other
conditions. They have been described in patients with
CIS suggestive of MS,50 but not in MS mimics,
including NMOSD, Susac syndrome, and SVD.50–52
The presence of at least one PRL was found the
optimal cut-off to distinguish CIS/MS patients from MS
mimickers and old healthy subjects with a high speci-
ficity (99.7%) but low sensitivity (24.0%) and area under
the curve [AUC] = 0.71). Of note, the presence of at least
one PRL or at least four lesions with CVS improved the
sensitivity (57.9%) and AUC (0.83), preserving the
specificity (90.6%).52 Among CIS patients, fulfilling the
“CVS” criteria (≥3 lesions or 40% threshold of lesions
www.thelancet.com Vol 44 September, 2024
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with the CVS) and/or having ≥1 chronic active lesions
predicted MS conversion within three years with good
sensitivity (up to 90.4%) and specificity (up to 85.7%).50

Notably, none of the patients who remained with a CIS
diagnosis after three years exhibited any chronic active
lesion.50 QSM has also been applied to identify PRLs.
Recent studies showed that QSM may be superior to
phase and susceptibility-weighted images in detecting
PRLs,53 with a prevalence of PRLs ranging from 4.2% to
10.6%.53–56

Optic nerve involvement: contribution to
diagnosis and prognosis
The diagnosis of optic neuritis is typically made after a
thorough clinical history and examination. Optic nerve
MRI (ON-MRI) can detect T2-hyperintense lesions in
the optic nerve of MS patients, even in the absence of
optic neuritis history. A recent position paper suggests
the need to establish the diagnosis of “definite” optic
neuritis with paraclinical tests (including ON-MRI
among others).57 However, while ON-MRI will be of
value to rule out other causes of optic neuropathy (e.g.,
a compressive lesion), the visualization of an optic
nerve lesion might not be specific of an inflammatory
aetiology of optic neuropathy.6,58–60 Thus ON-MRI
should be evaluated together with brain and spinal
cord MRI findings to help with the differential
diagnosis.

The recommended optic nerve protocol includes
axial and coronal fat-suppressed T2-weighted or short
tau inversion recovery (STIR), and fat-suppressed
contrast-enhanced T1-weighted sequences.6 Although
higher rates of optic nerve lesion detection have been
reported with 3D DIR sequences, especially in
asymptomatic eyes,61 this superiority has only been
Fig. 3: Example of lesions of the optic nerve in multiple sclerosis. (a) O
orbital portion of the right optic nerve is enlarged and shows a hyperin
(orange arrowhead) on post-contrast T1-weighted sequence.

www.thelancet.com Vol 44 September, 2024
evaluated in 3.0 T scans. Studies focusing on acute
optic neuritis patients report rates of optic nerve
enhancement on contrast-enhanced T1-weighted se-
quences from 34% to 78% (Fig. 3), depending on time
elapsed since the onset of optic neuritis, and cortico-
steroid use. Importantly, in the acute phase, lesion
length (but not Gd-enhancement characteristics) was
associated with poorer visual recovery 12 months after
visual symptom onset.62,63 Moreover, optic nerve lesion
length at onset was associated with the degree of retinal
damage, as measured by optical coherence tomography
(OCT) parameters.63

Despite its relevance, the optic nerve has never been
considered in the McDonald criteria for MS diagnosis
which means that the threshold for MS diagnosis is
different for patients presenting with optic neuritis than
for patients experiencing other classical CIS symptoms.
ON-MRI has been found to detect optic nerve lesions in
a high proportion of CIS patients (40.2%–52.3%),
especially if they present with an ON (72.7%–100%).64,65

Since the publication of the last revision of the diag-
nostic criteria,1 different studies have evaluated the
diagnostic performance of adding the optic nerve as a
new region to fulfil DIS criteria.65–68 Optic nerve
assessment was defined either by clinical grounds, vi-
sual evoked potentials (VEP), OCT, and/or ON-MRI. All
these studies demonstrated that fulfilment of modified
DIS criteria (including optic nerve information and us-
ing a cut-off of 2 out of 5 typical regions) slightly
improved the diagnostic performance of current 2017
DIS criteria by increasing sensitivity (especially in pa-
tients with optic neuritis) with different degrees of
impact on specificity (either no impact or a small drop in
specificity that improves when combining modified DIS
criteria with DIT).
n coronal fat-suppressed T2-weighted sequence, the posterior endo-
tensity (orange arrows), with (b) a focal gadolinium enhancement

7
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Spinal cord involvement: contribution to
diagnosis and prognosis
Imaging of the spinal cord in suspected MS patients is
important for diagnostic and prognostics purposes as
cord lesions are highly specific for MS and finding
multiple cord lesions unfavorably affects the disease
course. Cord imaging, however, comes with technical
challenges due to its small diameter, elongated course
and artefacts from CSF pulsation and breathing.69

Dedicated surface coils, pre-saturation pulses and dual-
contrast pulse-sequences (including proton-density,
STIR) can address these challenges.

Short segment cord lesions are typical of MS, thus
spinal cord involvement has been included as one of the
4 topographies for assessment of DIS. Spinal cord le-
sions tend to involve the peripheral WM in the axial
plane, though additional grey matter (GM) involvement
is not uncommon. However, isolated GM involvement
should prompt consideration of NMOSD or MOGAD.
New/active lesions may enhance following Gd admin-
istration and be associated with some surrounding
edema and swelling.

Finding multiple (new) cord lesions not only in-
creases the chances of developing further relapses
(and CDMS) but is also an unfavorable prognostic
marker and strongly increases the likelihood of
developing disability70 and secondary progressive (SP)
MS.71 When there are multiple lesions, they can
become confluent and be associated with cord atro-
phy. Cord atrophy may also develop independent of
(visible) cord lesions and especially GM cord atrophy
is prognostically unfavorable.72

Conversely, there is less evidence that serial cord
imaging is helpful to monitor treatment and disease
evolution. This is in part due to the technical challenges
of cord imaging (which often does not include whole-
cord axial slices) making it challenging to detect new
lesions with a high degree of certainty. The significant
time-investment needed for good-quality cord imaging
is offset by the fact that brain imaging is faster and more
robust, while being much more likely to reveal new le-
sions. Accordingly, at present, it is not recommended to
routinely perform spinal cord imaging to monitor MS
treatment.6
Special situations: PPMS, age extremes and RIS
MS can be diagnosed in certain uncommon situations,
with their own challenges, which merit discussion.

PPMS
About 10–15% of MS cases exhibit gradual clinical
progression from onset and are labelled as PPMS.
Interestingly, a Swedish cohort study reported a
declining rate of PPMS diagnosis as a proportion of MS
diagnosis over the decades (from 19% in the 1980s to
2% in the last decade).73 PPMS diagnostic confirmation
differs slightly from relapsing-remitting (RR) MS with
emphasis on the presence of CSF-specific OCBs and ≥2
spinal cord lesions (Table 2).1 However, a recent study with
117 PPMS patients showed that sensitivity (89% vs 85%),
specificity (100% vs 100%) and accuracy (91% vs 87%) of
the 2017 and 2010 McDonald criteria for progressive- and
relapse-onset MS were similar, suggesting that a single set
of MRI criteria for all MS patients may be applied in the
future.74

These considerations arose as there is felt to be a
greater risk of misdiagnosing PPMS than RRMS, given
the relative non-specificity of its clinical onset. PPMS
may represent one extreme of a pathophysiological
spectrum in MS that is characterized by a more limited
blood–brain barrier permeability and acute inflamma-
tory activity and dominated by neurodegenerative pro-
cesses secondary to a compartmentalized chronic
inflammation, mitochondrial dysfunction, and oxidative
stress.75,76 Other factors may also influence pathophysi-
ology, e.g., metabolic and microstructural abnormalities
without extensive atrophy have been observed in the
normal-appearing spinal cord.77 The spine is also a
sensitive site of pathological change whose atrophy can
predict disability progression78 and is faster than
RRMS.79 Other features associated with higher rates of
disability progression include higher early GM
diffusivity, higher early disability change, new T1-hypo-
intense lesions, relapses (although rare), higher age,
female sex.80,81 Lesion location at presentation, particu-
larly with spinal cord or brainstem involvement also
predicts greater disability progression.82 Median time to
reach EDSS 6.0 occurs around 8–10 years after onset.81,83

The disability progression rate is similar to SPMS after
EDSS 4.0 is reached.84

Pediatric-onset MS (POMS)
POMS (MS onset before 18 years of age) constitutes
3–5% of the MS population85,86 and is rare with an
estimated global incidence of 0.87 per 100,000 per year
in a recent meta-analysis.85 Diagnostic criteria, devel-
oped and validated in adults with MS, can be used to
diagnose POMS, although caution is advised for acute
disseminated encephalomyelitis (ADEM)-like pre-
sentations and children under 11 years of age.1,86 This
is due to the higher prevalence of MOGAD and
monophasic acquired demyelinating syndromes (ADS)
in these groups. The 2017 McDonald revision per-
formed very well when applied to a pediatric cohort,
with periventricular and T1-hypointense lesions help-
ing to distinguish between monophasic ADS and
POMS.21 POMS exhibits a RR course (98%)87 with
higher relapse rate and brain lesion accumulation
observed early on, than adults with MS.88 POMS took
longer than adult MS to reach disability milestones
(adjusted-hazard ratio [HR] = 0.77) after onset but did
so at an earlier age (adjusted-HR = 4–5).89 Overall
median time to reach EDSS 4.0 is around 30 years
www.thelancet.com Vol 44 September, 2024
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after onset and to reach EDSS 6.0 is about 40 years,89,90

but this is influenced by high-efficacy DMTs which
delay progression90 and show comparable efficacy to
adults.91

Late-onset MS (LOMS)
Approximately 3–5% of MS patients present their initial
symptoms after the age of 50 years, referred to as
LOMS.92–94 The majority of these patients show a mon-
osymptomatic disease onset, especially with motor or
cerebellar impairment.92–97 Compared to MS patients
with a clinical onset at younger age, LOMS is charac-
terized by a lower frequency of clinical relapses and MRI
inflammatory activity,95 a higher proportion of progres-
sive MS forms (up to 50%), a more severe disease
course and a faster disease progression, with a signifi-
cantly shorter time to reach clinically relevant mile-
stones of disability (EDSS = 3.0 and EDSS = 6.0).92–97

These unusual clinical features may be due to brain
aging effects (e.g., lower neuroplasticity, greater oxida-
tive stress, reduced repair/remyelination, vascular co-
morbidities) and immunosenescence phenomena with
a lower role for the adaptive relative to the innate im-
mune system in driving MS pathology.98

Since MS-related clinical features in LOMS can be
potentially confused with symptoms of other diseases
more frequently occurring at older age (e.g., SVD), the
differential diagnosis in this patient population may be
particularly challenging, with high risk of wrong man-
agement plans and late treatment.92–95 Accordingly,
although the 2017 McDonald criteria can be applied in
this population, careful attention to alternative di-
agnoses and particularly comorbidities is necessary and
further studies are needed to validate these criteria in
LOMS.1

Of note, LOMS is not as responsive to DMTs as adult
MS or POMS.99 Despite this, DMT withdrawal can still
result in faster disability worsening in LOMS, indicating
the need for further research in this area.100

RIS
With increasing availability and use of MRI, incidental
T2-hyperintense WM lesions are increasingly identi-
fied on brain and spinal cord imaging.1,101 The term
RIS refers to individuals who have no history of
clinical symptoms typical of MS but have CNS WM
lesions that are highly suggestive of inflammatory
demyelination based on their size, number, shape,
and location, possibly reflecting individuals with sub-
clinical and prodromal stages of MS.101 Incidence of
RIS is uncommon (0.8 cases of RIS per 100,000
person-years in Sweden), but approximately 51% of
individuals will develop clinical symptoms of MS
within 10 years after being deemed RIS, most often
with a RR course.101

Younger age (<35 years) at the time of RIS identifi-
cation, male sex, CSF-restricted OCBs or elevated CSF
www.thelancet.com Vol 44 September, 2024
immunoglobulin G (IgG) index, abnormal visual evoked
potentials, higher serum neurofilament light chain
levels, as well as infratentorial, spinal cord or Gd-
enhancing lesions on the index MRI were predictors
of a first clinical event at 5 and 10 years, especially in the
presence of two or more risk factors,101–105 whereas the
presence of a higher number of spinal cord lesions is
associated with a higher risk of a PPMS course.104,106

Diagnostic criteria for RIS were first proposed in 2009
and were defined by the presence of T2-hyperintense,
ovoid, 3 mm in length or more, well-defined asymp-
tomatic CNS WM lesions that must fulfill at least three of
the four following features: ≥1 Gd-enhancing lesion or
≥9 T2-hyperintense lesions; ≥1 infratentorial lesion; ≥1
juxtacortical lesion; and ≥3 periventricular lesions) and
should not be related to other diseases.107 In 2017, it was
suggested that the 2017 McDonald criteria for DIS and
DIT in MS could be used in RIS.1,108 More recently, a
validation study suggested that when the 2009 RIS
criteria are not fulfilled, an individual could be classed as
having RIS if they have one or two DIS locations asso-
ciated with two of the three following features: ≥1 spinal
cord lesions, presence of CSF-specific OCBs, or DIT (i.e.,
new T2-hyperintense or Gd-enhancing lesions) on the
follow-up MRI.109
Early predictors of long-term outcome
Conventional MRI measures
Conventional MRI measures including T2-hyperintense
WM lesion number, location and activity are helpful in
establishing long-term prognosis (Fig. 4). A higher
number of brain T2-hyperientense WM lesions in
patients with CIS/early relapsing MS increases the risk
of later physical disability and SP disease course,
although the relationship is only modest.110,111 Lesion
location may offer greater prognostic information. A
higher number of infratentorial lesions in patients with
CIS/early relapsing MS predicts long-term disability
worsening.112–114 At disease onset, spinal cord MRI can
add significant additional prognostic information to
brain MRI findings since the evidence of spinal cord
lesions has consistently been found to increase the risk
of long-term physical disability.71,115,116 Lesion activity,
either the number of Gd-enhancing lesions or short-
term changes in T2-hyperintense WM lesion num-
ber and load during the first 1–5 years of the dis-
ease, also predicts long-term physical disability,71,110

and possibly cognitive performance.71,117–119 Consid-
ering all available conventional MRI measures
together may improve patients’ prognosis and treat-
ment decisions. One prospective study found that
among CIS patients with no Gd-enhancing lesions
and no spinal cord lesions at presentation the esti-
mated risk of SPMS 15 years later was ∼5%,
compared with ∼45% in those with at least one
spinal cord lesion and ≥2 Gd-enhancing lesions.71
9
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Fig. 4: Summary of early MRI predictors of subsequent worse disease disability progression and evolution to secondary progressive
multiple sclerosis at disease onset. (a) The number and volume of brain T2-hyperintense white matter lesions; (b) ≥1 infratentorial lesion (orange
arrowheads); (c) ≥1 spinal cord lesion at baseline (orange arrowheads); (d) ≥1 gadolinium-enhancing lesions at baseline (orange arrowheads);
(e) increase of T2-hyperintense brain white matter lesion number and volume (especially of deep white matter) during the first 1–5 years; (f) ≥1
infratentorial T2-hyperintense white matter lesions within 1–3 years (orange arrowheads); (g) ≥1 cortical lesion at baseline (orange arrowheads) on
double inversion recovery sequence. Further promising early MRI markers are h) the presence of lesions with the “central vein sign” on susceptibility-
based MRI (orange arrowheads); (i) the presence of paramagnetic rim lesions on susceptibility-based MRI (orange arrowheads) (j) presence of
substantial brain volume loss at disease onset and/or (k) a faster rate of brain atrophy in the first years of the disease.
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Although brain T2-hyperintense WM lesion volume
progressively increases in untreated MS patients by
5–10% per year,120 the correlations between total and
new brain T2-hyperintense lesions and disability
worsening are limited in MS patients with long-standing
disease. Limited data regarding the association between
new spinal cord lesions and disability progression are
also currently available. However, recent studies showed
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that the presence of new T2-hyperintense lesions both in
the brain and spinal cord was significantly associated
with an increased risk of disability worsening when
compared to the absence of new lesions and/or presence
of new brain T2-hyperintense WM lesions alone
(HR = 2.31 and 1.4).121,122

Advanced MRI techniques
Advanced MRI techniques may further contribute in
predicting long-term outcome in the earliest MS phases.
CLs have been suggested as one of the primary neuro-
pathological substrates of disease progression, including
progression of both cognitive impairment and physical
disability.118,123,124 The number of CLs at disease onset
may predict disability progression and conversion to
SPMS after 7 years,123 as well as cognitive impairment
after 20 years.118 While no MS patients without CLs at
baseline developed SPMS and only a few (1.8%) reached
an EDSS score ≥4.0 at last follow-up, the risk of SPMS
conversion was progressively higher with an increased
number of baseline CLs (HR = 2.16, 4.79, and 12.3 for 2,
5, and 7 CLs, respectively), and time to progression was
earlier (median time = 6.5 years in MS patients with ≥7
CLs, on average 4 years earlier than those with 1–3
CLs).123 Moreover, the presence of at least 3 CLs at
baseline was associated with a higher risk of cognitive
impairment at 20 years (odds ratio = 3.7, AUC = 0.67,
specificity = 75%, sensitivity = 55%).118 On the other
hand, after 15 years of the disease, patients who still
demonstrated a moderate disability without cognitive
impairment showed a remarkably lower CL number and
volume increase compared to early RRMS.123,125 CLs have
a prognostic role also in MS patients with longer disease
duration since their number and volume predict disease
worsening126 and their accumulation are associated with
disability progression in both relapse-onset and PPMS
patients.126–129

PRLs are not only relevant during the diagnostic
process but also serve as markers of smouldering activity
being associated with more severe clinical disability,
progression of brain atrophy and disability.51,130 MS pa-
tients with ≥4 PRLs had more severe disability, a faster
disease progression, with an earlier development of mo-
tor and cognitive impairment, and a more severe brain
volume loss, thus suggesting a more aggressive disease
course.51,130 Moroever, PRL volume was one of the most
relevant predictors of EDSS worsening after 3 years.131

Accordingly, monitoring these lesions over time can
provide valuable information on disease progression,
with the potential to guide treatment decisions and help
assess response to treatment.130–132

Chronic active lesions slowly increase in size over
time (i.e., slowly-expanding lesions [SEL]), thus they
have been identified among those WM lesions showing
a linear and progressive expansion over long-enough
periods of time on conventional T1-and T2-weighted
sequences.75,133–135 The prevalence of SELs seems similar
www.thelancet.com Vol 44 September, 2024
in PPMS (69.0%–73.2%)75,133 and relapse-onset MS pa-
tients (59.6%–98.6%).133,136–138 Microstructural tissue
damage, as quantified by lower MTR, lower normalized
T1 intensity and higher radial diffusivity, is greater in
SELs than in T2-hyperintense lesions not expanding
over time.75,133,135,136,138 Moreover, SEL number and vol-
ume and their intrinsic microstructural tissue abnor-
malities have been shown to predict disability
progression in relapse-onset MS and PPMS.75,134,136,137,139

However, at present, the relevance of SELs in the diag-
nostic work-up of MS as well as their prognostic role at
disease onset have not been explored yet.

Interestingly, SELs and PRLs overlap, but only
partially, suggesting that these lesions may represent
distinct stages of MS pathology within chronic active
lesions.140

More severe brain microstructural abnormalities and
volume loss at disease onset and a faster rate of brain
atrophy in the first years of the disease may also predict
long-term MS evolution and cognitive decline in relapse-
onset MS. Change within the first 5 years of disease in
medullary width significantly predicted disability wors-
ening, SPMS conversion or MS-related death after 30
years, whereas third ventricular width significantly pre-
dicted disability progression.141 Baseline normal-
appearing brain tissue MTR and brain parenchymal
fraction and 2-year change in ventricular fraction
significantly predicted changes in memory functions
after 7 years,117 whereas a faster rate of brain atrophy in
the first year predicted cognitive performance after 5
years.119 Brain and spinal cord volume and atrophy are
also useful prognostic markers in more advanced pha-
ses of the disease.142 In particular, cerebral GM volume
loss is an important predictor of long-term prognosis.142

In relapse-onset MS, baseline GM volume predicted
EDSS worsening after 13 years,143 whereas a model
including GM mean diffusivity and GM atrophy pre-
dicted 15-year disability in PPMS patients.80 Spinal cord
volume loss progresses at a faster rate in MS patients
experiencing disability worsening than those who do
not,142 and it predicts disability worsening.70
MRI to select treatment and predict treatment
response
Treatment selection for each MS patient is typically
influenced by many factors, including demographic
features (i.e., sex and age), clinical characteristics
(severity of clinical relapses, higher relapse rate, brain-
stem or spinal cord onset, higher disability or a pro-
gressive disease course, comorbidities, etc.), and the
presence of negative MRI prognostic factors that have
been previously discussed.144 Accordingly, high efficacy
disease-modifying therapies may represent the appro-
priate therapeutic approach in the presence from the
earliest phases of MS of negative prognostic factors
associated with long-term disease progression.144,145
11
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MRI represents also a fundamental paraclinical tool
to monitor and predict treatment response. MRI is
highly sensitive to occurrence of Gd-enhancing lesions
or new T2-hyperintense lesions forming over time that
represent a valid surrogate marker of clinical relapses.146

Moreover, MRI can quantify the amount of neuro-
degeneration (demonstrated by atrophy of the brain and
spinal cord) that represents a surrogate marker of
irreversible disability progression.147

The evidence of ongoing inflammatory activity detected
with MRI may predict subsequent disease evolution. Post-
hoc analyses of randomized clinical trials and observa-
tional studies have shown that the occurrence of MRI ac-
tivity in the first 6–12 months after treatment start is
associated with higher risks of clinical relapses or disability
worsening over the short or medium-term period, thus
suggesting for a possible treatment change.148 Recently,
composite outcome measures have been proposed to
incorporate both clinical (relapses and disability wors-
ening) and MRI measures (new T2-hyperintense and Gd-
enhancing lesions) to better predict treatment response
and disease evolution.148,149 These include the Rio score,150

the modified Rio score,151 the MAGNIMS score,152 and
no evidence of disease activity 3153 (NEDA-3). A subsequent
iteration of NEDA-3 (i.e., NEDA-4) requires also the
absence of brain atrophy, defined according to an annual
brain volume loss threshold of 0.4%.154 Thanks to the
combination of clinically-relevant markers, these compos-
ite scores may be more stringent regarding acceptable
levels of disease activity while on treatment and may pre-
dict medium- and long-term disease evolution with better
accuracy compared to single clinical and MRI criteria.148

However, since they have been evaluated with specific
drugs, their generalizability to other treatments still need
to be explored.148
MRI protocol and report in MS diagnosis
The 2021 MAGNIMS–CMSC–NAIMS international
consensus recommendations offer revised guidelines
on the use of MRI in MS patients that encompass the
appropriate methods and timing for employing MRI in
the diagnosis of MS, placing particular emphasis on
implementing standardized MRI protocols and reports
(Table 3, Panel 1).6

Even though 3.0 T MRI scanners are preferred since
they improve brain lesion detection and may reduce
acquisition times, those with 1.5 T are still sufficient for
lesion detection, given good quality scans with proper
signal-to-noise ratio and high spatial resolution (Table 3,
Panel 1). For diagnosis, recommended brain sequences
include T2-weighted 3D-FLAIR, axial T2-weighted, and
post-Gd T1-weighted (Table 3, Panel 1). In particular,
sagittal T2-weighted 3D-FLAIR sequence is considered
to be the core sequence for MS diagnosis due to its high
sensitivity to WM lesions. 3D acquisitions are preferred
to two-dimensional (2D) acquisition since they improve
lesion detection and allow the reconstruction on different
planes. In case of unavailability of 3D T2-weighted FLAIR
sequence, high quality 2D pulse-sequences can be
acceptable alternatives. Although some safety concerns
were recently raised regarding the use of Gd-based
contrast agents, post-contrast sequences are recom-
mended in the diagnostic work-up of MS to show DIT
and to exclude alternative diagnoses. To detect enhancing
lesions, the recommended dose of Gd-based contrast
agents is 0.1 mmol/kg body weight and the time delay
between contrast administration and T1-weighted acqui-
sition should not be shorter than 5 min.

Unlike brain MRI, there is no evidence that using
higher field strengths (e.g., 3.0 T) results in a greater
detection of spinal cord lesions than lower field
strengths. The standardized spinal cord MRI protocol
must include at least two of the following three sagittal
sequences: T2-weighted, proton density-weighted, or
STIR (Table 3, Panel 1). A combined acquisition in-
creases the sensitivity of lesion identification but also
limits the risk of artefacts and false positive findings.
Sagittal MRI scans should ideally cover the whole spinal
cord since lesions can be detected in all cord levels,
including the conus. Even though Gd-enhancing spinal
cord lesions are less common than in the brain, sagittal
Gd-enhanced T1-weighted spin echo sequence should
be also acquired in the diagnostic work-up of MS.
Although axial images of the spinal cord are optional,
axial T2-weighted spin echo sequences can further
improve diagnostic certainty, ameliorating the accuracy
of lesion detection and differentiating MS from mimics
(e.g., NMOSD, MOGAD) on the basis of lesion exten-
sion and topography.

Additional brain MRI sequences, including DWI,
pre-contrast 3D T1-weighted for volumetric measure-
ments, DIR or PSIR to identify CLs, and susceptibility-
based imaging to identify CVS and chronic active
lesions are currently optional. Similarly, dedicated optic
nerve MRI is not recommended except for differential
diagnosis with NMOSD, MOGAD and in patients with
atypical clinical features (Table 3, Panel 1).

The interpretation of MRI findings should be per-
formed by (neuro)radiologists, with expertise in the
identification of neuroimaging features typical and
atypical for MS2 (Panel 1). Moreover, a standardized
radiological report is recommended. It should accurately
report standard measures, such as lesion count, size
and, topography of T2-hyperitense WM lesions, Gd-
enhancing lesion count, fulfillment of diagnostic
criteria as well as possible incidental findings (Panel 1).6
Novel technologies: contribution to diagnosis
and prognosis
Artificial intelligence
Recent improvements in technologies and the avail-
ability of large amount of data have promoted the
www.thelancet.com Vol 44 September, 2024
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Brain Spinal cord Optic nerve

Suggested MRI parameters

Field strength ≥1.5 T (preferably 3.0 T) ≥1.5 T (3.0 T has no added value compared with
1.5 T)

≥1.5 T

Slice thickness For 3D imaging: 1 mm isotropic is preferred but, if
over contiguous (through plane and in plane), not
>1.5 mm, with 0.75 mm overlap
For 2D imaging: ≤3 mm with no gap (except for
diffusion-weighted imaging, for which the slice
thickness should be ≤ 5 mm with a 10–30% gap)

Sagittal slices should be ≤ 3 mm with no gap;
axial slices should be ≤ 5 mm with no gap

≤2–3 mm with no gap

In-plane resolution ≤1 mm × 1 mm ≤1 mm × 1 mm ≤1 mm × 1 mm

Coverage Whole brain (include as much of cervical cord as
possible)

Cervical and thoraco-lumbar spinal cord, to include
conus

Optic nerve and optic chiasm

Axial scan orientation Subcallosal plane to prescribe (i.e., for 2D imaging)
or reformat (i.e., for 3D imaging) axial oblique slices

Perpendicular to the sagittal axis of the spinal cord Aligned to the orientation of
the optic nerve and optic chiasm

MRI sequence

Recommended Axial T2-weighted (TSE or FSE) sequencesa At least two of: sagittal T2-weighted sequences (TSE
or FSE), PD-weighted sequences (TSE or FSE), or STIRSagittal T2-weighted FLAIR (preferably 3D; fat

suppression is optional)

Axial T2-weighted FLAIR (unnecessary if a sagittal 3D
FLAIR with multiplanar reconstruction is obtained; fat
suppression is optional)

Sagittal T1-weighted sequences (TSE or FSE) after
contrastb

Axial (or 3D sagittal) T1-weighted sequences after
contrastb

Optional Diffusion-weighted imaging Sagittal 3D heavily T1-weighted sequences (PSIR or
magnetisation-prepared rapid acquisition of gradient
echoesc) only for the cervical segment

Axial and coronal fat-suppressed
T2-weighted sequences or STIR of
optic nerved

DIR or PSIR for detecting cortical or juxtacortical
lesions

Axial T2-weighted (TSE or FSE) or gradient-recalled
echoe

High-resolution T1-weighted sequences (isotropic 3D
acquisition; for quantitative assessment of brain
volume)

Sagittal T1-weighted sequences (TSE or FSE) before
contrast

Axial and coronal fat-suppressed
T1-weighted sequences post contrast
of optic nervedAxial T1-weighted sequences (TSE or FSE) after

contrastb

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; DIR, double inversion recovery; FLAIR, fluid-attenuated inversion recovery; FSE, fast spin echo; PD, proton density; PSIR, phase-sensitive
inversion recovery; TSE, turbo spin echo; STIR, short tau inversion recovery. aA dual echo (proton density-weighted and T2-weighted) sequence can be considered as an alternative to a single echo T2-
weighted sequence. bStandard doses of 0.1 mmol/kg bodyweight, macrocyclic gadolinium chelates only, with a minimum delay of 5–10 min. cOne of these sequences could replace T2-weighted sequences,
proton density-weighted sequences, or short tau inversion recovery. dThe acquisition of this sequence can be considered in some clinical situations; 2D or 3D acquisition. eTo corroborate, characterize, and
confirm lesions detected on sagittal images or to detect lesions in spinal cord segments with high clinical suspicions of involvement.6

Table 3: Recommended standardized brain, optic nerve, and spinal MRI protocols for MS diagnosis.
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application of artificial intelligence (AI) algorithms for
the identification and segmentation of lesions, the
diagnostic-work up of MS, and the characterization of
disease course and prognosis.155

Numerous segmentation methods employing
various approaches have been proposed for quantifying
WM lesions.155–158 Among them, image segmentation
using deep learning (DL) approaches (typically con-
volutional neural networks [CNNs]) have been exten-
sively used.156 These methods have been demonstrated
to be accurate, allowing also to obtain lesion volumes in
a more reproducible way and with more limited time-
consuming compared to manual quantifications.

Recent application of AI for MRI analysis in MS
included also the automated assessment of specific
lesion types, such as cortical lesions,159 enhancing le-
sions,160 as well as of lesional features, including the
presence of the CVS in WM lesions,161,162 and
PRLs.163,164
www.thelancet.com Vol 44 September, 2024
Using DL or machine learning (ML) approaches,
recent studies were able to discriminate between MS
patients and HC with an accuracy between 70.2% and
98.8% from structural or resting state functional MRI
sequences.165–171

Algorithms based on AI may also play a crucial role
in distinguishing MS from other conditions. A random
forest algorithm, using brain GM imaging measures,
achieved 74% accuracy in discriminating NMOSD from
MS.172 Multiparametric approaches, incorporating data
from FLAIR, brain GM, DTI, resting state functional
MRI plus clinical and neuropsychological information
improved up to 88%.172,173 ML and DL algorithms
applied to brain FLAIR and T1-weighted sequences and
clinical information showed high accuracy in differen-
tiating MS from NMOSD, migraine, CNS vasculitis, and
non-inflammatory WM disorders.174–177

ML algorithms also demonstrated high accuracy in
distinguishing MS from non-inflammatory disorders
13
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Panel 1: Recommendations for MRI application in the MS diagnostic work-up.

Standardized brain MRI protocol

• At least 1.5 T; 3.0 T if available.
• Core sequences are: T2-weighted 3D-FLAIR, axial T2-weighted, and T1-weighted with Gd (Table 3).
• Pre-contrast T1-weighted sequences are not required.
Recommended use of brain MRI sequences
• To establish the diagnosis according to 2017 McDonald criteria: detection of symptomatic or asymptomatic brain lesions in typical CNS regions to show
DIS and DIT.

• To predict future disease activity and disease progression.
Standardized spinal cord MRI protocol
• 1.5 T or 3.0 T.
• Details on pulse sequences can be found in Table 3.
Recommended use of spinal cord MRI sequences
• To establish MS diagnosis according to 2017 McDonald criteria
o Relapse-onset (CIS)

▪ Detection of symptomatic or asymptomatic spinal cord lesions to show DIS and DIT.
▪ Differential diagnosis in case of inconclusive brain MRI findings: presence of typical demyelinating spinal cord lesions and exclusion of alternative

diagnosis (e.g., NMOSD and MOGAD).
o Progressive-onset (PPMS)

▪ Detection of typical demyelinating spinal cord lesions to show DIT.
▪ Detection of diffuse lesions.
▪ Exclusion of alternative diagnosis.

• To predict future disease activity and disease progression.
Recommended use of Gd-based contrast agents
• To show dissemination in time on the baseline MRI scan.
• To contribute to differential diagnosis (i.e., on the basis of the pattern of enhancement).
• To predict future disease activity and disease progression.
• For phenotyping patients with progressive disease (i.e., active or inactive), if a recent (i.e., within 1 year) MRI is not available, and if this information
affects treatment decisions.

MRI in pediatric MS population
• The same standardized brain and spinal cord MRI protocols as for adults should be acquired.
• Gd-enhanced images are valuable to exclude non-MS diagnosis at onset.
• Full spinal cord MRI should be acquired for diagnosis of children with spinal cord symptoms or signs or with inconclusive brain MRI findings.
• Spinal cord MRI could be obtained to provide a baseline MRI for all pediatric MS patients.
• Dedicated optic nerve MRI is not recommended, except for differential diagnosis with MOGAD or NMOSD and if clinical features are atypical.
Additional or advanced MRI
• Diffusion-weighted imaging cannot replace Gd as a marker for active inflammation.
• Dedicated optic nerve MRI is not recommended except for differential diagnosis with NMOSD, MOGAD and in patients with atypical clinical features.
• There is insufficient current evidence to recommend routine use of quantitative MRI techniques and brain volumetric measurements, DIR or PSIR for
CLs, and CVS and chronic active lesions as diagnostic markers.

Image interpretation and report

• Standardized image interpretation and reporting is recommended.
• Knowledge about definition of lesion types is crucial and warning signs against a diagnosis of MS should be recognized.
• Standard measures, such as T2-hyperintense WM lesion count, size and topography and Gd-enhancing lesion count if Gd was administered, are
recommended.

Separate identification of cortical lesions (together with juxtacortical lesions) based on standard images (e.g., FLAIR; DIR or PSIR sequences are optional) is
recommended.

Abbreviations: CIS, clinically isolated syndrome; CL, cortical lesion; CNS, central nervous system; CVS, central vein sign; DIR, double inversion recovery; DIS,
dissemination in space; DIT, dissemination in time; FLAIR, fluid-attenuated inversion recovery; Gd, gadolinium; MOGAD, myelin oligodendrocyte
glycoprotein-associated disease; MRI, magnetic resonance imaging; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; PP, primary
progressive; PSIR, phase-sensitive inversion recovery; WM, white matter.6
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Search strategy and selection criteria

References for this Series paper were identified through searches of PubMed (https://
www.ncbi.nlm.nih.gov/pubmed) with the search terms “Automated quantification
tolls”, “Artificial intelligence”, “Brain”, “Chronic active lesions”, “Clinically isolated
syndrome”, “Cortex”, “Cortical lesions”, “Diagnosis”, “Diagnostic Criteria”,
“Differential Diagnosis”, “Grey Matter”, “Guidelines”, “Iron Rim Lesions”, “Lesion/s”,
“MRI”, “McDonald criteria”, “Multiple Sclerosis”, “Optic nerve”, “Paramagnetic Rim
Lesions”, “Prognosis”, “Primary Progressive”, “Progressive”, “MRI protocol”,
“Secondary Progressive”, “Slowly-expanding lesions”, “Spinal Cord”, “Treatment
response”, “White Matter”, from 1st January 1979 until 15th January 2024. Only
papers published in English were reviewed. The final reference list was generated
with the consensus of all co-Authors of this Series article on the basis of originality
and relevance to the broad scope of this Series paper, with a focus on articles
published during the past five years.
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and predicting conversion from CIS to clinically definite
MS with an accuracy between 67.6% and 92.9%.178–181

By integrating clinical and MRI data, several studies
demonstrated that ML and DL algorithms can accurately
predict disability worsening in the different clinical
phenotypes and after variable follow-up durations,
ranging from six months to fifteen years.80,143,182–185

Notably, while lesion measures appear crucial for
short-term prediction of disease progression, at long-
term follow-up, GM damage becomes a more substan-
tial and significant contributor.

Automated quantification tools
Manual quantification of brain lesions and volumes is a
time-consuming process that is susceptible to errors and
high variability. The availability of commercially acces-
sible automated quantification and reporting tools has
grown in recent years.186 They have the potential to
improve the sensitivity, precision and consistency of
MRI analysis, possibly reducing time for data analysis.
These automatic tools may potentially facilitate the
cross-sectional and longitudinal evaluation of volumetric
data of each patient against a reference population. This
may be beneficial for clinicians in various aspects such
as diagnostic work-up, predicting disease progression,
monitoring disease evolution and treatment responses.
Numerous automated quantification and reporting tools
designed for MS have been created for clinical use, and
many of these tools have received regulatory approval
(see186 for a comprehensive and up-to-date review).
However, to broaden their application in the clinical
setting, standardization and validation using diverse
input data remain essential. Moreover, these tools
should be intended to provide support and should not
replace the direct evaluation performed by clinicians.
Conclusions
Accurate criteria in the diagnostic work-up of MS are
pivotal to facilitate early diagnosis and minimize the risk
of misdiagnosis. The 2017 McDonald criteria exhibit
high sensitivity and accuracy in predicting the occur-
rence of a second clinical attack (i.e., clinically-definite
MS). They enable timelier MS diagnosis and treat-
ment, but they should be applied only after alternative
diagnoses have been carefully ruled out.

To enhance the diagnostic process further, emerging
imaging markers (e.g., optic nerve involvement, CLs,
CVS, and chronic active lesions) have been proposed.
These aim to augment the specificity and accuracy of
MS diagnostic criteria. However, before their incorpo-
ration into clinical practice, rigorous validation and
standardization are still necessary. Moreover, there is a
relative lack in knowledge for PPMS, POMS and LOMS
which represent rarer presentations. Future research
focusing on these areas in large or multi-center settings
is necessary.
www.thelancet.com Vol 44 September, 2024
Several MRI markers, encompassing the number,
size, and distribution of focal WM lesions, along with
more specific advanced MRI features, serve as early
and reliable predictors of subsequent disease progres-
sion. Thus, their thorough assessment can potentially
identify MS patients at elevated risk of disease pro-
gression, necessitating prompt use of highly effective
therapies.

To ensure consistency and improvement in MRI use
in the diagnostic work-up of MS, it is essential
to implement standardized brain and spinal cord MRI
protocols. Additionally, accurate interpretation by
specialized (neuro)radiologists with expertise in MS
neuroimaging features is crucial for achieving a
consistent and accurate use of MRI in the context of MS.
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