MgATP-dependent accumulation of calcium ions and inorganic phosphate in a liver reticular pool

Rosella FULCERI,* Giorgio BELLOMO,† Alessandra GAMBERUCCI* and Angelo BENEDETTI*! * Istituto di Patologia Generale, University of Siena, 53100 Siena, and † Clinica Medica I, University of Pavia, 27100 Pavia, Italy

1. MgATP-dependent Ca²⁺ uptake by rat liver microsomal preparations and permeabilized hepatocytes was measured in the presence or absence of P₁. 2. Monitoring of free Ca^{2+} in incubation systems with a Ca^{2+} electrode in the presence of P_i (2-7 mm) revealed a biphasic Ca²⁺ uptake, with the onset of a second, P_i -dependent, Ca²⁺ accumulation. 3. Increasing P_i concentrations (up to 10 mm) caused a progressive enlargement of $45Ca^{2+}$ -loading capacity of microsomal fractions. 4. As a result of P_i stimulation of active Ca²⁺ uptake, $[^{32}P]P_1$ and $^{45}Ca^{2+}$ were co-accumulated. 5. Experiments with permeabilized hepatocytes revealed that the amount of Ca²⁺ releasable by myo-inositol 1,4,5-trisphosphate is unaffected by P_i .

INTRODUCTION

Increasing evidence strongly suggests that the endoplasmic reticulum (ER) plays a key role in the regulation of cytosolic free $Ca²⁺$ concentrations in a variety of non-muscle cells. The liver ER in situ appears to be a major Ca^{2+} storage site [1], and the $MgATP-dependent Ca²⁺ accumulation system is present in (liver)$ microsomal fractions as well as in the intact ER of permeabilized cells (hepatocytes) [2,3]. On the other hand, the second messenger myo-inositol 1,4,5-trisphosphate (IP_3) releases Ca²⁺ from ER, or a specialized part of it, in the cytosol [4-6].

In many Ca^{2+} -translocating systems Ca^{2+} movements are affected by P_1 , at cellular and subcellular levels [7-14]. In the case of ER (or sarcoplasmic reticulum) the effect of P_1 on Ca^{2+} fluxes has seldom been investigated under cytosol-like incubation conditions (e.g. $[15,16]$); in most instances, in fact, high P. concentrations have been merely employed to enlarge the reticular Ca^{2+} -loading capacity (see [8,12]), assuming that the and performance the microsomal membranes and precipitates the $t_{\rm H}$. $t_{\rm H}$. α . α .

In the present study the effect of cytosol-like concentrations of $\frac{17}{17,18}$ on the ER Ca²⁺ fluxes has been s_i (2 Thin in the liver $\lfloor i/10 \rfloor$) on the literature mass has seen permeable hepatocytes.

EXPERIMENTAL

Materials

ATP, phosphocreatine, creatine phosphokinase (Sigma Type AIP, phosphocreatine, creatine phosphokinase (sigma, 1 ype) III) and digitonin were from Sigma, St. Louis, MO, U.S.A. ⁴⁵CaCl, (1650 Ci/mol) and Na₂H³²PO₄ (1100 Ci/mol) were from du Pont-New England Nuclear, Dreieich, Germany. IP₃ and collagenase were from Boehringer Mannheim G.m.b.H., Mannonagenase were nom boeminger mannieum O.m.o.m., mann- α ² electrodity. All other chemicals were or analytical grace. $Ca²⁺$ electrodes were constructed as reported [19] or purchased from Ionetics Inc., Palo Alto, CA, U.S.A.

Preparation of liver microsomal fractions and digitoninpermeable of heat heat of

 $\frac{1}{2}$ $\frac{1}{2}$ ratio $\frac{1}{2}$ rats (weighting 180-230 g) were used. Male Sprague-Dawley rats (weighing $100-230$ g) were used. 'Total' liver microsomes (referred to as 'microsomes' in the text below) were prepared as reported [20]. Two microsomal sub-
fractions, one mainly corresponding to rough ER ('rough

microsomes') and the other to smooth ER ('smooth microsomes'), were prepared by centrifugation on discontinuous sucrose gradients [21] as previously described [5]. The microsomal fractions were resuspended (approx. ¹⁰⁰ mg of protein/ml) in a medium which had the following composition (mM): KCl, 100; NaCl, 20 ; MgCl₂, 5; Mops, 20 , pH 7.2. The suspensions were frozen and maintained under liquid $N₂$ until work-up.

Hepatocytes were isolated by collagenase perfusion as reported [22]. Cells were permeabilized by incubation with digitonin (80 μ g/ml) for 5 min at 37 °C in the KCl/Mops medium as above, containing $5 \text{ mM-} \text{Na} \text{N}_3$. After permeabilization, the cells were washed (three times) and resuspended (approx. 300 mg of protein/ml) in the KCl/Mops medium containing $NaN₃$. Permeabilized cells were maintained at 0-4 °C and used within 3 h.

Measurement of Ca^{2+} uptake with Ca^{2+} electrodes

Microsomes or permeabilized hepatocytes were incubated in a thermostatically controlled (37 °C) Plexiglas vessel in which a Ca2+ electrode and a reference electrode (Radiometer K4040) were immersed. The incubation medium (1 ml) was as follows were immersed. The mediation medium (Thirty was as follows
(mx): KCl , 100; NaCl, 20; MaCl, 5; Mops, 20, pH 7.2; ATP, 3; phosphocreating, 10; NaN3 (as mitochondrial inhibitor), 5.
there has most in a NaN3 (as mitochondrial inhibitor), 5. phosphocreatine, 10; NaN_3 (as mitochondrial inhibitor), 5. Creatine phosphokinase (10 μ M units/ml) was also present. The Ca²⁺ electrodes were calibrated as described by others [23].

Measurement of $45Ca²⁺$ accumulation by liver microsomal fractions

The microsomal fractions were incubated at 37 °C in a medium The fine resolution fractions were included at J/\sqrt{m} in a meaning which had the following composition (mm) . Next, 100; NaCl, 20; MgCl₂, 5; Mops, 20, pH 7.2; ATP, 3; phosphocreatine, 10; NaN₃, 5. Creatine phosphokinase (10 μ m units/ml) was also p_{max} , J. Creating phosphormase (10 μ m difficulties) was also present. Ca C_2 (zo μ m mai conen.) with Ca_{2} (o. $\mu C/\mu$) was added to the medium. Total Ca^{2+} present in the incubation medium (Ca^{2+} added plus Ca^{2+} already present as contaminant in reagents) was measured by atomic-absorption spectroscopy in each experiment, and ranged from 29 to 36 nmol/ml. The amount of $Ca²⁺$ accumulated by microsomes was calculated on the basis of the actual total Ca^{2+} content of each incubation mixture. Ca^{2+} accumulated by microsomes was measured by using a rapidfiltration technique [24]. Each Ca²⁺ uptake assay was corrected for non-specifically bound Ca^{2+} , i.e. Ca^{2+} already associated with microsomes in the absence of ATP from the assay medium.

Abbreviations used: ER, endoplasmic reticulum; IP₃, myo-inositol 1,4,5-trisphosphate.

Measurement of 32P-labelled phosphates accumulated by liver microsomes

The amount of P_1 , co-accumulated with Ca^{2+} by microsomes was measured by adding $32P$ -labelled P_i to incubation systems identical with that used for measuring $45Ca^{2+}$ accumulation, but in the absence of ${}^{45}Ca^{2+}$. ${}^{32}P$ associated with (or accumulated by) microsomes was determined by the rapid-filtration technique used to determine microsomal $45Ca^{2+}$ (see above).

Other assays

Protein determination was performed as reported by others [25], using BSA as standard. P_1 was measured as reported [25a].

RESULTS

In the first set of experiments, $Ca²⁺$ uptake by liver 'total' microsomes or the non-mitrochondrial compartment of permeabilized hepatocytes was continuously monitored by measuring the free Ca^{2+} concentration in the incubation systems with a Ca²⁺-selective electrode. In the presence of MgATP (Fig. la, lower curve), liver microsomes exhibited a monophasic Ca^{2+} uptake, until a steady-state level of approx. 15 nmol/mg of protein was achieved; this value is in the range of those previously reported for the maximal $Ca²⁺$ -loading capacity of liver microsomes in the absence of $Ca²⁺$ -trapping agents [3]. On the other hand, in the presence of P_1 , the MgATP-dependent Ca^{2+} uptake by liver microsomes was biphasic: a rapid initial uptake (lasting approx. 3.5 min), similar to that observed in the absence of P_i , was followed by an additional $Ca²⁺$ -uptake phase, which was more and more rapid in the presence of increasing P_i concentrations (2-7 mm added). Owing to microsomal ATP hydrolysis, a linear continuous P_1 , supply to the incubation systems was also present (approx. 0.06μ mol/min per mg of protein in all incubation mixtures.) However, such P_1 supply was ineffective by itself to stimulate Ca^{2+} uptake (Fig. 1a, lower curve). Ca^{2+} accumulated by microsomes with or without P_1 was rapidly released by the Ca^{2+} ionophore A23187. In the absence of

Fig. 1. Time course of MgATP-dependent $Ca²⁺$ uptake by rat liver microsomes (a) and digitonin-permeabilized hepatocytes (b) in the presence or absence of P.

 $Ca²⁺$ uptake was monitored by measuring free $Ca²⁺$ in incubation mixtures with a Ca^{2+} electrode. Where indicated, P. (as potassium phosphate buffer, pH 7.2) or ammonium oxalate (4 mm) were included in the medium for MgATP-dependent $Ca²⁺$ uptake (see the Experimental section). Each $CaCl₂$ addition was 10 nmol (arrows). Incubation was started by adding $30-50 \mu l$ of microsomal (MS) or cell suspension to give 2 or 3.5mg of protein/ml respectively. A23187 was at 1 μ M (final concn.). A typical set of experiments out of three to six is reported.

MgATP, no $Ca²⁺$ uptake was effected by microsomes, either with or without P_i (results not shown). The second P_i -dependent $Ca²⁺$ -uptake phase was observed also when P₁ (3.5 mm) was added at various times after the start of the MgATP-dependent Ca^{2+} uptake (results not shown); however, in all cases P_i stimulated Ca²⁺ uptake was evident only after the steady-state levels of MgATP-dependent Ca²⁺ accumulation had been attained. Other cytosolic, bivalent anions (i.e. sulphate, acetate, up to 10 mm) failed to stimulate active microsomal $Ca²⁺$ accumulation.

Fig. $1(a)$ also shows that, in the presence of 4 mm-oxalate (as intravesicular Ca2+-trapping agent), a monophasic pattern of stimulated microsomal Ca²⁺ uptake was observed, with an initial rate higher than that of P_i -stimulated Ca^{2+} uptake. Analogously, in parallel experiments with isolated digitonin-permeabilized rat hepatocytes, it was shown, in the presence of mitochondrial inhibitors, that a second Ca^{2+} uptake phase is elicited by P_i in a non-mitochondrial hepatocyte Ca^{2+} pool (Fig. 1b).

The effect of P_i , stimulation on the maximal Ca²⁺-loading capacity of different microsomal preparations ('total', 'rough' and 'smooth' microsomes) was studied with $45Ca²⁺$. In these experiments, the low amount of microsomal protein used $(< 0.1$ mg/ml) minimized P_i supply, owing to microsomal ATP hydrolysis, thus allowing prolonged incubation (60 min) at rather constant P_i concentration. As reported in Fig. 2, in the presence of increasing P_i concentrations (1-10 mm), correspondingly increasing Ca2+-loading capacities were observed in all the microsomal fractions employed, although the stimulatory effect of P_i was much more marked in the 'smooth' as compared with the 'rough' microsomal subfraction. This difference is particularly evident at the lower P_i concentrations employed $(1-3 \text{ mm})$; see the insert to Fig. 2). In parallel experiments run with a $Ca²⁺$ electrode, both smooth and rough microsomal subfractions exhibited the same biphasic $Ca²⁺$ uptake as that observed with total microsomes, although the second P_i -stimulated uptake was more pronounced in smooth microsomes (results not shown).

In further experiments the mechanism of P_1 , stimulation was investigated. To this aim, ${}^{45}Ca^{2+}$ and $[{}^{32}P]P_1$ were employed (Fig. 3). As expected, in the presence of MgATP, a steady-state level of approx. 17 nmol of $45Ca^{2+}/mg$ of protein was reached by microsomes within 7 min, and was maintained up to ¹ h of

Fig. 2. Stimulatory effect of P_i on MgATP-dependent $^{45}Ca^{2+}$ -loading
capacity of 'total' (c), 'smooth' (c) and 'rough' (A) liver capacity of 'total' (\bigcirc) , 'smooth' (\bigcirc) and 'rough' (\bigtriangleup) liver microsomes

Microsomes (0.08-0.1 mg of protein/ml) were incubated in the medium for MgATP-dependent⁴⁵Ca²⁺ uptake (see the Experimental $\frac{1}{\sqrt{1-\frac{1$ indicated concentrations, for 1 h. Results are means \pm s.e.m. for four to six experiments.

Fig. 3. Co-accumulation (a) and simultaneous A23187-induced release (b) of Ca^{2+} and P_i from liver microsomes

Microsomes (0.08-0.1 mg of protein/ml) were incubated in the medium for MgATP-dependent ${}^{45}Ca^{2+}$ uptake (see the Experimental section). As indicated, 7 mm-P_1 (as potassium phosphate, pH 7.2) was added to ${}^{45}Ca^{2+}$ samples ($O \rightarrow O$); alternatively, 7 mm- $[{}^{32}P]P$ _i was added to samples including non-labelled Ca^{2+} only (\bullet A23187 was at 1 μ M (final concn.). Results are means \pm s.E.M. for four to six experiments (panel a); a typical experiment is shown in panel b. \bigcirc ---- \bigcirc , ⁴⁵Ca²⁺ accumulation in the absence of P_i.

incubation (Fig. 3a, broken line). Upon addition of P_1 (7 mm), $45Ca²⁺$ uptake was markedly stimulated. In parallel samples including non-radiolabelled Ca^{2+} the addition of $[{}^{32}P]P$, resulted in a progressive increase of the amount of 32P becoming associated with microsomes, and such amounts were similar to the amounts of 45Ca2+ accumulated at the corresponding incubation times. A major portion of $[{}^{32}P]P$, associated with microsomal vesicles was likely accumulated intravesicularly, as a consequence of the attendant Ca²⁺ accumulation; the Ca²⁺ ionophore A23187 caused in fact a rapid, simultaneous release of both accumulated $45Ca²⁺$ and $[^{32}P]P_1$, as shown in detail in Fig. 3(b).

The low amount (about 20 nmol/mg of protein) of $[^{32}P]P$, still associated with microsomes after the A23187-induced release likely represents a non-specific binding of P_1 to the microsomal membrane. Indeed, in complete incubation systems to which 1 mM-EGTA or 500 μ M-vanadate were also added, thus suppressing active Ca²⁺ accumulation, the amount of $[{}^{32}P]P$, associated with microsomes was about 20 nmol/mg of protein, at any time of incubation (results not shown). By comparing the net P_i-dependent ⁴⁵Ca²⁺ accumulations (P_i-stimulated minus MgATP-dependent $45Ca^{2+}$ uptake) with the corresponding net $[3²P]P_1$ accumulations (i.e. subtracted of the non-specific P_1 microsomal binding), Ca^{2+}/P_1 molar ratios of 1.4 (15 min), 1.24 (30 min) and 1.29 (1 h) could be calculated.

The possibility that P_1 stimulation of reticular Ca²⁺ accumulation might result in an enlargement of the IP₃-releasable Ca²⁺ pool magnetic was in an emargement of the right-booled can be added. pool was vermed in additional experiments with digitonin-
corresponding hepatocytes. In the presence of MgATP culpermeabilized hepatocytes. In the presence of MgATP only, hepatocytes rapidly accumulate $Ca²⁺$ down to free $Ca²⁺$ external concentrations lower than 0.3 μ m; the subsequent addition of IP₃ causes a rapid Ca^{2+} release (Fig. 4a). By increasing Ca^{2+} concentrations in the incubation medium, in the presence of 3 mm-P_1 , Ca²⁺-loading capacity of cells was enlarged, and the second P_1 -dependent Ca²⁺-uptake phase becomes apparent (Figs. 4b and 4c); however, the extent of Ca²⁺ release elicited by IP₃ is unaffected. This suggests that the P_1 -stimulated Ca^{2+} pool is unrelated with the IP₃-releasable Ca²⁺ pool, at least under the experimental conditions used.

 $Ca²⁺$ uptake was monitored by measuring free $Ca²⁺$ in incubations with a Ca^{2+} electrode; curves shown represent three separate experiments (means \pm s.e.m.). Hepatocytes (5 mg of protein/ml) were incubated in the medium for $Ca²⁺$ -electrode measurements (see the Experimental section), containing 15 μ M (a), 35 μ M (b) or 60 μ M total Ca²⁺ (c); 3 mm-P₁ (as potassium phosphate, pH 7.2) was also present in (b) and (c). IP₃ (arrows) was at 5 μ M. Each CaCl₂ addition (arrows) was 10 nmol.

DISCUSSION

A major finding of the present study is that low concentrations of P_i , in the range of those reported to occur in hepatocellular cytosol [17,18], are able to stimulate MgATP-dependent Ca^{2+} uptake by different liver reticular preparations. The effect of P, was in fact evident both in isolated liver microsomal fractions and in a non-mitochondrial compartment of permeabilized hepatocytes which allegedly corresponds to ER in situ. A stimulation of liver microsomal Ca²⁺ accumulation has been reported to occur in the presence of high $(10-40 \text{ mm})$ P₁ concentrations [24,26]. With low P_i concentrations we actually showed $\frac{1}{2}$ minor (5 mM-P) or even a lack of (2 mM-P) effect of D, on liver microsomes obtained in the presence of 3 mM-EDTA (24) microsomes obtained in the presence of 3 mm-EDTA [24], although the discrepancy can be explained by differences in the procedures used for preparation of microsomal fractions. In the present study liver microsomes were in factories. In the because of EDTA [5,20], since we observed that the inclusion of absence of EDTA [5,20], since we observed that the inclusion of EDTA $(< 1 \text{ mm})$ or EGTA $(< 0.3 \text{ mm})$ in the preparative media r_{max} $\left(\times$ in a marked attenuation of P₁ stimulation of P₂ stimulation on C₂₊ up take, up ta d_{total} a marked attenuation of \mathbf{r}_i similation on \mathbf{c}_a uptake, despite MgATP-dependent Ca^{2+} uptake not being modified (R. Fulceri, G. Bellomo, A. Gamberucci & A. Benedetti, unpublished work). The biphasic pattern of Pi-stimulated Ca2+ accumulation of Pi-stimulated Ca2+ accumulation of α

 $\sum_{i=1}^{\infty}$ observed by $\sum_{i=1}^{\infty}$ and with permeabilized microsomes and with hepatocytes (in the presence of mitochondrial inhibitors) suggests that a distinct P_i -dependent Ca²⁺ pool is involved. A possible explanation for this finding is that liver ER preparations comprise distinct populations of vesicles, provided with different P₁ sensitivity. The stimulatory effect of P_i , was actually found to be predominant in smooth vesicles, although the latter cannot be viewed as a pure P_i -sensitive compartment, since P_i -stimulated Ca^{2+} uptake by smooth microsomes was also biphasic. In all cases the accomplishment of the first MgATP-dependent, P_1 sensitive, $Ca²⁺$ -uptake phase appeared to be a prerequisite for the onset of the P_i -stimulated uptake. T_{tot} of the T_{i} -summated uptake.

 $\frac{1}{2}$ in the conserved of phasic pattern of Ca^2 uptake appears to be a specific effect of P_i , stimulation. The currently employed intravesicular Ca^{2+} -trapping agent, oxalate, appeared in fact to stimulate both the initial rate and the maximal $Ca²⁺$ -loading capacity of liver microsomes with a monophasic pattern, and other anions tested (i.e. sulphate, acetate) had no effect at all under our experimental conditions.

As far as the mechanisms involved in P_i stimulation of Ca^{2+} uptake are concerned, data obtained with $[32P]P$, indicate that a co-transport and a co-accumulation of Ca^{2+} and P₁ occur in liver microsomes. Co-accumulation of Ca^{2+} and P_i is likely to result in lowering intravesicular concentrations of free $Ca²⁺$ ions, which have been shown to exert an inhibitory effect on further active $Ca²⁺$ transport [27], thus allowing unhampered $Ca²⁺$ accumulation. With respect to the route of P_i entry into microsomal vesicles, a phosphate translocase protein has been purified from rat liver microsomes [28] that might be involved in the observed co-accumulation of P_1 and Ca^{2+} .

As shown in Fig. 4, the enlargement of the reticular Ca^{2+} loading capacity effected by cytosol-like P_i concentrations did not result in any alteration of the IP_3 -releasable Ca²⁺ pool. Actually, low P_1 concentrations appear to exert only a minor stimulation of Ca^{2+} uptake by liver rough microsomes (Fig. 2), and indeed the latter have been shown to be highly sensitive to the Ca²⁺-releasing effect of IP₃ [5,29]. The possibility that IP₃ acts on organelles other than ER [30,31] should also be considered. On the other hand, stimulation of reticular Ca²⁺ uptake by P₁ has been described to result in an enlargement of the IP_3 releasable pool of other cell types [15,20,32], and further studies are required to elucidate the role that P_i appears to play at the reticular level in different cell types.

In conclusion, cytosol-like concentrations of P_1 appear to allow a considerable enlargement of the liver ER Ca^{2+} -loading capacity, by stimulating Ca^{2+} uptake in a distinct, IP₃-insensitive, Ca2+ pool, which could play an important physiological role in the intact hepatocyte.

We thank Dr Tony Scarpa, Case Western Reserve University, Cleveland, OH, U.S.A., for advice.

REFERENCES

- 1. Somlyo, A.P., Bond, M. & Somlyo, A.V. (1985) Nature (London) 314, 622-625
- 2. Carafoli, E. (1987) Annu. Rev. Biochem. 56, 395-433 3. Gerok, W., Heilmann, C. & Spamer, C. (1990) Intracellular Calcium
- Gerok, W., Heilmann, C. & Spamer, C. (1990) Intracellular Calcium
Regulation, pp. 139–162, Alan R. Liss, New York
- 4. Berridge, M.J. (1987) Biochim. Biophys. Acta 907, 33-45 5. Benedetti, A., Fulceri, R., Romani, A. & Comporti, M. (1988) J.
- 5. Benedetti, A., Fulceri, R., Romani, A. & Comporti, M. (1988) J. Biol. Chem. 263, 3466-2473

Received 20 August 1990/24 September 1990; accepted ⁵ October 1990

- 6. Joseph, S.K. & Williamson, J.R. (1989) Arch. Biochem. Biophys. $273, 1 - 15$
- 7. Lehninger, A.L., Carafoli, E. & Rossi, C.S. (1967) Adv. Enzymol. Relat. Areas Mol. Biol. 29, 259-320
- 8. Trotta, E.E. & De Meis, L. (1975) Biochim. Biophys. Acta 394, 239-247
- 9. Bygrave, F.L. (1978) Biol. Rev. Cambridge Philos. Soc. 53, 43-79 10. Kaser-Glanzmann, R., Jakabova, M., George, J.N. & Luscher, E.F.
- (1978) Biochim. Biophys. Acta 512, 1-12
- 11. Bronner, F. & Peterlik, M. (eds.) (1984) Epithelial Calcium and Phosphate Transport: Molecular and Cellular Aspects, pp. 3-392, Alan R. Liss, New York
- 12. Feher, J.J. & Lipford, G.B. (1985) Biochim. Biophys. Acta 818, 373-385
- 13. Dean, W.L. (1984) J. Biol. Chem. 259, 7343-7348
- 14. Bygrave, F.L., Lenton, L., Altin, J.G., Setchell, B. & Karialainen, A. (1990) Biochem. J. 267, 69-73
- 15. Romani, A., Fulceri, R., Pompella, A., Ferro, M. & Benedetti, A. (1988) Ann. N.Y. Acad. Sci. 551, 249-252
- 16. Bygrave, F.L. & Anderson, T.A. (1981) Biochem. J. 200, 343-348
- 17. Akerboom, T.P.M., Bookelman, H., Zuurendonk, P.F., van der Meer, R. & Tager, J.M. (1978) Eur. J. Biochem. 84, 413-420
- 18. Cerdan, S. & Seelig, J. (1990) Annu. Rev. Biophys. Biophys. Chem. 19, 33-67
- 19. Affolter, H. & Sigel, E. (1979) Anal. Biochem. 97, 315-319
- 20. Henne, V. & S6ling, H.D. (1986) FEBS Lett. 202, 267-273
- 21. Dallner, G. (1978) Methods Enzymol. 52, 71-83
- 22. Moldeus, P., Hogberg, J. & Orrenius, S. (1978) Methods Enzymol. 52, 60-71
- 23. Tsien, R.Y. & Rink, T.J. (1981) J. Neurosci. Methods. 4, 73-86
- 24. Benedetti, A., Fulceri, R. & Comporti, M. (1985) Biochim. Biophys. Acta 816, 267-277
- 25. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) J. Biol. Chem. 193, 265-275
- 25a. Lanzetta, P.A., Alvarez, L.J., Reinach, P.S. & Candia, O.A. (1979) Anal. Biochem. 100, 95-97
- 26. Chan, K.W. & Koepnick (1985) Biochim. Biophys. Acta 818, 291-298
- 27. Brattin, W.J., Jr., Wailer, R.L. & Recknagel, R.O. (1982) J. Biol. Chem. 257, 10044-10051
- 28. Waddel, I.D., Lindsay, J.G. & Burchell, A. (1988) FEBS Lett. 229, 179-182
- 29. Muallem, S., Schoeffield, M., Pandol, S. & Sachs, G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 4433-4437
- 30. Volpe, P., Krause, K.-H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J. & Lew, D.P. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1091-1095
- 31. Nicotera, P., Orrenius, S., Nilsonn, T. & Beggren, P.O. (1990) Proc. Natl. Acad. Sci. U.S.A., in the press
- 32. ^O'Rourke, F.A., Halenda, S.P., Zavoico, G.B. & Feinstein, M.B. (1985) J. Biol. Chem. 260, 956-962