MgATP-dependent accumulation of calcium ions and inorganic phosphate in a liver reticular pool

Rosella FULCERI,* Giorgio BELLOMO,† Alessandra GAMBERUCCI* and Angelo BENEDETTI*‡ * Istituto di Patologia Generale, University of Siena, 53100 Siena, and † Clinica Medica I, University of Pavia, 27100 Pavia, Italy

1. MgATP-dependent Ca^{2+} uptake by rat liver microsomal preparations and permeabilized hepatocytes was measured in the presence or absence of P₁. 2. Monitoring of free Ca^{2+} in incubation systems with a Ca^{2+} electrode in the presence of P₁ (2-7 mM) revealed a biphasic Ca^{2+} uptake, with the onset of a second, P₁-dependent, Ca^{2+} accumulation. 3. Increasing P₁ concentrations (up to 10 mM) caused a progressive enlargement of ${}^{45}Ca^{2+}$ -loading capacity of microsomal fractions. 4. As a result of P₁ stimulation of active Ca^{2+} uptake, $[{}^{32}P]P_1$ and ${}^{45}Ca^{2+}$ were co-accumulated. 5. Experiments with permeabilized hepatocytes revealed that the amount of Ca^{2+} releasable by *myo*-inositol 1,4,5-trisphosphate is unaffected by P₁.

INTRODUCTION

Increasing evidence strongly suggests that the endoplasmic reticulum (ER) plays a key role in the regulation of cytosolic free Ca^{2+} concentrations in a variety of non-muscle cells. The liver ER *in situ* appears to be a major Ca^{2+} storage site [1], and the MgATP-dependent Ca^{2+} accumulation system is present in (liver) microsomal fractions as well as in the intact ER of permeabilized cells (hepatocytes) [2,3]. On the other hand, the second messenger *myo*-inositol 1,4,5-trisphosphate (IP_a) releases Ca^{2+} from ER, or a specialized part of it, in the cytosol [4–6].

In many Ca²⁺-translocating systems Ca²⁺ movements are affected by P_i at cellular and subcellular levels [7–14]. In the case of ER (or sarcoplasmic reticulum) the effect of P_i on Ca²⁺ fluxes has seldom been investigated under cytosol-like incubation conditions (e.g. [15,16]); in most instances, in fact, high P_i concentrations have been merely employed to enlarge the reticular Ca²⁺-loading capacity (see [8,12]), assuming that the anion penetrates the microsomal membranes and precipitates the transported Ca²⁺.

In the present study the effect of cytosol-like concentrations of P_i (2-4mM in the liver [17,18]) on the ER Ca²⁺ fluxes has been studied in rat liver microsomal fractions as well as in digitoninpermeabilized hepatocytes.

EXPERIMENTAL

Materials

ATP, phosphocreatine, creatine phosphokinase (Sigma Type III) and digitonin were from Sigma, St. Louis, MO, U.S.A. $^{45}CaCl_2$ (1650 Ci/mol) and Na₂H³²PO₄ (1100 Ci/mol) were from du Pont-New England Nuclear, Dreieich, Germany. IP₃ and collagenase were from Boehringer Mannheim G.m.b.H., Mannheim, Germany. All other chemicals were of analytical grade. Ca²⁺ electrodes were constructed as reported [19] or purchased from Ionetics Inc., Palo Alto, CA, U.S.A.

Preparation of liver microsomal fractions and digitoninpermeabilized hepatocytes

Male Sprague–Dawley rats (weighing 180–230 g) were used. 'Total' liver microsomes (referred to as 'microsomes' in the text below) were prepared as reported [20]. Two microsomal subfractions, one mainly corresponding to rough ER ('rough microsomes') and the other to smooth ER ('smooth microsomes'), were prepared by centrifugation on discontinuous sucrose gradients [21] as previously described [5]. The microsomal fractions were resuspended (approx. 100 mg of protein/ml) in a medium which had the following composition (mM): KCl, 100; NaCl, 20; MgCl₂, 5; Mops, 20, pH 7.2. The suspensions were frozen and maintained under liquid N₂ until work-up.

Hepatocytes were isolated by collagenase perfusion as reported [22]. Cells were permeabilized by incubation with digitonin $(80 \,\mu g/ml)$ for 5 min at 37 °C in the KCl/Mops medium as above, containing 5 mm-NaN₃. After permeabilization, the cells were washed (three times) and resuspended (approx. 300 mg of protein/ml) in the KCl/Mops medium containing NaN₃. Permeabilized cells were maintained at 0-4 °C and used within 3 h.

Measurement of Ca²⁺ uptake with Ca²⁺ electrodes

Microsomes or permeabilized hepatocytes were incubated in a thermostatically controlled (37 °C) Plexiglas vessel in which a Ca^{2+} electrode and a reference electrode (Radiometer K4040) were immersed. The incubation medium (1 ml) was as follows (mM): KCl, 100; NaCl, 20; MgCl₂ 5; Mops, 20, pH 7.2; ATP, 3; phosphocreatine, 10; NaN₃ (as mitochondrial inhibitor), 5. Creatine phosphokinase (10 μ M units/ml) was also present. The Ca²⁺ electrodes were calibrated as described by others [23].

Measurement of ⁴⁵Ca²⁺ accumulation by liver microsomal fractions

The microsomal fractions were incubated at 37 °C in a medium which had the following composition (mM): KCl, 100; NaCl, 20; MgCl₂, 5; Mops, 20, pH 7.2; ATP, 3; phosphocreatine, 10; NaN₃, 5. Creatine phosphokinase (10 μ M units/ml) was also present. CaCl₂ (20 μ M final concn.) with ⁴⁵CaCl₂ (0.1 μ Ci/ml) was added to the medium. Total Ca²⁺ present in the incubation medium (Ca²⁺ added plus Ca²⁺ already present as contaminant in reagents) was measured by atomic-absorption spectroscopy in each experiment, and ranged from 29 to 36 nmol/ml. The amount of Ca²⁺ accumulated by microsomes was calculated on the basis of the actual total Ca²⁺ content of each incubation mixture. Ca²⁺ accumulated by microsomes was measured by using a rapidfiltration technique [24]. Each Ca²⁺ uptake assay was corrected for non-specifically bound Ca²⁺, i.e. Ca²⁺ already associated with microsomes in the absence of ATP from the assay medium.

Abbreviations used: ER, endoplasmic reticulum; IP₃, myo-inositol 1,4,5-trisphosphate.

[‡] To whom correspondence should be addressed.

Measurement of ³²P-labelled phosphates accumulated by liver microsomes

The amount of P_i co-accumulated with Ca^{2+} by microsomes was measured by adding ³²P-labelled P_i to incubation systems identical with that used for measuring ⁴⁵Ca²⁺ accumulation, but in the absence of ⁴⁵Ca²⁺. ³²P associated with (or accumulated by) microsomes was determined by the rapid-filtration technique used to determine microsomal ⁴⁵Ca²⁺ (see above).

Other assays

Protein determination was performed as reported by others [25], using BSA as standard. P_i was measured as reported [25a].

RESULTS

In the first set of experiments, Ca²⁺ uptake by liver 'total' microsomes or the non-mitrochondrial compartment of permeabilized hepatocytes was continuously monitored by measuring the free Ca²⁺ concentration in the incubation systems with a Ca²⁺-selective electrode. In the presence of MgATP (Fig. 1a, lower curve), liver microsomes exhibited a monophasic Ca²⁺ uptake, until a steady-state level of approx. 15 nmol/mg of protein was achieved; this value is in the range of those previously reported for the maximal Ca2+-loading capacity of liver microsomes in the absence of Ca²⁺-trapping agents [3]. On the other hand, in the presence of P, the MgATP-dependent Ca²⁺ uptake by liver microsomes was biphasic: a rapid initial uptake (lasting approx. 3.5 min), similar to that observed in the absence of P₁, was followed by an additional Ca2+-uptake phase, which was more and more rapid in the presence of increasing P, concentrations (2–7 mm added). Owing to microsomal ATP hydrolysis, a linear continuous P, supply to the incubation systems was also present (approx. 0.06 µmol/min per mg of protein in all incubation mixtures.) However, such P, supply was ineffective by itself to stimulate Ca²⁺ uptake (Fig. 1a, lower curve). Ca²⁺ accumulated by microsomes with or without P, was rapidly released by the Ca²⁺ ionophore A23187. In the absence of

Fig. 1. Time course of MgATP-dependent Ca²⁺ uptake by rat liver microsomes (a) and digitonin-permeabilized hepatocytes (b) in the presence or absence of P_i

Ca²⁺ uptake was monitored by measuring free Ca²⁺ in incubation mixtures with a Ca²⁺ electrode. Where indicated, P₁ (as potassium phosphate buffer, pH 7.2) or ammonium oxalate (4 mM) were included in the medium for MgATP-dependent Ca²⁺ uptake (see the Experimental section). Each CaCl₂ addition was 10 nmol (arrows). Incubation was started by adding 30–50 μ l of microsomal (MS) or cell suspension to give 2 or 3.5 mg of protein/ml respectively. A23187 was at 1 μ M (final concn.). A typical set of experiments out of three to six is reported. MgATP, no Ca^{2+} uptake was effected by microsomes, either with or without P_i (results not shown). The second P_i -dependent Ca^{2+} -uptake phase was observed also when P_i (3.5 mM) was added at various times after the start of the MgATP-dependent Ca^{2+} uptake (results not shown); however, in all cases P_i stimulated Ca^{2+} uptake was evident only after the steady-state levels of MgATP-dependent Ca^{2+} accumulation had been attained. Other cytosolic, bivalent anions (i.e. sulphate, acetate, up to 10 mM) failed to stimulate active microsomal Ca^{2+} accumulation.

Fig. 1(a) also shows that, in the presence of 4 mm-oxalate (as intravesicular Ca²⁺-trapping agent), a monophasic pattern of stimulated microsomal Ca²⁺ uptake was observed, with an initial rate higher than that of P_i -stimulated Ca²⁺ uptake. Analogously, in parallel experiments with isolated digitonin-permeabilized rat hepatocytes, it was shown, in the presence of mitochondrial inhibitors, that a second Ca²⁺ uptake phase is elicited by P_i in a non-mitochondrial hepatocyte Ca²⁺ pool (Fig. 1b).

The effect of P_i stimulation on the maximal Ca²⁺-loading capacity of different microsomal preparations ('total', 'rough' and 'smooth' microsomes) was studied with ⁴⁵Ca²⁺. In these experiments, the low amount of microsomal protein used (< 0.1mg/ml) minimized P_i supply, owing to microsomal ATP hydrolysis, thus allowing prolonged incubation (60 min) at rather constant P, concentration. As reported in Fig. 2, in the presence of increasing P, concentrations (1-10 mm), correspondingly increasing Ca2+-loading capacities were observed in all the microsomal fractions employed, although the stimulatory effect of P, was much more marked in the 'smooth' as compared with the 'rough' microsomal subfraction. This difference is particularly evident at the lower P, concentrations employed (1-3 mM); see the insert to Fig. 2). In parallel experiments run with a Ca²⁺ electrode, both smooth and rough microsomal subfractions exhibited the same biphasic Ca²⁺ uptake as that observed with total microsomes, although the second P,-stimulated uptake was more pronounced in smooth microsomes (results not shown).

In further experiments the mechanism of P_i stimulation was investigated. To this aim, ${}^{45}Ca^{2+}$ and $[{}^{32}P]P_i$ were employed (Fig. 3). As expected, in the presence of MgATP, a steady-state level of approx. 17 nmol of ${}^{45}Ca^{2+}/mg$ of protein was reached by microsomes within 7 min, and was maintained up to 1 h of

Fig. 2. Stimulatory effect of P_i on MgATP-dependent ⁴⁵Ca²⁺-loading capacity of 'total' (○), 'smooth' (●) and 'rough' (▲) liver microsomes

Microsomes (0.08–0.1 mg of protein/ml) were incubated in the medium for MgATP-dependent $^{45}Ca^{2+}$ uptake (see the Experimental section), including P_i (as potassium phosphate, pH 7.2) at the indicated concentrations, for 1 h. Results are means ± s.e.m. for four to six experiments.

Fig. 3. Co-accumulation (a) and simultaneous A23187-induced release (b) of Ca²⁺ and P_i from liver microsomes

Microsomes (0.08–0.1 mg of protein/ml) were incubated in the medium for MgATP-dependent ⁴⁵Ca²⁺ uptake (see the Experimental section). As indicated, 7 mM-P_i (as potassium phosphate, pH 7.2) was added to ⁴⁵Ca²⁺ samples (O——O); alternatively, 7 mM-[³²P]P_i was added to samples including non-labelled Ca²⁺ only (\bigcirc —— \bigcirc). A23187 was at 1 μ M (final concn.). Results are means ± S.E.M. for four to six experiments (panel *a*); a typical experiment is shown in panel *b*. O----O, ⁴⁵Ca²⁺ accumulation in the absence of P_i.

incubation (Fig. 3*a*, broken line). Upon addition of P_i (7 mM), ⁴⁵Ca²⁺ uptake was markedly stimulated. In parallel samples including non-radiolabelled Ca²⁺ the addition of [³²P]P_i resulted in a progressive increase of the amount of ³²P becoming associated with microsomes, and such amounts were similar to the amounts of ⁴⁵Ca²⁺ accumulated at the corresponding incubation times. A major portion of [³²P]P_i associated with microsomal vesicles was likely accumulated intravesicularly, as a consequence of the attendant Ca²⁺ accumulation; the Ca²⁺ ionophore A23187 caused in fact a rapid, simultaneous release of both accumulated ⁴⁵Ca²⁺ and [³²P]P_i, as shown in detail in Fig. 3(*b*).

The low amount (about 20 nmol/mg of protein) of $[^{32}P]P_i$ still associated with microsomes after the A23187-induced release likely represents a non-specific binding of P₁ to the microsomal membrane. Indeed, in complete incubation systems to which 1 mm-EGTA or 500 μ M-vanadate were also added, thus suppressing active Ca²⁺ accumulation, the amount of $[^{32}P]P_i$ associated with microsomes was about 20 nmol/mg of protein, at any time of incubation (results not shown). By comparing the net P₁-dependent $^{45}Ca^{2+}$ accumulations (P₁-stimulated minus MgATP-dependent $^{45}Ca^{2+}$ uptake) with the corresponding net $[^{32}P]P_i$ accumulations (i.e. subtracted of the non-specific P₁ microsomal binding), Ca²⁺/P₁ molar ratios of 1.4 (15 min), 1.24 (30 min) and 1.29 (1 h) could be calculated.

The possibility that P_1 stimulation of reticular Ca^{2+} accumulation might result in an enlargement of the IP_3 -releasable Ca^{2+} pool was verified in additional experiments with digitoninpermeabilized hepatocytes. In the presence of MgATP only, hepatocytes rapidly accumulate Ca^{2+} down to free Ca^{2+} external concentrations lower than $0.3 \mu M$; the subsequent addition of IP_3 causes a rapid Ca^{2+} release (Fig. 4a). By increasing Ca^{2+} concentrations in the incubation medium, in the presence of 3 mM-P_1 , Ca^{2+} -loading capacity of cells was enlarged, and the second P_1 -dependent Ca^{2+} -uptake phase becomes apparent (Figs. 4b and 4c); however, the extent of Ca^{2+} release elicited by IP_3 is unaffected. This suggests that the P_1 -stimulated Ca^{2+} pool is unrelated with the IP_3 -releasable Ca^{2+} pool, at least under the experimental conditions used.

Fig. 4. Releasing effect of IP_3 on Ca^{2+} accumulated by digitoninpermeabilized hepatocytes in the presence of MgATP (a) or MgATP plus P_i (b,c)

Ca²⁺ uptake was monitored by measuring free Ca²⁺ in incubations with a Ca²⁺ electrode; curves shown represent three separate experiments (means ± s.e.m.). Hepatocytes (5 mg of protein/ml) were incubated in the medium for Ca²⁺-electrode measurements (see the Experimental section), containing 15 μ M (*a*), 35 μ M (*b*) or 60 μ M total Ca²⁺ (*c*); 3 mM-P₁ (as potassium phosphate, pH 7.2) was also present in (*b*) and (*c*). IP₃ (arrows) was at 5 μ M. Each CaCl₂ addition (arrows) was 10 nmol.

DISCUSSION

A major finding of the present study is that low concentrations of P₁, in the range of those reported to occur in hepatocellular cytosol [17,18], are able to stimulate MgATP-dependent Ca²⁺ uptake by different liver reticular preparations. The effect of P. was in fact evident both in isolated liver microsomal fractions and in a non-mitochondrial compartment of permeabilized hepatocytes which allegedly corresponds to ER in situ. A stimulation of liver microsomal Ca2+ accumulation has been reported to occur in the presence of high (10-40 mm) P, concentrations [24,26]. With low P, concentrations we actually showed a minor (5 mM-P_i) or even a lack of (2 mM-P_i) effect of P_i on liver microsomes obtained in the presence of 3 mm-EDTA [24], although the discrepancy can be explained by differences in the procedures used for preparation of microsomal fractions. In the present study liver microsomes were in fact prepared in the absence of EDTA [5,20], since we observed that the inclusion of EDTA (< 1 mm) or EGTA (< 0.3 mm) in the preparative media results in a marked attenuation of P, stimulation on Ca²⁺ uptake, despite MgATP-dependent Ca²⁺ uptake not being modified (R. Fulceri, G. Bellomo, A. Gamberucci & A. Benedetti, unpublished work).

The biphasic pattern of P_i -stimulated Ca^{2+} accumulation observed both with isolated microsomes and with permeabilized hepatocytes (in the presence of mitochondrial inhibitors) suggests that a distinct P_i -dependent Ca^{2+} pool is involved. A possible explanation for this finding is that liver ER preparations comprise distinct populations of vesicles, provided with different P_i sensitivity. The stimulatory effect of P_i was actually found to be predominant in smooth vesicles, although the latter cannot be viewed as a pure P_i -sensitive compartment, since P_i -stimulated Ca^{2+} uptake by smooth microsomes was also biphasic. In all cases the accomplishment of the first MgATP-dependent, P_i sensitive, Ca^{2+} -uptake phase appeared to be a prerequisite for the onset of the P_i -stimulated uptake.

The observed biphasic pattern of Ca^{2+} uptake appears to be a specific effect of P_i stimulation. The currently employed intravesicular Ca^{2+} -trapping agent, oxalate, appeared in fact to stimulate both the initial rate and the maximal Ca^{2+} -loading capacity of liver microsomes with a monophasic pattern, and

As far as the mechanisms involved in P_i stimulation of Ca^{2+} uptake are concerned, data obtained with [³²P]P_i indicate that a co-transport and a co-accumulation of Ca^{2+} and P_i occur in liver microsomes. Co-accumulation of Ca^{2+} and P_i is likely to result in lowering intravesicular concentrations of free Ca^{2+} ions, which have been shown to exert an inhibitory effect on further active Ca^{2+} transport [27], thus allowing unhampered Ca^{2+} accumulation. With respect to the route of P_i entry into microsomal vesicles, a phosphate translocase protein has been purified from rat liver microsomes [28] that might be involved in the observed co-accumulation of P_i and Ca^{2+} .

As shown in Fig. 4, the enlargement of the reticular Ca²⁺loading capacity effected by cytosol-like P_i concentrations did not result in any alteration of the IP_3 -releasable Ca²⁺ pool. Actually, low P_i concentrations appear to exert only a minor stimulation of Ca²⁺ uptake by liver rough microsomes (Fig. 2), and indeed the latter have been shown to be highly sensitive to the Ca²⁺-releasing effect of IP_3 [5,29]. The possibility that IP_3 acts on organelles other than ER [30,31] should also be considered. On the other hand, stimulation of reticular Ca²⁺ uptake by P_i has been described to result in an enlargement of the IP_3 releasable pool of other cell types [15,20,32], and further studies are required to elucidate the role that P_i appears to play at the reticular level in different cell types.

In conclusion, cytosol-like concentrations of P_1 appear to allow a considerable enlargement of the liver ER Ca²⁺-loading capacity, by stimulating Ca²⁺ uptake in a distinct, IP₃-insensitive, Ca²⁺ pool, which could play an important physiological role in the intact hepatocyte.

We thank Dr Tony Scarpa, Case Western Reserve University, Cleveland, OH, U.S.A., for advice.

REFERENCES

- 1. Somlyo, A.P., Bond, M. & Somlyo, A.V. (1985) Nature (London) 314, 622-625
- 2. Carafoli, E. (1987) Annu. Rev. Biochem. 56, 395-433
- Gerok, W., Heilmann, C. & Spamer, C. (1990) Intracellular Calcium Regulation, pp. 139–162, Alan R. Liss, New York
- 4. Berridge, M.J. (1987) Biochim. Biophys. Acta 907, 33-45
- Benedetti, A., Fulceri, R., Romani, A. & Comporti, M. (1988) J. Biol. Chem. 263, 3466-2473

Received 20 August 1990/24 September 1990; accepted 5 October 1990

- Joseph, S.K. & Williamson, J.R. (1989) Arch. Biochem. Biophys. 273, 1–15
- Lehninger, A.L., Carafoli, E. & Rossi, C.S. (1967) Adv. Enzymol. Relat. Areas Mol. Biol. 29, 259–320
- Trotta, E.E. & De Meis, L. (1975) Biochim. Biophys. Acta 394, 239-247
- 9. Bygrave, F.L. (1978) Biol. Rev. Cambridge Philos. Soc. 53, 43–79 10. Kaser-Glanzmann, R., Jakàbovà, M., George, J.N. & Luscher, E.F.
- (1978) Biochim. Biophys. Acta 512, 1–12 11. Bronner, F. & Peterlik, M. (eds.) (1984) Epithelial Calcium and
- Phosphate Transport: Molecular and Cellular Aspects, pp. 3–392, Alan R. Liss, New York
- 12. Feher, J.J. & Lipford, G.B. (1985) Biochim. Biophys. Acta 818, 373-385
- 13. Dean, W.L. (1984) J. Biol. Chem. 259, 7343-7348
- Bygrave, F.L., Lenton, L., Altin, J.G., Setchell, B. & Karjalainen, A. (1990) Biochem. J. 267, 69-73
- Romani, A., Fulceri, R., Pompella, A., Ferro, M. & Benedetti, A. (1988) Ann. N.Y. Acad. Sci. 551, 249-252
- 16. Bygrave, F.L. & Anderson, T.A. (1981) Biochem. J. 200, 343-348
- Akerboom, T.P.M., Bookelman, H., Zuurendonk, P.F., van der Meer, R. & Tager, J.M. (1978) Eur. J. Biochem. 84, 413–420
- Cerdan, S. & Seelig, J. (1990) Annu. Rev. Biophys. Biophys. Chem. 19, 33-67
- 19. Affolter, H. & Sigel, E. (1979) Anal. Biochem. 97, 315-319
- 20. Henne, V. & Söling, H.D. (1986) FEBS Lett. 202, 267-273
- 21. Dallner, G. (1978) Methods Enzymol. 52, 71-83
- Moldéus, P., Hogberg, J. & Orrenius, S. (1978) Methods Enzymol. 52, 60-71
- 23. Tsien, R.Y. & Rink, T.J. (1981) J. Neurosci. Methods. 4, 73-86
- Benedetti, A., Fulceri, R. & Comporti, M. (1985) Biochim. Biophys. Acta 816, 267-277
- Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951)
 J. Biol. Chem. 193, 265–275
- 25a. Lanzetta, P.A., Alvarez, L.J., Reinach, P.S. & Candia, O.A. (1979) Anal. Biochem. 100, 95–97
- Chan, K.W. & Koepnick (1985) Biochim. Biophys. Acta 818, 291–298
- Brattin, W.J., Jr., Waller, R.L. & Recknagel, R.O. (1982) J. Biol. Chem. 257, 10044–10051
- Waddel, I.D., Lindsay, J.G. & Burchell, A. (1988) FEBS Lett. 229, 179–182
- Muallem, S., Schoeffield, M., Pandol, S. & Sachs, G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 4433–4437
- Volpe, P., Krause, K.-H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J. & Lew, D.P. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1091–1095
- Nicotera, P., Orrenius, S., Nilsonn, T. & Beggren, P.O. (1990) Proc. Natl. Acad. Sci. U.S.A., in the press
- 32. O'Rourke, F.A., Halenda, S.P., Zavoico, G.B. & Feinstein, M.B. (1985) J. Biol. Chem. 260, 956–962