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Abstract

In Part 2 of these articles, an extensive analysis of pinning-force curves and raw scaling data 

was used to derive the Extrapolative Scaling Expression (ESE). This is a parameterization of 

the Unified Scaling Law (USL) that has the extrapolation capability of fundamental unified 

scaling, coupled with the application ease of a simple fitting equation. Here in Part 3, the 

accuracy of the ESE relation to interpolate and extrapolate limited critical-current data to 

obtain complete Ic(B, T , ε) datasets is evaluated and compared with present fitting equations. 

Accuracy is analyzed in terms of root mean square (RMS) error and fractional deviation statistics. 

Highlights from 92 test cases are condensed and summarized, covering most fitting protocols and 

proposed parameterizations of the USL. The results show that ESE reliably extrapolates critical 

currents at fields B, temperatures T , and strains ε that are remarkably different from the fitted 

minimum dataset. Depending on whether the conductor is moderate-Jc or high-Jc, effective RMS 

extrapolation errors for ESE are in the range 2–5 A at 12 T, which approaches the Ic measurement 

error (1–2%).

The minimum dataset for extrapolating full Ic(B, T , ε) characteristics is also determined from raw 

scaling data. It consists of one set of Ic(B, ε) data at a fixed temperature (e.g., liquid helium 

temperature), and one set of Ic(B, T ) data at a fixed strain (e.g., zero applied strain). Error analysis 

of extrapolations from the minimum dataset with different fitting equations shows that ESE 

reduces the percentage extrapolation errors at individual data points at high fields, temperatures, 

and compressive strains down to 1/10th to 1/40th the size of those for extrapolations with present 

fitting equations. Depending on the conductor, percentage fitting errors for interpolations are also 

reduced to as little as 1/15th the size.

The extrapolation accuracy of the ESE relation offers the prospect of straightforward 

implementation of the USL in several new areas: (l) A five-fold reduction in the measurement 

space for unified temperature-strain apparatuses through extrapolation of minimum datasets; (2) 

Combination of data from separate temperature and strain apparatuses, which provides flexibility 

and productive use of more limited data; and (3) Full conductor characterization from as little as a 

single Ic(B) curve when a few core parameters have been measured in a similar conductor. Default 

jackekin1@gmail.com . 

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
Supercond Sci Technol. 2017 ; 30(3): . doi:10.1088/1361-6668/30/3/033005.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript



core scaling parameter values are also given, based on analysis of a wide range of practical Nb3Sn 

conductors.
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Unified Scaling Law; extrapolation; critical current; niobium–tin; superconducting wires; flux 
pinning; strain

1. Introduction to extrapolations

Different parameterizations of the Unified Scaling Law (USL) have been proposed since 

its inception (Ekin 1980, 1981). In the early years, unified scaling was carried out by the 

registration of flux pinning curves into a master scaling curve. This normalization process 

provides values of the maximum pinning force FPmax(T , ε) and effective upper critical field 

Bc2
∗(T , ε) (denoted here as raw scaling data), which determine the individual parameters in 

the USL. More recently, the emphasis has shifted from this fundamental scaling process 

(i.e. the formation of master scaling curves) to postulating fitting equations that contain 

varying numbers of empirical or semi-empirical constants and parameters. The parameter 

values are determined by a simultaneous global fit to three-dimensional Ic(B, T , ε) data, 

where B is the magnetic field, T  temperature, and ε mechanical strain. However, these global 

fitting equations are interpolative in nature and do not retain the broad-based extrapolation 

capability of fundamental scaling.

In Part 1 of this series (Ekin 2010), the different global fitting equations are compared 

and organized into separable parts. The resulting table 3 in Part 1 forms the starting point 

for Parts 2 and 3. In Part 2 (previous article, Ekin et al 2016a), a different approach is 

undertaken wherein each parameter of the general USL parameterization is evaluated, either 

individually or in small groups, from analysis of hundreds of raw scaling data measured in 

a broad range of Nb3Sn conductors. This very extensive analysis, based on raw scaling data, 

determines which parameters are conductor specific, and which retain the same constant 

value over the wide range of Nb3Sn conductors studied. The scaling constants obtained by 

this fundamental process are stable with respect to conductor configuration, magnetic self-

field correction, and the factors used in the raw-scaling-data analysis of the pinning-force 

curves.

The results of this analysis determine the Extrapolative Scaling Expression, or ESE (‘easy’). 

Despite the initial comprehensive evaluation of raw scaling data required for its derivation, 

the ESE relation can be applied with the ease of a simple fitting equation (without the 

analysis of raw scaling data). It should also, in principle, retain the intrinsic general 

extrapolation capability of fundamental scaling.

Here in Part 3, we evaluate the extrapolation (and interpolation) accuracy of the ESE 

equation compared with present global-fitting equations. The results show that ESE 

accurately extrapolates Ic(B, T , ε) at fields, temperatures, and strains that are remarkably 

different from the fitted minimum dataset. Depending on whether the conductor is moderate-
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Jc or high-Jc, effective root mean square (RMS) extrapolation errors for ESE are in the range 

2–5 A at 12 T, which approaches the Ic measurement error (1–2%).

This capability offers flexibility and the prospect for extrapolation of more limited data in 

several new areas:

• The ESE relation can be used to reduce the measurement space for unified 

T − ε apparatuses for full Ic(B, T , ε) conductor characterization to about 1/5th the 

size, by removing the need to measure all the T − ε cross terms (sections 2 and 

3). Also, with the ESE fitting equation, there is no requirement for orthogonal 

B − T − ε measurement grids (needed for fundamental scaling with raw scaling 

data).

• The relation makes possible the combination of data from separate apparatuses, 

measured at different times in different laboratories (e.g., one apparatus 

dedicated to strain measurement and another to temperature measurement).

• In special situations, such as qualifying production quantities of wire, the 

determination of a few core parameters in one of the conductors can serve to 

accurately give full Ic(B, T , ε) characterizations for similar billets, by a simple fit 

of ESE to a single Ic(B) curve measured for each billet (section 5.10).

• ESE can also significantly increase the accuracy for interpolations (section 5.1), 

and, if desired, the parameter set generated by the interpolative fit can provide 

reliable extrapolations to the neighboring B − T − ε space through the use of 

default values for a few core parameters.

Default values for the core parameters are described in section 5.5 and in item 7 of the Part 3 

summary (section 6.3).

1.1. Organization of the article

A comprehensive synthesis of the main results of both Parts 2 and 3 is given in the combined 
summary at the end of this article in section 6. The summary is combined, to make Part 3 

more self-contained (without extensive referencing back to Part 2), as well as to provide a 

cohesive summary for these two highly integrated articles. A short paper condensing these 

results and supplying additional analysis of concatenated errors will also be published (Ekin 

et al 2016b).

Part 3 is organized as follows:

1. Introduction to extrapolations

2. Minimum datasets

3. Extrapolation testing from minimum datasets

4. Discussion: ‘Everything should be made as simple as possible, but not simpler’

5. Application of the ESE relation

6. Summary and conclusions, Parts 2 and 3
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Appendix A gives typical values of the ESE parameter set for a number of practical Nb3Sn 

conductors, and provides default scaling parameter values.

A supplemental website, www.ResearchMeasurements.com, contains Excel™ files of the 

original source data, as well as an ESE scaling spreadsheet tool for application to practical 

Nb3Sn conductor characterization and magnet design.

2. Minimum datasets

The use of minimum datasets can save considerable measurement time compared with 

measurements of the full Ic(B, T , ε) matrix. For this purpose, we define the minimum dataset 

as the smallest set of Ic data needed to accurately extrapolate a full Ic(B, T , ε) characteristic. 

Various minimum datasets have been suggested, including Godeke (2005), Godeke et al 

(2006), and Ilyin et al (2007). These have been mainly based on the parameters needed for a 

particular fitting equation. In this section, we instead use the pinning-force analysis of Part 2 

to determine the smallest practical minimum dataset.

2.1. T − εmeasurement map

Minimum datasets are relatively easy to visualize through the introduction of a temperature-

strain (T − ε) map. Figure 1 shows an example of such a map for the OST-RRP® dataset 

fabricated for the high luminosity large hadron collider (HL-LHC) magnets, as well as for 

nuclear magnetic resonance (NMR) magnets. Each location in this plot represents a set of 

Ic − B measurements, all taken at the strain and temperature corresponding to that point in 

the map (about a thousand Ic measurements for the whole plot). A similar measurement 

map (not shown) can be constructed for the extensive WST-ITER dataset for the ITER 

toroidal-field magnets (containing Ic − B data at 91 such T − ε combinations), or any of the 

other conductors considered here. (Further conductor information for the conductors in this 

study is given in appendix A of Part 2, and complete data tabulations are given online in a 

supplemental website accompanying these articles, www.ResearchMeasurements.com. An Ic

criterion of 0.1 μV cm−1 is used throughout these datasets, unless stated otherwise.)

This map results naturally from the best protocol for taking Ic(B, T , ε) data: the sample 

is strained to a maximum (tensile) value below the irreversible strain limit, and then 

temperature is stepped through all values of interest (a vertical column in the map, for 

example at even temperatures between 4 and 12 K). At each temperature point in the 

column, Ic is measured as a function of magnetic field, and then the whole process is 

repeated for the next lower strain column. This protocol ensures a constant strain as 

magnetic field and temperature are varied, since the strain state of the conductor is the 

most difficult to replicate.

2.2. Minimum dataset derived from raw scaling data

The smallest practical minimum dataset is determined by the parameters that need to be 

fitted for a full Ic(B, T , ε) characteristic. The results are given here in terms of the notation for 

the general parameterization of the USL developed in Part 1:
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General separable parameterization of the USL (Ekin 2010)

FP(B, T , ε) = Ic(B, T , ε)B = K(T , ε)f(b) = C g(ε) ℎ(t) f(b),

(1a)

= C [bc2(ε)]s (1 − tv)η − μ(1 − t2)μ bp(1 − b)q

(1b)

with reduced magnetic field b ≡ B/Bc2
∗(T , ε) and reduced temperature t ≡ T /T c

∗(ε), where:

Bc2
∗(T , ε) = Bc2

∗(0, 0) bc2(t) bc2(ε)
= Bc2

∗(0, 0) (1 − tv) bc2(ε)

(1c)

Tc
∗(ε) = Tc

∗(0) bc2(ε) 1/w

(1d)

with ten scaling parameters: C, Bc2
∗(0, 0), T c

∗(0), s, v, η, μ, w, p, q, plus the various strain 

parameters modeling bc2(ε).

The raw scaling data analysis of Part 2 showed which of the parameters in this equation-set 

are constant and which need to be fitted for each conductor. The results break down by 

measurement variable as follows:

• The temperature parameters T c
∗(0), v, and the co-joined parameters η and μ. 

These parameters characterize the temperature part of: the upper critical field 

bc2(t) in equation (1c) and the USL prefactor ℎ(t) in equation (1a). The parameter 

v is a scaling constant (v = 1.5), but T c
∗(0), as well as either η or μ, need to 

be fitted for each conductor. (The star indicates an effective scaling critical 

temperature determined by Ic measurements, as distinct from the limiting T c

where all superconductivity disappears.) For their determination, source Ic(B)
data are needed along one variable-temperature, vertical cut through the T − ε
map at constant ε. (Note that this cut contains the variable B data embedded 

at each point in the map.) The easiest to measure is a variable-temperature cut 

without applied strain (other than thermal contraction strain introduced by the 

sample holder on cooldown). This is indicated by the vertical dashed line near 

zero applied strain in figure 1. These Ic − B data can be obtained in a unified 

T − ε apparatus, or with a dedicated variable-temperature measurement apparatus 

that has no variable-strain capability (examples of such apparatus are given in 

Goodrich et al 2013).
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• The strain parameters s and those in bc2(ε). These characterize the strain parts 

of the USL prefactor g(ε) in equation (1a) and the upper critical field bc2(ε) in 

equation (1c) and need to be fitted. (The various parameterizations for bc2(ε)
are summarized in section 4.5 and appendix B of Part 2.) In addition to these 

fitted strain parameters, there is a strain constant, the moderate-strain curvature 

parameter u = 1.7, which appears explicitly or implicitly in some of the bc2(ε)
models (table 5 in Part 2). To determine the fitted strain parameters, s and bc2(ε), 
source Ic(B) data are needed along one variable-strain, horizontal cut through 

the T − ε map at constant T . (Again, note that this cut also contains the variable 

B data embedded at each point in the map.) The easiest to measure is a variable-

strain cut at liquid helium temperature, indicated by the horizontal dashed line 

near 4 K in figure 1.3 This temperature is far away from the limiting T c, and thus 

the effects of flux creep are also minimized. These strain measurements can be 

supplied by a unified T − ε apparatus, or with a simpler dedicated variable-strain 

apparatus, operating as a liquid helium dip probe, without variable-temperature 

capability.

• The magnetic field parameters p, q, Bc2
∗(0, 0), and C. These characterize the 

pinning-force shape function f(b). (Again, the star indicates an effective scaling 

upper critical magnetic field determined by Ic measurements, as distinct from 

the limiting upper critical magnetic field where all superconductivity disappears.) 

These parameters vary significantly and need to be fitted for each conductor. 

They are determined by the Ic versus B data at any point in the T − ε map of 

figure 1, provided the data cover sufficient magnetic fields below and above the 

peak pinning force to determine the parameter values. Otherwise default values 

are used (see comments on p and q in sections 3.8.2 and 5.5.1).

• Finally, the cross-link parameter w. This connects the strain and temperature 

functions T c
∗(ε) and Bc2

∗(0, ε). Fortunately, we saw from the extensive raw-scaling-

data analysis in section 4.3 of Part 2 that w is a scaling constant (w = 3) and 

therefore no measurements are needed for this parameter. This is serendipitous, 

because if it were a fitted parameter, the only way to determine its value 

precisely would be from extensive raw scaling data for Bc2
∗(T , ε) and K(T , ε)4 

calculated from large, orthogonal datasets of combined variable temperature and 

strain measurements. This would have precluded the concept of the simple global 

fitting equation approach.

3Many of the ‘liquid-helium’ temperature examples in these articles are near 4.0 K, rather than 4.2 K, because of the altitude at 
NIST-Boulder where liquid helium boils at a lower temperature than at sea level.
4K(T , ε) is proportional to FPmax(T , ε). That is, from the general form of the USL, FP = K(T , ε) bp (1 − b)q

where b ≡ B/Bc2
∗(T , ε), we see that the maximum FPmax(T , ε) occurs at bmax = p/(p + q), and thus 

FPmax(T , ε) = K(T , ε)bmax
p (1 − bmax)q. Here, the term bmax

p (1 − bmax)q has a constant value for all temperatures and strains for any 
particular conductor. For example, if a conductor’s master scaling curve has pinning-force shape parameters p = 0.5 and q = 2.0, 
then bmax = 0.2, and thus FPmax(T , ε) = 0.286 K(T , ε) for this conductor.
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Because both temperature and strain parameters need to be fitted, we find from the separable 

parts of equation-set (1) that the smallest practical minimum dataset is the combination of 

one temperature cut and one strain cut through the T − ε map, as illustrated by the two 

dashed lines in figure 1.

Thus, the minimum dataset derived from the analysis of raw scaling data in Part 2 consists of 
one measurement of Ic(B, T ) (at fixed strain) with one of Ic(B, ε) (at fixed temperature).

2.2.1. Effect of extrapolating from larger datasets.—Additional extrapolation tests 

were also conducted with three cuts through the T − ε map to see if extrapolating from 

additional source data beyond the two-cut minimum dataset leads to a continuum of reduced 

extrapolation errors. Extrapolations from such an expanded set of data showed no significant 

reduction in error (details given in section 3.1.1). This result indicates that the errors 

evaluated in section 3 are systemic for each fitting equation, and not significantly reduced 

by the addition of more source data. This also verified that the minimum dataset is indeed 
optimum. That is, datasets larger than two cuts through the T − ε map made negligible 

difference in reducing extrapolation errors.

2.2.2. Earlier work.—The minimum dataset derived here from raw scaling data is also 

consistent with a minimum dataset described earlier by Ilyin et al (2007). The earlier 

dataset is actually included in the raw-scaling-data minimum dataset as a subset. The earlier 

subset consists of one measurement of Ic(B, T ) and one of Ic(ε). The difference from the 

present finding [that is, Ic(B, ε) versus Ic(ε)], is that the earlier work was based on a specific 

empirical equation, the G/ITER model, where the parameter s is fixed at s = 1. However, 

the raw scaling data analysis of Part 2 shows the parameter s varies for different conductors 

(figure 9 in Part 2). For example, in the ITER conductors, s = ∼ 1.4 as determined by 

the extensive studies of Cheggour et al (2014). For the minimum dataset to be generally 

applicable, a variable field measurement of Ic(B, ε), rather than Ic(ε), is needed to determine 

all the strain parameters: s and those in bc2(ε).

However, for the specialized case where the value of s is already known for a similar 

conductor, only an Ic(ε) measurement at fixed magnetic field is needed, and then the 

minimum dataset derived from raw scaling data reduces to that of Ilyin et al. An example 

of this case is shown later in sections 5.7–5.9, where an Ic(B, T ) dataset is combined with 

an Ic(ε) dataset to give a full Ic(B, T , ε) description. This is made possible because a reliable 

value s = 1.4 had already been measured in similar conductors.

The examples in sections 5.7–5.9 also illustrate that the minimum dataset can indeed be 

constructed from separate variable temperature and strain apparatuses. This is a significant 

result, because the data can be acquired more economically with specialized equipment, at 

different times, and in different laboratories.

The extrapolation tests carried out next (section 3) utilize the complete minimum dataset 

derived from raw scaling data, consisting of one measurement of Ic(B, T ) and one of Ic(B, ε). 
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Such extrapolations provide an effective general test of the different fitting equations that 

also encompasses the more specialized minimum dataset of Ilyin et al.

2.3. Illustration of the two types of extrapolations

The T − ε map of figure 1 also provides a convenient way to illustrate the two types of 

extrapolations noted at the end of Part 2.

1. In the first type, the ESE relation is used to extrapolate the complete Ic(B, T , ε)
dataset from one temperature measurement Ic(B, T ) and one strain measurement 

Ic(B, ε), as just described. With this type of extrapolation, the temperature and 

strain axes of the T − ε map are extrapolated to fill-in the rest of the T − ε box in 
figure 1. Again, the main advantage of this type of extrapolation is that it has a 

great multiplier effect—it speeds up data acquisition in a unified T − ε apparatus 

by removing the need to measure all the T − ε cross terms with orthogonal grids 

of B − T − ε data. As noted above, it also offers the flexibility of combining 

measurements from two different apparatus (one dedicated to strain measurement 

and the other to temperature measurement). But, in general, ESE does not 

extrapolate beyond the strain or temperature limits of the given data along the 

temperature and strain axes in the T − ε map. This first type of extrapolation is 

obtained by use of ESE with almost any of the ℎ(t) and bc2(ε) models described in 

Part 2.

2. In the second type of extrapolation, the Exponential bc2(ε) model can be used to 

extrapolate data along the strain axis of figure 1 from moderate strains to higher 

compressive strains (figure 13 in Part 2). Similarly, the Hybrid1 or Hybrid2 ℎ(t)
models can be used to extrapolate data along the temperature axis of figure 1 

from measurements above 4 K to lower temperatures (figures 16(a) and (b) in 

Part 2). This is particularly useful to avoid the difficulties of transport-current 

heating and instabilities at temperatures ≪ 4 K.

In brief, the specific combination of ESE with the Exponential and the Hybrid1 or Hybrid2 

parameterizations not only fills in the T − ε box, but expands its overall size as well (by 

making extrapolations along the stain and temperature axes of the T − ε measurement map 

beyond the given data).

In the rest of this article we focus mainly on evaluating the accuracy of the various fitting 

equations for the first type of extrapolation (i.e., extrapolating all the T − ε cross terms from 

the minimum dataset). A few examples are also described of extrapolation accuracies of 

the second type (extrapolating beyond the limits of the given minimum dataset with the 

Exponential and Hybrid parameterizations).

3. Extrapolation testing from minimum datasets

In this section we test the extrapolation capability of the ESE relation compared with the 

present fitting equations. This is done by a simultaneous global fit of the parameters in 

each model equation to the minimum dataset shown by the crosscut dashed lines in the 
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example of figure 1. The extrapolation accuracies of each equation are then evaluated by 

comparison of the extrapolated curves with the entire set of measured Ic data. (The critical 

current criterion is 0.1 μV/cm throughout this article unless otherwise stated.)

The present fitting equations are evaluated with the constants and fitting parameters usually 

used for each equation (defined for each model later in this section). Notation is that given 

by the general equation-set (1).

The ESE fitting equation is evaluated with parameters defined by:

ESE, the ‘easy’ fit

Ic(B, T , ε)B = C bc2(ε) s(1 − t1.5)η − μ(1 − t2)μbp(1 − b)q

(2a)

with reduced magnetic field b ≡ B/Bc2
∗(T , ε) and reduced temperature t ≡ T /T c

∗(ε), where:

Bc2
∗(T , ε) = Bc2

∗(0, 0)(1 − t1.5)bc2(ε)

(2b)

Tc
∗(ε) = Tc

∗(0)[bc2(ε)]1/3

(2c)

with five fitting parameters: C, Bc2
∗(0, 0), T c

∗(0), s, either η or μ (but not both), plus the 

parameters in bc2(ε).

The pinning-force shape parameters, p and q, are also preferably fitted (simultaneously with 

the other parameters), but not necessarily, because the increase in overall RMS fitting error 

shown later in Tables A3–A5 is less than ∼0.02% if default values p = 0.5 and q = 2.0 are 

used instead. For these extrapolation tests, p and q for all the models were fixed at the same 

values (determined from master scaling curves) to insure consistency for the comparisons 

presented. The uniaxial parameterizations used for the different bc2(ε) models are defined in 

appendix B of Part 2.

Fitting procedure

Both pinning-force fitting and critical-current fitting were carried out. In all cases the 

percentage errors at individual data points were about 5 times greater for Ic fitting compared 

with FP fitting. This is because Ic fitting unduly weights high Ic data at low magnetic fields, 

where magnets are usually not designed. This is discussed in more detail in section 3.8 and 

shown later in figure 9.

Because of the large difference is error, only the results for FP fitting are shown here. The 

fitting procedure is as follows:
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1. Pinning force data FP(B, T , ε) = Ic(B, T , ε) B are calculated from the Ic

measurements.

2. If magnetic self-field corrections are applied, both B and FP = IcB  are corrected 

(Garber et al 1989, Bordini 2010, Cheggour et al 2017).

3. A nonlinear regression program is used to simultaneously fit the parameters of 

a given fitting equation to the minimum dataset described in section 2: that is 

FP(B, T ) measured at a strain near zero applied strain, and FP(B, ε) measured at 

∼ 4 K. Regression analysis is carried out by minimizing the sum of the squared 

pinning-force residuals Σ(FP − FP
fit)2.

4. The RMS error and RMS fractional deviation are calculated in terms of 

percentage FP residuals, as described below.

5. The absolute Ic extrapolation accuracy is shown by semi-logarithmic graphs of 

the measured critical currents compared with the predicted critical current curves 

Ic(B, T , ε) = FP(B, T , ε)/B.

Error analysis

Comparisons are expressed by the percentage RMS FP errors, and the root mean squared 

fractional deviations (RMSFD) averaged over all temperatures, magnetic fields, and strains 

in the complete measured dataset.

The root mean square error (RMSE) is defined as the sum of the squared residuals between 

the observed FP values (yi) and the calculated results (y i),

RMSE ≡ ∑
i = 1

n (yi − yi)2
n − p .

(3a)

Here p is the number of parameters in the fit, and n is the number of observations. RMS 

errors are expressed as percentages to facilitate comparisons between different conductors. 

Percentage RMSE is calculated by normalizing the absolute RMS FP error by the lead fitting 

constant C [ = K(0, 0)] in the USL parameterization, equation-set (1). (Typical parameter 

values of C are tabulated in appendix tables A1–A5.)

The emphasis in this article is on the relative performance of the different fitting equations, 

and so the percentage RMS FP errors serve this purpose. The percentage RMS FP errors 

are also representative of the percentage RMS Ic errors, because the measurement error 

contributed by the magnetic field to FP( = IcB) is negligible compared to that of Ic. An 

effective RMS Ic error can be obtained at any specific field by multiplying the percentage 

RMS FP error by lead constant C and dividing by B. However, absolute Ic errors are best 

shown by comparisons of individual data curves in the many Ic graphs in the rest of this 

article.
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The RMS fractional deviation (RMSFD) is defined as the root mean square fractional 

deviation of the FP residuals summed over the whole dataset

RMSFD ≡ ∑
i = 1

n yi − yi
yi

2

n − p .

(3b)

The RMSFD is included as a quality-of-fit metric, because it focuses on the percentage 

errors at individual data points, especially at the high magnetic fields and strains of interest 

for many magnet applications.

3.1. Summary tables of minimum-dataset extrapolation errors

We have run minimum-dataset extrapolation tests for nearly all commonly used parameter 

combinations, as well as for different methods of fitting the minimum dataset. All totaled, 

92 test cases were conducted. Despite the large number of tests, the results are surprising 

simple.

3.1.1. Three-cut extrapolations.—As noted in section 2.2, we also ran additional 

extrapolation tests from datasets larger than the minimum two cuts through the T − ε
measurement map, to see if this leads to further reduction of extrapolation errors. For these 

additional tests, the source data were expanded to include: (1) two sets of Ic(B, T ) data 

at two different strains, plus (2) an Ic(B, ε) dataset near 4 K. This is actually a practical 

measurement combination, because the additional data could be fairly easily integrated 

into the typical measurement sequence with a unified T − ε apparatus, by running an extra 

temperature series at a new strain setting (i.e., another column of points in the T − ε map of 

figure 1). Tests were made with the Durham, G/ITER, and MAG fitting equations (defined in 

sections 3.3 and 3.4), and with the ESE relation defined by equation-set (2).

Extrapolations from this expanded three-cut set of source data showed no significant 
reduction in error.: In all tests, the RMS FP errors were reduced by only 0.003%. This 

confirmed that the minimum two-cut dataset derived in section 2.2 is indeed optimum. These 

additional tests also show that the extrapolation errors for each fitting equation are systemic, 

and not reduced by additional source data.

3.1.2. Summary tables.—Tables 1 and 2 summarize some of the many tests conducted 

for extrapolations from the (two-cut) minimum dataset. Testing was carried out for both 

high-Jc (table 1) and moderate-Jc (table 2) conductors. (Conductor descriptions are given in 

appendix A of Part 2.) Only the highlights are tabulated in these two tables. Many more 

cases were also run to test less commonly used combinations of fitting parameters, and the 

results were similar. Details for each tested equation are given in the sections that follow. 

Unless stated otherwise, the ESE fitting equation (2) was evaluated with the Hybrid1 ℎ(t)
model (μ = 1 and η fitted), but the same ESE results were obtained within experimental error 
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for the Hybrid2 model (μ = η/2 and η fitted). (The different ℎ(t) models are summarized in 

section 4.2 of Part 2.)

Tables 1 and 2 serve to compare at a glance the many different combinations of scaling 

constants and parameters in use for parameterizing the general USL equation-set (1). The 

net result is that all cases show large relative improvement in extrapolation errors for ESE 

compared with the present fitting equations, when evaluated under comparable conditions 

[i.e., with the same bc2(ε) and the same or similar ℎ(t)]. The ESE results are indicated by 

the red-italic RMSFD and RMSE numbers in the last two columns of tables 1 and 2. The 

overall RMS FP errors obtained for ESE correspond to very low effective RMS Ic errors, in 

the range 2–5 A at 12 T (depending on whether the conductor is moderate Jc or high Jc). 

These extrapolation errors approach typical Ic measurement errors.

We emphasize that small differences in the overall RMS error in tables 1 and 2 make a very 
large difference in the percentage errors at individual data points, especially those further 
away from the source minimum dataset. This is shown more sensitively by the RMSFD 
results, and most clearly by the graphs of individual Ic data curves in figures 2–9 in the 

following subsections, which are correlated with the case results in tables 1 and 2.

3.2. Examples of minimum-dataset extrapolation error

Sections 3.2–3.7 show examples of minimum-dataset extrapolation errors for the different 

fitting equations.

• Results are usually plotted at 12 K because of the larger extrapolation errors 

at this temperature compared with lower temperatures. However, in some cases 

considerable interpolation errors also occurred. In such cases, results are also 

shown at ∼4 K to display errors to the fitted source data.

• The extrapolation test results are plotted as Ic − ε curves at different magnetic 

fields, rather than in the more usual form of Ic − B curves at different strains or 

temperatures. This is done because Ic − ε curves are flatter, thus making it easier 

to visualize errors. Later, in section 5 on the practical application of ESE, we 

plot the results in the more usual way as Ic − B curves for application to magnet 

design.

• Testing was carried out on critical-current data that were not corrected for 

magnetic self-field, but the fitting results should be applicable to either corrected 

or uncorrected data because of the near identity of the scaling constants for both 

types of data, as shown in section 5 of Part 2. This is also verified here in Part 3 

by the extrapolations carried out with self-field corrected data in section 5.

As a first example, figures 2(a) and (b) show, for perspective, the problem of fitting too 

many parameters simultaneously. Here all the parameters in the general parameterization of 

the USL [equation-set (1)] are fitted, without any constant parameters. As might be expected 

with so many fitting parameters, figure 2(a) shows that the interpolation of the given Ic data 

at 4.02 K is excellent over the entire strain and magnetic-field range.
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However, figure 2(b) shows that extrapolation of the 4 K minimum dataset to off-axis Ic

values at 12 K (the red-boxed data in the T − ε measurement map of figure 1) leads to 

relative errors of 400% or more at high compressive strains. Note, by way of contrast, that 

the fit to the given data at 0.0% strain and 12 K [dashed box in figure 2(b)] is spot on, as 

we would expect. This illustrates the importance of not trying to determine too many scaling 

parameters simultaneously for extrapolation accuracy.

With this case we also show that plotting the residuals at 12 K in the following figures 

gives a high-leverage extrapolation test, because it is difficult to extrapolate so far away 

from the on-axis minimum dataset at 4 K. When extrapolating to temperatures closer to the 

given data, the extrapolation errors are less, approximately proportional to the temperature 

difference from 4 K.

3.3. Durham global-fitting equation (cases 2 and 3 in tables 1 and 2)

The Durham global-fitting equation (Taylor and Hampshire 2005, Lu et al 2008) is given by 

the following equation-set:

Durham interpolative equation:

Ic(B, T , ε)B = C bc2(ε)(1 − t1.5)η − 2(1 − t2)2bp(1 − b)q,
(s = 1, μ = 2)

(4a)

Tc
∗(ε) = Tc

∗(0)[bc2(ε)]1/2.2 (w = 2.2) .

(4b)

Polynomial uniaxial model

bc2(ε) = 1 + c2ε0
2 + c3ε0

3 + c4ε0
4

(4c)

Here, ε0 is the intrinsic strain defined as ε0 ≡ ε − εm, where, for the uniaxial strain case, ε
is the longitudinal applied strain and εm is the longitudinal strain at the maximum Ic(ε). 
The model has four fixed constants s = 1, v = 1.5, μ = 2, w = 2.2; and fitted parameters 

C, Bc2
∗(0, 0), T c

∗(0), η, p, q, c2, c3, c4, and εm. Sometimes the parameter w is also included 

as a fitted parameter.

This is a very precise parameterization of the USL for interpolating data, and, in fact, it is 

named an ‘interpolative’ model. As listed above, the strain exponent in this model is fixed at 

s = 1, and the cross-link exponent is usually set to the constant value w = 2.2.

Figure 3(a) shows the results for this model, extrapolation tested with the minimum dataset 

for the extensive OST-RRP® Nb3Sn dataset (i.e., curves were extrapolated from the Ic − B
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data along the crossed dashed lines in figure 1 to the rest of the T − ε map.) Of course, this 

model was not designed to be an extrapolative equation, but for illustration purposes, the 

extrapolation errors at individual data points are seen to be as large as 200% in the high 

compressive strain range on the left side of the figure (note that the ordinate in these figures 

is a logarithmic scale). Results similar to the 12 K results in figure 3(a) were also obtained at 

10, 8, and 6 K, with proportionately smaller errors as the temperature approached the given 

minimum dataset at 4.02 K.

Tests were also run with w allowed to be a free parameter. RMS extrapolation errors 

increasing by an order of magnitude, and errors at individual data points were almost 

as extreme as those in figure 2(b). From the standpoint of scaling, w is a very sensitive 

parameter wherein small errors have a considerable effect on the other parameter values and 

the extrapolation error.

Figure 3(b) shows the extrapolation curves for the ESE relation applied with the same 

Durham ℎ(t) model and polynomial bc2(ε) parameterizations as in the Durham global-fitting 

equation results of figure 3(a). The ESE relation reduces the percentage extrapolation errors 

at individual data points to as little as 1/30th to 1/40th the size of those in figure 3(a) at 12 

K and high compressive strains. The corresponding large reduction in overall RMSFD error 

is shown by comparing cases 2 and 3 in table 1 (15.7% reduced to 7.1%) and table 2 (13.6% 

reduced to 5.0%).

3.4. Godeke, ITER, and MAG global-fitting equations (cases 4–7 in tables 1 and 2)

The Godeke (Godeke et al 2006, 2009, 2013) global-fitting equation is given by equation-set 

(5):

Godeke fitting equation:

Ic(B, T , ε)B = C bc2(ε)(1 − t1.52)(1 − t2)b0.5(1 − b)2.0
(s = 1, η = 2, μ = 1, p = 0.5, q = 2.0),

(5a)

Deviatoric uniaxial model

bc2(ε) =
1 − Ca, 1 ε0

2 + ε0, a
2 − Ca, 2 ε0

3 − 3 ε0, a
2ε0

1 − Ca, 1 ε0, a
.

(5b)

where ε0 is the intrinsic strain defined as ε0 ≡ ε − εm, and εm is the 

longitudinal strain at the maximum Ic(ε). The model has seven fixed 

constants s = 1, v = 1.52, η = 2, μ = 1, w = 3, p = 0.5, q = 2.0; and fitted parameters C, 

Bc2
∗(0, 0), T c

∗(0), Ca, 1, Ca, 2, ε0, a, and εm.
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The ITER fitting equation (Bottura and Bordini 2009) is the same as the Godeke equation-

set (5), except that the shape exponents of the pinning-force curve, p and q, are fitted 

parameters rather than fixed at constant values p = 0.5 and q = 2.0 as in the Godeke equation, 

so that the f(b) term in equation (5a) becomes bp(1 − b)q. That is,

ITER fitting equation:

Ic(B, T , ε)B = C bc2(ε) 1 − t1.52 1 − t2 bp(1 − b)q
(s = 1, η = 2, μ = 1),

(6a)

Deviatoric uniaxial model.

bc2(ε) = 1 − Ca, 1 ε0
2 + ε0, a

2 − Ca, 2(ε0
3 − 3ε0, a

2ε0)
1 − Ca, 1ε0, a

(6b)

The model has five constants s = 1, v = 1.52, η = 2, μ = 1, w = 3; and fitted parameters 

C, Bc2 ∗ (0, 0), T c
∗(0), p, q, Ca, 1, Ca, 2, ε0, a, and εm.

The Godeke and ITER models served their purpose reasonably well for many of the 

moderate-Jc ITER conductors (but not all, e.g., the EM-LMI results of section 4.2 in Part 2). 

They can also be quite accurate for interpolations for some Nb3Sn conductors.

However, figure 4(a) for a high-Jc conductor shows that extrapolation errors at individual 

data points for the ITER model [equation-set (6)] can be up to 50% of the measured Ic data, 

especially at high compressive strains (again, note the logarithmic vertical scale). If we focus 

on just the fit to the given minimum-dataset measurements at zero applied strain [boxed data 

in figure 4(a)], we see that there are also significant interpolation errors for the given data 

(up to 30% at higher fields).

For the Godeke equation-set (5) (i.e., p = 0.5 and q = 2.0), the test results (not shown) gave 

both interpolation and extrapolation errors greater than those in figure 4(a), particularly at 

high magnetic fields where the extrapolation errors were up to 80% of the measured Ic data.

Figure 4(b) shows the ESE fitting equation applied with the same Deviatoric bc2(ε) as 

for the Godeke model (appendix B.4 of Part 2), but with the Hybrid1 ℎ(t) temperature 

parameterization instead of fixing both temperature exponents (η = 2 and μ = 1) and setting 

the strain parameter s to a constant (s = 1). A comparison of figure 4(a) with 4(b) shows 

reduction of the percentage extrapolation errors in figure 4(b) at individual data points to 

as little as 1/15th the size of those in figure 4(a) at high magnetic fields and compressive 

strains. Significant improvement also occurs for the fit to the given data (boxed data points 

in figure 4(b) at applied strain = 0.0%). The overall RMSFD percentage error was reduced 

by more than a third, shown by comparing cases 4 and 5 in table 1 (11.7% reduced to 7.0%). 
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A similar reduction in overall RMS error was also observed for the moderate-Jc WST-ITER 

conductor, where the RMS error was almost halved (cases 4 versus 5 in table 2).

3.4.1. Simplified expressions.—Mathematically simplified re-expressions of the G/

ITER parameterizations have also been made (Mentink 2008), wherein two of the separable 

parts, g(ε) and bc2(t), are combined. That is, from the general separable USL parameterization 

[equation-set (1)]

Ic(B, T , ε)B = C g(ε)ℎ(t)f(b)
= C [bc2(ε)]s (1 − tv)η − μ 1 − t2)μ bp(1 − b)q,

(7)

the separate strain and temperature parts (left and middle boxed parts above) are combined 

with the B variable on the left side and rearranged to give a mixed term (boxed below) that is 

a combination of reduced temperature, strain, and (non-reduced) magnetic field

Ic(B, T , ε) = C [bc2(ε)s(1 − tv)η − μ/B] 1 − t2 μ bp(1 − b)q .

(8)

Now if the exponents are fixed to constant values s = 1, η = 2, and μ = 1, the boxed term in 

equation (8) reduces to Bc2 ∗ (0, 0)−1 b−1, since b−1 ≡ Bc2
∗(T , ε)/B ≡ Bc2

∗(0, 0) bc2(ε)(1 − tν)/B
[from equation (1c)]. This gives the Mentink fitting equation (Mentink 2008, Godeke et al 

2009, 2013):

Mentink fitting equation:

Ic(H, T , ε) = C1(1 − t2)ℎp − 1(1 − ℎ)q,
(s = 1, η = 2, μ = 1)

(9)

where C1 ≡ C Bc2
∗(0, 0)−1, and the notation H and ℎ ≡ H /Hc2(t, ε) are equivalent to B and 

b ≡ B/Bc2(t, ε) as defined in this article (i.e., B ≡ μ0H, which gives the practical units of 

tesla). The form of ℎp − 1 (1 − ℎ)q, on the right hand side of equation (9) was used earlier 

by Hampshire et al (1985). Since equation (9) is mathematically equivalent to the G/ITER 

fitting equation (6) (where the scaling exponents are also fixed at constant values s = 1, 

η = 2, and μ = 1), the extrapolation and interpolation errors are identical to those shown in 

figure 4(a).

The need for a fitted temperature parameter in ℎ(t) was described earlier (Keys and 

Hampshire 2003, Taylor and Hampshire 2005, Ekin 2006, Lu et al 2008, and Bottura and 

Bordini 2009), and recently more specifically for the Godeke/ITER ℎ(t) (Ekin 2010 and Ekin 

et al 2013). Accordingly, a modification of equation (9) was subsequently introduced by 

Mentink (2014) (labeled the MAG relation, for Mentink, Arbelaez, and Godeke)
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MAG fitting equation:

Ic(H, T , ε) = Cl (1 − t2)μℎp − 1(1 − ℎ)q .
(s = 1, η = μ + 1)

(10)

In this parameterization, the temperature exponent μ in equation (8) is made a fitting 

parameter (with the other exponent η fixed by η = μ + 1). This improves the fitting accuracy 

of this relation. However, the simplified mathematical form [equation (10)] results only if 
the strain parameter s is still fixed at the constant value s = 1. The MAG model thus has 

significant extrapolation errors, as well as relatively large interpolation errors for the given 

data at 4.03 K shown in figure 5(a) (up to 50% of the measured Ic data at high compressive 

strains and magnetic fields). By comparison, the ESE results in figure 5(b) similarly 

evaluated with the Deviatoric bc2(ε) strain function, but with a fitted strain parameter s, shows 

reduction in percentage interpolation errors down to as little as 1/15th the size of those 

in figure 5(a) at higher compressive strains. The overall reduction in RMSE and RMSFD 

extrapolation errors with ESE was also significant, whether the Hybrid1 ℎ(t) or Mentink ℎ(t)
function was used with ESE (e.g., in table 2, RMSFD = 8.8% for the MAG equation in case 

6, reduced to 5.5% for the ESE equation with either fitted η in case 5 or fitted μ in case 7). 

Similar error reductions were also measured for the OST-RRP® dataset (same case numbers 

in table 1).

Thus, the simplicity of the Mentink expressions is attractive, but the extrapolation and 

interpolation errors are significant. There are also a couple structural issues:

• The parameters are no longer separated: The separable parts g(ε) and ℎ(t) [boxed 

in equation (7)] are comingled with the pinning-force curve function f(b) to give 

the extra ℎ−1 term in equations (9) and (10). This makes it difficult to determine 

the parameters of this expression from raw scaling data for Bc2
∗(T , ε) and K(T , ε)

without re-separating the parts. No testing with raw scaling data was done in the 

formulation of the MAG fitting equation.

• Reintroduction of B is needed for FP fitting: The emphasis of the expressions 

is on Ic, isolated on the left-hand side of equations (9) and (10), rather than FP. 

However, what scales is not Ic, but FP. This is not a major issue like extrapolation 

and interpolation accuracy, but a B term needs to be reintroduced into the relation 

to explicitly give FP to carry out the more-accurate FP fitting (section 3.8).

3.5. NIST global-fitting equation (cases 8–10 in tables 1 and 2)

The Extended Power Law for bc2(ε) (appendix equation (B.2) in Part 2), expands the 

Power Law parameterization to high compressive strains ε0 ≪ − 0.5%, while preserving the 

curvature constant u = 1.7 for moderate strains (Ekin 1980, 1981, 2006 and 2010). Figure 6 

shows the minimum-dataset extrapolation results for ESE when used in combination with 

the Extended Power Law bc2(ε) parameterization and the Hybrid1 ℎ(t) parameterization. 

Extrapolation errors are comparable to those in figures 3(b), 4(b), and 5(b) where ESE is 
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fitted with other bc2(ε) functions. The RMSFD errors for the Extended Power Law case were 

among the lowest of any of the cases studied (case 9 in tables 1 and 2: RMSFD = 6.8% for 

the OST-RRP® dataset, and 5.4% for the WST-ITER dataset). Remarkably, when the ESE 

relation is used with the Extended Power Law, plus the Fietz and Webb parameterization for 

ℎ(t) [equation (15) in Part 2], this gives the original USL parameterization proposed in 1980 

for the moderate strain regime [updated here with the recently measured parameterization 

for bc2(t) ( = 1 − t1.5)]. This original combination also had very low RMSFD extrapolation 

errors (case 8 in tables 1 and 2: RMSFD = 7.3% for OST-RRP® dataset, and 6.3% for 

WST-ITER dataset).

3.6. Invariant bc2(ε) used with the ESE fitting equation (case 11 in tables 1 and 2)

The numerically integrated strain-invariant model of Markiewicz was the first that utilized 

three-dimensional (3-D) strain invariants (Markiewicz 2004). Subsequently, others have 

also expressed their empirical parameterizations of bc2(ε) in terms of strain invariants. The 

original Markiewicz model is based on a first-principles calculation, but it is not convenient 

to use. So the features of this fundamental calculation were formulated into the more 

user-friendly, but empirical, Invariant Strain Function given by appendix equations (B.9) and 

(B.10) in Part 2 (Markiewicz 2006). This model gives precise fitting results as shown in 

figure 7 (case 11 in tables 1 and 2), plus it has the capability to extend one dimensional 

strain measurements to 3-D design applications.

3.7. Exponential bc2(ε) used with the ESE fitting equation (cases 12 and 13 in tables 1 and 

2)

The Exponential strain model for bc2(ε), given by appendix equations (B.11) and (B.12) in 

Part 2 (Bordini et al 2013), has the unique capability to extrapolate moderate strain data 

(−0.5% < ε0 < ε0, irr) to extended compressive strains (ε0 ≪ − 0.5%). (This is the second type 

of extrapolation described in section 2.3). A fit to just the moderate strain data for the 

WST-ITER dataset gives remarkably low extrapolation errors even though the fitted data are 

extrapolated out to intrinsic strains of –1.03% (RMSFD = 6.4%, case 14, table 2; which is 

nearly the same error as for a fit to the complete strain range, RMSFD = 5.7%, case 13, table 

2).

Of course, when high compressive strain data are available, it is preferable to fit the 

entire strain range because random errors in the fitted moderate-strain data can otherwise 

extrapolate to larger errors. Figure 8 shows an example of this for the more-difficult-to-fit 

OST-RRP® dataset (which has an irreversible intrinsic strain limit ε0, irr near 0%, whereas the 

WST-ITER conductor has a more normal ε0, irr = ∼ + 0.3% that permits data to be measured 

on the tensile side of the strain peak). When all strains are fitted for the OST-RRP® dataset, 

the RMSFD is relatively low (8.3%, which is comparable to the results for the other bc2(ε)
models even though they have many more fitting parameters). But when only moderate 

strains are fitted (to the right of the dashed vertical line in figure 8(b)) and extrapolated to 

extended compressive strains, the RMSFD increases to 15.6%. This example also shows the 

importance of having a relatively fine measurement grid when extrapolating limited data 
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to higher compressive strains (compare the measurement grid in figure 8 with the finer 

measurement grid for the WST-ITER dataset in figure 5).

Nevertheless, the capability of the Exponential bc2(ε) parameterization to extrapolate limited 

strain data to higher compressive strains can be very useful, a capability not shared by the 

other models. Furthermore, the single fitted parameter in this model, C1, can be used as a 

strain sensitivity index, as well as provide consistency and noise rejection over the dominant 

peak Ic stain range (detailed in item 5 of the summary section 6.2).

3.8. Factors for achieving extrapolation and interpolation accuracy with global-fitting 
equations

Several factors are needed to achieve the exceptional accuracy of the ESE relation in 

sections 3.3–3.7 for interpolations and extrapolations from minimum datasets.

3.8.1. Pinning-force fitting versus critical-current fitting.—The accuracies 

reported here are obtained by converting the critical-current data to pinning-force data 

(FP = IcB) before fitting (procedural steps are listed at the beginning of section 3). Fitting 

FP places emphasis on the mid-magnetic field region (where FP peaks) and avoids unduly 

weighting the lower magnetic fields dominated by the highest critical currents. Fitting FP, 

rather than Ic, reduces percentage extrapolation errors at individual data points down to as 

little 1/5th the size, as shown by comparing figure 9(a) for Ic fitting, with figure 9(b) for FP

fitting. This considerable difference in extrapolation accuracy was consistently seen in all 
test cases where high extrapolation accuracy was observed (i.e., the ESE cases shown by the 

red italic RMSFD values in tables 1 and 2).

3.8.2. Insufficient data to determine values of p and q.—When data on the low-

field side of the pinning-force peak are insufficient to determine the shape parameter p, 

erroneous p values result, and then p needs to be set to a default value such as p = 0.5.5 

This was the case for the OST-RRP® conductor, where heating effects at very high Ic levels 

prevented the measurement of sufficient data at low fields, < ∼5 T at 4.2 K). This situation 

will become more common as Nb3Sn conductors are developed with further increases in 

Jc. A comparison of figures 10(a) with (c) shows the lack of curve registration in this case, 

which, if great enough, can result in the loss of the extrapolation accuracy provided by 

unified scaling.

Likewise, the parameter q will be accurately determined only if a sufficient range at higher 

magnetic fields is available above the pinning-force peak, usually from ∼10 T to ≥15 T at 

4.2 K. (However, the needed relative magnetic field range becomes easier to measure at 

higher temperatures; see below.) Erroneous fitted values are avoided in this situation by also 

setting q to a default value, typically q = 2.0.5

5The values p = 0.5 and q = 2.0 are convenient default values used for Nb3Sn. They are sometimes referred to as ‘Kramer’ values. 
However, they are empirical in nature because the assumptions of the Kramer model that is sometimes used to justify these values are 
highly questionable (section 7 of Part 1).
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When data over a sufficient magnetic field range are available, p and q can be determined 

by several different methods: from master scaling curves, by globally fitting the entire 

dataset, or by averaging the results for a few selected FP − B data curves. In the last case, 

the curves are best selected at moderate strain levels and at higher temperatures where a 

greater range of relative magnetic fields B/Bc2
∗ is usually available. This is seen in the 

master-scaling-curve examples of appendix A of Part 2, particularly that shown by the 

Vacuumschmelze master scaling curve in appendix figure A7 in Part 2. There, we see that 

data on the low-magnetic-field side of the pinning-force peak are available only at 12 K 

(blue data points), and not at 8 or 4 K. (The extrapolation tests in section 3 uses values 

of p and q determined from master scaling curves, mainly to ensure consistency for the 

comparisons presented.)

Fortunately, the precise values used for p and q have little effect on the extrapolation 
accuracy of the ESE fitting equation over the magnetic field ranges tested here, as long as 

the default values used for p and q are not too extreme. The RMSE results in appendix tables 

A3–A5 show this more explicitly. This flexibility is because the scaling constants and the 

core scaling parameters (sections 5.3 and 5.5) depend only on the ratios of the raw scaling 

data Bc2
∗(T , ε)/Bc2

∗(0, 0) and K(T , ε)/K(0, 0).

3.8.3. Trimming data at high temperatures and low pinning forces.—Although 

not essential, trimming data is useful to minimize the effects of flux creep and facilitate 

convergence of non-linear regression programs.6 An example of the noise from flux creep 

is given in figure 10(b), which shows the lack of scaling at low FP levels. Generally, good 

cut-off levels are to trim data at temperatures above ∼12 K, and at pinning forces FP

below ∼100–200 AT. From a practical standpoint, such trimming is not a problem, because 

magnets are usually not designed at such low pinning-force levels.

The scaling constants and core parameter values are affected very little (Δ < ∼ 2%) by the 
specific trim levels used for temperature and FP. RMS fitting errors are also effectively 

unchanged. For example, if trim levels are relaxed to half of the values used in tables 1 and 

2, the RMSE values increase by only a few hundredths of a percent.

4. Discussion: ‘Everything should be made as simple as possible, but not 

simpler.’ –Albert Einstein

This epigraph summarizes one of main points of this article regarding ‘optimum simplicity’. 

The shortcut of global-fitting equations (rather than registering pinning-force curves into 

a single master scaling curve) foregoes the most powerful and beautiful aspect of scaling—

extrapolation. The usual labeling in the literature of the fitting equations as ‘scaling laws’ is 

a misnomer. They are either empirical parameterizations of the USL or based on limited raw 

scaling data, but they are not fundamental scaling and they lack extrapolation capability.

6A simple way to find the optimum trim level for global fitting is to start with a high trim value (to ensure fitting convergence and 
obtain good starting parameter values), and then relax the trim level in a few steps until fitting convergence is lost.
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The number of fitting parameters used can also be an issue, as we saw in figure 2. Too 

many gives good accuracy for interpolation, but not extrapolation. In figures 3–5 we saw 

the opposite problem—fitting too few or fixing parameters with values that are not scaling 

constant values; this compromises both extrapolation and interpolation capabilities. The 

solution goes back to the basics of scaling and to individually determining each parameter 

(or small group of parameters) with extensive raw scaling data. This takes a considerable 

one-time effort, but the end result is a raw-scaling-data based fitting equation that provides 

extrapolation capability for practical engineering design and conductor characterization, but 

can be easily applied with the simplicity of a global-fitting equation.

Another question—What minimum dataset is the right minimum? This is also a question 

of optimum simplicity. A number of proposals have been made, but the answer lies in 

determining which parameters are not fundamental scaling constants, as determined in 

the extensive analysis of section 4 in Part 2. Fundamental scaling analysis shows that 

the minimum data set consists of one measurement of Ic(B, T ) at a fixed strain, and one 

measurement of Ic(B, ε) at a fixed temperature (depicted by the two dashed lines in the T − ε
measurement plot of figure 1). This is the minimum dataset, and it is quite powerful, because 

Ic − B curves at all other points in the T − ε map can be filled in by extrapolations from this 

simple crosscut through the T − ε measurement space.

Again, it is a case of making things as simple as possible, but not simpler.

5. Application of the ESE relation

Section 5 is the payoff for the extensive raw scaling data analysis of Part 2 and the 

extrapolation testing of section 3 in the present article. Here we illustrate the practical 

application of ESE in several new areas:

• Interpolations (section 5.1). Such interpolations also provide the option for 

reliable extrapolations to the nearby measurement space through the use of 

default values for the core scaling parameters [T c
∗(0), η, s, and bc2(ε), described in 

sections 5.3 and 5.5].

• Shortened data-acquisition time for unified T − ε apparatuses (section 5.2). A 

five-fold reduction in measurement space for full Ic(B, T , ε) characterization can 

be obtained by extrapolation from minimum datasets.

• Combining measurements from separate dedicated temperature and strain 

apparatuses (sections 5.6–5.9). The use of separate, simpler apparatuses offers 

flexibility and savings compared with the construction and commissioning 

of a complex unified T − ε apparatus. For example, full Ic(B, T , ε) datasets 

can be obtained by combining strain data from a standard liquid helium 

immersion apparatus, with separately measured temperature data from a variable 

temperature apparatus.

• Extrapolations of full Ic(B, T , ε) datasets from only a single Ic(B) curve in special 

situations (section 5.10). Such minimal measurements are typically made on 
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conductorswhen qualifying production wire for large magnet applications. Such 

extrapolations are possible because of the stability of a few core parameters.

In the following application illustrations, we use the two most effective extrapolative forms 

of the ESE relation with the Hybrid1 and Hybrid2 temperature paramterizations.

Extrapolative Scaling Expression with Hybrid1 temperature parameterization

Fc(B, T , ε) = Ic(B, T , ε)B
= C bc2(ε) s 1 − t1.5 η − 1 1 − t2 bp(1 − b)q,

(11a)

where b ≡ B/Bc2
∗(T , ε) is the reduced magnetic field and t ≡ T /T c

∗(ε) is the reduced 

temperature, and:

Bc2
∗(T , ε) = Bc2

∗(0, 0)(1 − t1.5)bc2(ε),

(11b)

Tc
∗(ε) = Tc

∗(0) bc2(ε) 1/3

(11c)

with five scaling parameters: C, Bc2
∗(0, 0), T c

∗(0), s, η, plus the parameters in bc2(ε).

Essentially the same results are obtained within experimental error with ESE parameterized 

with the Hybrid2 temperature function.

Extrapolative Scaling Expression with Hybrid2 temperature parameterization

Fc(B, T , ε) = Ic(B, T , ε)B
= C [bc2(ε)]s[(1 − t1.5)(1 − t2)]η/2bp(1 − b)q,

(12a)

where the rest of the equation set is the same as equation set (11).

In these examples, the bc2(ε) strain function is parameterized with either the Exponential or 

Invariant models because of the practical advantages these strain parameterizations offer, as 

outlined in the conclusions to Part 2. (Parameterizations for each strain model are defined in 

item (5) of section 6.2 of this article.) Although results for both bc2(ε) parameterizations are 

presented for perspective, the Exponential model would generally be preferred because of its 

single fitting parameter and strain extrapolation capability. The Invariant model is used when 

additional strain interpolation accuracy is needed.

All fitting in these application examples is carried out in terms of the pinning force FP, not 

Ic, to increase extrapolation accuracy and avoid overweighting low fields where Ic is the 
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highest (see figure 9 and the accompanying discussion). (If very low regions of magnetic 

field are of primary design interest, then Ic fitting is preferable. However, this is usually not 

the case for most conductor characterizations.)

5.1. Interpolation

The results of interpolating extensive datasets with the ESE relation are given in appendix 

tables A1–A5. (Specific fitting steps are given at the beginning of section 3 and summarized 

in appendix A.1) The RMS FP errors in the last column of tables A1–A5 show that 

interpolation errors are exceptionally small, between about 0.1% and 0.2%, depending on 

the particular dataset. These correspond, for example, to RMS Ic errors of only 1–5 A at 12 

T, depending on the Jc of the conductor.

Interpolations with ESE give parameter sets that can be used not only to interpolate the 

source data, but also to reliably extrapolate more limited data to the nearby parameter space. 

This can be done even when data are insufficient to accurately determine all of the ESE 

parameter values, through the use of default values for the core parameters. (Default values 

are given in section 5.5 and listed in item 7 of the Part 3 summary in section 6.3.)

5.2. Unified T−ε apparatus—saving measurement time with the minimum dataset

For unified T − ε apparatuses, ESE can significantly reduce the number of measurements 

needed for full conductor characterization, through the use of minimum datasets. Section 

3 shows that fitting data along just two axes in the T − ε map (dashed cross-cut lines in 

figure 1) allows the rest of the T − ε cross terms to be accurately extrapolated. (Note that 

each point in the T − ε map corresponds to an Ic − B data curve; see section 2.1). From 

figure 1 we see this decreases the measurement space to about 1/5th the size, compared 

with measuring an Ic − B curve at every point in the T − ε map. Measurement times for 

full Ic(B, T , ε) characterization are typically shortened from several weeks to a few days, 

especially when making fine-grid measurements such as those presented here for the 

WST-ITER and OST-RRP®conductors. Also, by fitting the minimum dataset, there is no 

requirement for orthogonal B − T − ε measurement grids to register pinning-force curves 

into a master scaling curve, as there is with fundamental scaling.

The accuracy of such minimum-dataset extrapolations is extensively demonstrated by the 

many examples with the ESE relation in sections 3.3–3.7. The RMS FP errors are typically 

between 0.11% and 0.15% for ESE with both the Hybrid1 and Hybrid2 temperature 

parameterizations (see the red highlighted cases in tables 1 and 2). Extrapolation errors from 

minimum datasets are comparable to interpolation errors for the full dataset. The increase in 

RMS FP error between whole dataset fitting (appendix tables A1 and A2) and extrapolations 

from minimum datasets (tables 1 and 2) is less than 0.03%, which corresponds to an 

increase in effective RMS Ic error of less than ∼1 A at 12 T. Thus, the accuracy of such 

minimum-dataset extrapolations is more than enough to provide a considerable reduction in 

data acquisition time for full conductor characterization.
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5.3. Core scaling parameters: Tc
∗(0)η, s, and bc2(ε)

Tables A3–A5 also show the variability of the ESE parameter values:

• The lead constant C and the parameter Bc2
∗(0, 0) have the greatest variability. 

They change by about 5% to 10% for different values of p and q, and by about 

±10% for the magnetic self-field correction.

• However, values of the core parameters T c
∗(0), η, s, and bc2(ε) in these tables are 

more stable and consistent:

1. For different values of p and q, the changes in core parameter values are 

less than ±2%; the changes in the temperature core parameters T c
∗(0) and 

η are even smaller, less than ±0.5%.

2. When the magnetic self-field correction is applied, the changes in core 

parameter values are less than ±3%, although the decreases in s can be 

somewhat greater, up to ∼10%.

The greater stability of the core parameters is a result of them being dependent only on 

ratios of the raw scaling data Bc2
∗(T , ε)/Bc2

∗(0, 0) and K(T , ε)/K(0, 0), unlike the non-core 

parameters C, Bc2
∗(0, 0), p and p.

Although the core parameters are quite stable, the many tests we have made show that the 

highest extrapolation accuracy is obtained by carrying out extrapolations with the same p
and p values that were used to measure the core parameters employed in the extrapolation. 

Likewise, when extrapolating data corrected for magnetic self field, accuracy is increased 

by use of core parameter values that were also measured from self-field corrected data 

(appendix tables A3–A5).

(Note that the scaling constants are essentially unaffected by either changes in the values of 

p and q, or by magnetic self-field corrections, as shown earlier in the analysis of Part 2.)

5.4. Combining limited datasets measured in separate apparatus

The stability of the ESE core parameter values also makes it possible to combine limited 

data from separate apparatus (examples are given in sections 5.6–5.9). Combining separately 

measured datasets avoids the cost of the design, construction, and commissioning of a 

complex unified T − ε apparatus. Their stability also opens the possibility to utilize data 

more limited than the minimum dataset, by joining various combinations of measurements 

into a complete dataset. Extrapolations can even be carried out from as little as a single Ic(B)
measurement (section 5.10) if the core parameter values have been measured in a similar 

conductor.

Examination of the ESE equation-set (11) shows which parameters can be reliably 

determined when only limited data are available. The results are shown for some of the 

more common limited datasets in table 3, arranged in order of descending complexity.
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Row 1 in table 3 indicates all the parameters needed for full Ic(B, T , ε) characterization, 

typically obtained with a unified T − ε apparatus.

Rows 2–5 show the parameters that can be obtained from more limited datasets measured 

with separate strain and temperature apparatuses. Although none of these more limited 

datasets alone is enough to provide a full Ic(B, T , ε) dataset, combining them works quite 

well to supply complete conductor characterization. For example:

• Separate measurements of Ic(B, T ) and Ic(B, ε) combine to give a complete 

minimum dataset.

• A complete parameter set is also given by combining separate measurements of 

Ic(B, ε) and Ic(T ) (i.e. temperature measurements carried out at only a constant 

magnetic field), if the magnetic field range for the strain measurements is great 

enough to accurately determine p and q (otherwise default p = 0.5 and q = 2
values can be also used).

• In special situations, a complete minimum dataset can be obtained from Ic(B, T )
combined with a relatively quick Ic(ε) measurement (at constant B and T ). This 

works only if s is known from measurements on a similar conductor. Examples 

of this case are given in sections 5.8 and 5.9.

Combinations other than those illustrated also blend well, but at least these show the 

flexibility and usefulness of the ESE relation for some common measurement situations.

Several combinations are also more practical than others. For example, the second bullet 

above, Ic(B, ε) plus Ic(T ), works mathematically, but if Ic(T ) is being measured in a variable 

temperature apparatus anyway, it makes sense to measure the magnetic field dependence 

Ic(B, T ) as well. In practice, Ic(B, T ) is one of the most useful measurements to make, at least 

for one sample of a given conductor type, because it provides the range of data needed to 

accurately determine many of the core parameters that will transfer to other conductors of 

that type. This is especially the case for the stable temperature core parameters.

For any of these limited-data cases, if some of the parameters needed for a full Ic(B, T , ε)
dataset are not available, default core parameter values can be used to fill in missing core 

parameters in table 3. This gives adequate accuracy, at least for limited extrapolations, and 

the results are easily updated later if additional core-parameter data become available.

5.5. Default values for the core parameters

When data are insufficient or unavailable, there is too much freedom in the fitting process 

to fit all the parameters. Erroneous or indeterminant parameter values result. In such a case, 

default parameter values give significantly improved extrapolation accuracy. Their use also 

gives flexibility to the types of data that can be combined by filling in the blanks in table 3.

Default values for the core parameters are preferably obtained from more complete datasets, 

such as Ic(B, T ), Ic(B, ε), or complete Ic(B, T , ε) datasets, measured in a conductor similar to 

the one being extrapolated. Representative values of core parameters are listed in the middle 

Ekin et al. Page 25

Supercond Sci Technol. Author manuscript; available in PMC 2024 October 23.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



columns of tables A1–A5. With additional measurements, it may be possible over time to 

develop a more complete compilation of core parameter values to use for different types of 

conductors.

For the present, the core parameters listed in the appendix tables can be useful as default 

parameter values, especially for extrapolations into the neighboring measurement space not 

too distant from the source data.

5.5.1. Measurement ranges needed to determine parameter values; when to 
use default values.—When should default values be used, and when are they not needed? 

Guidelines for adequate measurement ranges to accurately determine the scaling parameters 

are listed below, along with default parameter values to use when the data are insufficient. 

In general, a fine measurement grid over the suggested ranges is desirable, with preferably 

a minimum number of four or five data points. Also, if multiple measurements are made at 

the same B − T − ε point, it is best to average them as a single value before fitting, to prevent 

unintentional weighting.

• η and T c
∗(0): For these core temperature parameters, high temperature data 

Ic(B, T ) above ∼4 K are generally needed to determine their values (for example, 

at even temperature values preferably up to ∼12 K). The data in tables A1–A5 

cluster around a default average value of about 16.7 K for T c
∗(0). Similarly, 

default values for η group around values of 2.0 (ITER conductors) or 2.2 (RRP®-

Ta), where the higher number is possibly correlated with conductors having 

compositional inhomogeneities (figure 6 in Part 2).

• s and bc2(ε): For these core strain parameters, Ic(B, ε) data are needed, usually 

obtained from liquid helium dip tests. As far as the measurement sequence, in 

the NIST data sets given here, the sample was initially strained up to a maximum 

strain less than the irreversible strain limit and then magnetic field data were 

obtained at each strain as strain was decreased in steps of ∼0.1% (preferably 

down to about −1% intrinsic strain, which is the approximate elastic strain limit 

of the beryllium-copper Walters spring). This sequence gives consistent data 

and avoids multiple loadings of the sample, which can result in irreversible 

three-dimensional strain effects. A fairly complete set of Ic(B, ε) data is needed 

to determine s. However, for the parameters in bc2(ε), if a good estimate for s is 

available for a similar conductor, bc2(ε) can be obtained by measuring Ic(ε) alone 

(i.e., at constant B and T ). An average default value for s from tables A1–A5 
is about s = ∼ 1.1 for the high-Jc RRP®-Ta conductor. A higher default value of 

s = ∼ 1.4 is measured for the moderate-Jc ITER conductors.

• p and q: At 4.2 K, multiple tests have shown that magnetic field measurements 

are needed over the range from ∼10 T to ⩾ ∼ 15 T to accurately determine q, 

and at fields below ∼5 T to determine. p It is usually much easier to determine 

p and q accurately from Ic(B, T ) data above ∼4 K. Lacking such data, it is better 

to use the default Nb3Sn values p = 0.5 and q = 2.0. The precise values of p and q
have little effect on the extrapolation accuracy of the ESE relation, if the same p 
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and q values are used in the extrapolations as those used to determine the default 
core parameters. The results in the tables A3–A5 show that use of default values 

p = 0.5 and q = 2.0 increases the overall RMS FP error by less than ∼0.02%, 

compared with fitting values for p and q.

• The lead parameters C and Bc2
∗(0, 0) are quite variable between conductors, 

and depend on values of p and q, so they are best measured on an individual 

conductor basis. Fortunately, they can be accurately determined from just a 

single Ic(B) curve for a particular conductor, as illustrated in section 5.10.

5.6. Combining separately measured Ic(B, T) and Ic(B, ε) datasets into a minimum 

dataset

Mathematically, it makes no difference whether the minimum dataset illustrated by the 

cross-cut in figure 1 is obtained from a unified measurement apparatus or from two 

different test apparatuses, one dedicated to measuring strain Ic(B, ε) and the other to 

measuring temperature Ic(B, T ). The intrinsic accuracy of the ESE relation to combine such 

separate datasets has already been demonstrated through the extensive minimum-dataset 

extrapolation testing summarized in tables 1 and 2.

In practice, of course, there are extrinsic errors resulting from differences between the test 

samples used in different measurement apparatuses. Samples need to have similar filament 
architecture, composition, doping, and heat treatment. Also, the Ic values need to match 

reasonably well where the two datasets overlap. When they mismatch, techniques can be 

used to correct for differences, as described in the next section.

5.7. Practical considerations for combining separate datasets: extrinsic corrections for 
matching Ic criteria, prestrain, and magnetic self field

If the apparatus conditions for the two measurements are different (sample length, mounting 

technique, sample holder material and diameter), these differences can often be corrected, at 

least to first order. A good indicator of the quality of the corrections is the mismatch in the 

(corrected) critical currents at the temperature and strain where the two datasets overlap.

1. Ic criterion dependence: Data can be matched to a common Ic criterion with the 

‘n’ value method (i.e., V − I curves are modeled as V = C In). The correction is 

illustrated, for example, in section 10.1 of Ekin [2006, equation (10.6)].

2. Prestrain from differential thermal contraction of the sample holder: Different 

holder materials introduce different amounts of thermal-contraction strains 

into the samples during cooldown from the sample soldering temperature 

to cryogenic temperatures. The differences in strain introduced by different 

sample holders can be approximately corrected with the thermal-contraction data 

recently compiled in an international benchmarking study (Cheggour et al 2017).

3. Self-field: If the sample holders have substantially different shapes, the 

difference in magnetic self-field effects can be a factor. Self-field correction 

factors have been calculated with finite element analysis for many of the sample 
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holder geometries in present use (Bordini 2010, tabulated in Cheggour et al 

2017).

These extrinsic corrections are illustrated in the following examples.

5.8. Combining separate Ic(B, T) and Ic(ε) datasets—example of simultaneous fitting for 

combining well-matched datasets

In this and the following section we illustrate two procedures for combining separately 

measured datasets. The first, simultaneous fitting, applies to the case where the (corrected) 

datasets match well where they overlap, usually at liquid helium temperature and the as-

cooled strain state of the conductor.

The second procedure, iterative fitting (presented in the section 5.9), is preferable when:

1. The two datasets do not match well (for example, because of significant 

differences in Ic criteria that cannot be accurately corrected because of the lack of 

accurate n values).

2. One dataset is more reliable than the other.

3. One dataset better matches the temperature range or Ic criterion for the intended 

use of the data.

The first procedure of simultaneous fitting is essentially the same as that used for all the 

minimum dataset extrapolations in section 3. It is simply a simultaneous fit of the ESE 

equation to both datasets. We illustrate the procedure by combining two limited datasets, one 

a variable temperature Ic(B, T ) measurement, the other a strain measurement of Ic(ε) at only a 

single magnetic field, 12 T.

5.8.1. Data.—These separate datasets were measured on two samples of the same 

conductor, both reacted with the same heat treatment. These data are for a Luvata 

ITER toroidal-field (TF) internal-tin Nb3Sn conductor, billet #NT8404 (conductor 

crossection shown in appendix figure A5 of Part 2). Complete source data for both 

datasets are given online in the supplemental website accompanying these articles, 

www.ResearchMeasurements.com.

• The temperature Ic(B, T ) dataset was measured in a variable-temperature 

apparatus in flowing helium gas (Goodrich et al 2013). The coil-shaped sample 

was carefully threaded onto a cylindrical sample holder made of Ti-6%Al-4%V 

(ITER-type barrel). The ends of the sample were soldered to copper current 

rings at the ends of the holder. However, the middle of the sample was not 

soldered, but wound without slack. Also, the Lorentz force was directed inward, 

so the sample holder provided support. Data were obtained at an Ic criterion of 

0.1 μV cm−1.

• The strain Ic(ε) dataset was measured in a separate apparatus at ∼4 K at a fixed 

magnetic field of 12 T. The sample was soldered along its entire length to a 

Walters spring sample holder (Walters et al 1986) made of Cu-2%Be (Cheggour 

et al 2014). Because the measurements were carried out in liquid helium (unlike 
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the flowing gas environment of the variable-temperature apparatus), heating 

effects were smaller and so Ic could be analyzed at three widely different Ic

criteria: 1 μV cm−1, 0.1 μV cm−1, and 0.01 μV cm−1. We use the 0.1 V cm−1

strain data to match the Ic criterion of the temperature data. (We will use a 

mismatched Ic criterion to demonstrate the iterative fitting process in the next 

example in section 5.9.)

5.8.2. Procedure.—The two sample-holder materials and mounting conditions were 

different (Cu–Be versus Ti–Al–V, and soldered versus unsoldered), so the samples 

experienced different cooldown strain introduced by the sample holders. An inspection of 

the data shows that the Ic values for the two datasets matched at the overlap point (12 T and 

4 K) for an applied strain of 0.24% in the Ic(ε) dataset. Analysis of the expected differential 

thermal contraction for these two sample-holder materials (using thermal contraction data 

from Cheggour et al 2017), also gave an effective matching strain within 0.01% to 0.02% of 

this value.

Both datasets were trimmed at FP < 100 AT and at temperatures >12 K, although the specific 

trim levels had less than a 2% effect on the resulting core parameter values, and negligible 

effect on the RMS fitting errors (section 3.8).

Finally, since there are no variable magnetic-field data accompanying the Ic(ε) dataset, it is 

not possible to simultaneously determine both bc2(ε) and the strain parameter s (for that we 

need strain data at variable fields, Ic(B, ε); i.e., row 3 in table 3). Fortunately, s has been 

determined from extensive raw scaling data by Cheggour et al (2017) to be consistently 

s = 1.4 ± 0.02, independent of strain, for a series of internal-tin (and bronze-route) ITER-

TF conductors, similar to this conductor. We take 1.4 as a reliable value for s in this 

ITER conductor, which enables the limited fixed-field Ic(ε) measurement to determine the 

parameters in bc2(ε) [and therefore the complete parameter set when combined with the 

Ic(B, T ) data; i.e., rows 2 and 5 combined in table 3].

5.8.3. Results.—The upper part of tables 4 and 5 labeled ‘Simultaneous fit’ show the 

results for a simultaneous fit to both datasets (after matching strain) for the Exponential 

and Invariant bc2(ε) models, respectively. Although not shown in the tables, the fitting errors 

for both strain models were about the same, and quite low, RMSE = 0.08% and RMSFD 

= 2.0%. Note that the core parameter values in the two tables are nearly the same [except 

for the parameters in bc2(ε)], which shows the stability of the core values with respect to 

the bc2(ε) model used. The shape parameters p and q obtained from this simultaneous fit are 

also consistent with those obtained from the master scaling curve f(b) shown in appendix 

figure A6 of Part 2 (where p = 0.564 for the master curve versus 0.562 in both tables 4 and 

5, and q = 1.74 in the master curve versus 1.70 and 1.71 in tables 4 and 5 respectively). (The 

slightly higher q value for the master curve is due to the smaller trim value FP < 25 AT used 

in appendix A.3 of Part 2, whereas data for the simultaneous fits shown here were trimmed 

at FP < 100 AT to minimize the effect of outlier points on the RMSFD for comparative 

purposes).
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Thus, the use of a simultaneous fit of ESE to combine strain and temperature datasets that 

match reasonably well (at the point where field, temperature, and strain overlap) gives a 

full Ic(B, T , ε) characterization that otherwise would not have been possible because of the 

limited, separately measured datasets (which was all that were available for this conductor). 

We take these parameter values and their use with the ESE relation to give a reliable full 

characterization of this conductor for the following reasons: (1) the extrapolation procedure 

is mathematically equivalent to the extensive testing carried out in section 3; (2) both test 

samples were similar (same billet) and reacted with the same heat treatment; (3) the value 

of s, which is needed because Ic(ε) data are available at only a fixed magnetic field, was 

consistently measured to have the same value in a series of similar conductors in the ITER 

benchmarking article by Cheggour et al (2017); and (4) the corrections for the difference in 

strain introduced by the different samples holders give an effective strain that agrees within 

0.01%–0.02% with the strain where the Ic of the two datasets matched.

5.9. Example of iterative fitting for combining mismatched datasets

We now consider an example for two datasets that do not match well where they overlap. In 

this case, an iterative fitting procedure of the ESE equation is more reliable for extrapolating 

a full Ic(B, T , ε) dataset. In fact, a simultaneous fit of the data usually does not converge for 

this situation, due to the large mismatch in Ic at the temperature and strain where the two 

datasets should coincide.

5.9.1. Data.—To illustrate the procedure for this case, we combined the same two 

separate Luvata datasets from section 5.8, but this time with Ic criteria that mismatch by 

an order of magnitude: 1 μV cm−1 for the strain data and 0.1 μV cm−1 for the temperature 

data. The order of magnitude difference in criteria results in more than a 14% difference 

in Ic values at 12 T and 0.24% strain, where the two datasets should overlap. [The n-value 

correction method would have worked in this case, because the strain measurements were 

in liquid helium and reliable n-value measurements were available over a wide electric-field 

range. However, this would not typically be the case for measurements in gaseous helium, 

or if the sample were conduction cooled in a cryocooler. Nevertheless, this example serves 

our purpose to illustrate the fitting procedure when there is a significant mismatch in the two 

datasets.]

5.9.2. Procedure and results.—The procedure is illustrated in tables 4 and 5 by the 

last three rows under the heading ‘Three-step iterative fit’.

• Step 1 of this sequence shows the results of fitting only the temperature data 

Ic(B, T ) at 0.1 μV cm−1, with the strain parameters represented by simply setting 

bc2(ε) = 1. Again, the parameter s is set to s = 1.4 (from measurements on similar 

conductors by Cheggour et al 2017).

• Step 2 is a fit of only the strain data Ic(ε), measured at an Ic criterion of 

1 μV cm−1 (ten times greater). In this step, the temperature and magnetic-field 

parameters are fixed by the results of step 1 [that is, T c
∗(0), Bc2

∗(0, 0), η, p, and 

q, shown with bold values in the tables]. Step 2 results in a very different value 
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of the lead constant C than obtained in step 1, to accommodate the significantly 

higher Ic criterion of the strain data.

• Step 3, the fit to Ic(B, T ) is repeated, but with the parameters for bc2(ε) fixed by the 

results obtained in step 2.

Although the lead constant changes significantly between the different steps, the values 

obtained for the core temperature parameters in step 3 are changed very little from those 

in step 1, where the absence of strain data was accommodated by assigning bc2(ε) = 1. This 

shows the relative independence of the temperature and strain core parameters when making 

such iterative calculations.

The quality of the resulting extrapolation is shown in figure 11 by comparing the Ic at 

12 T resulting from the 1 μV cm−1 source data (pink curve) with the strain data actually 

measured at an Ic criterion of 0.1 μV cm−1 (blue star symbols). The agreement in Ic over 

the span of strain data is within about ±1%. Furthermore, as seen in tables 4 and 5, 

the scaling parameter values in the final step of the three-step iterative fit are almost 

identical with those obtained by the previous simultaneous fit, where all the data were at 

a 0.1 μV cm−1 criterion. The main difference was a slightly decreased value of the strain 

sensitivity parameter C1 in the Exponential bc2(ε) model (table 4), which reflects the slightly 

smaller strain sensitivity for the higher Ic criterion of 1 μV cm−1 (used in the three-step 

procedure), than for the 0.1 μV cm−1 criterion (used in the simultaneous fit). This can also 

be seen in figure 11 where the 1 μV cm−1 curve at 12 T (pink curve) resulting from the 

iterative process is slightly flatter than the actual 0.1 μV cm−1 strain data (blue stars). All 

in all, this iterative procedure gives acceptably close agreement for situations where there is 

such a significant mismatch in the data where they overlap.

Thus, the iterative process allows separately measured data to be combined rather precisely, 

even when mismatched. If one dataset is more reliable than the other, or one dataset better 

matches the temperature range or Ic criterion for the intended use of the data, then the 

three-step iteration is carried out with the favored dataset fit last, either temperature-strain-

temperature, or strain-temperature-strain.

Again, the purpose of these examples is to show the procedures for combining separate 

datasets, and how values of the core parameter set can be built up from limited data.

5.10. Extrapolations of full Ic(B, T, ε) datasets from a single Ic(B) curve

In this final section on applications, accuracy testing is conducted for extrapolating full 

Ic(B, T , ε) characteristics from a single Ic(B) curve. This type of extrapolation enables the 

efficient characterization of large production quantities of wire from routine measurements 

of a single Ic(B) curve for each billet at zero applied strain and 4.2 K. Extrapolation 

testing has been carried out with ESE parameterized with the Hybrid1 and Hybrid2 

temperature models, and the Exponential and Invariant strain models. All combinations 

give essentially the same results within experimental error. Illustrations are shown for 
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conductor characterization over a wide range: from 1.9 K (for applications such as the High 

Luminosity LHC magnets), to 10 K (for applications such as cryo-cooled NMR magnets).

5.10.1. Core scaling parameters required.—Extrapolations of this type require 

values of the core parameters [T c
∗(0), η, s, and bc2(ε); table 3] measured in similar conductors 

with a similar heat treatment. The non-core parameters C and Bc2
∗(0, 0) in the ESE parameter 

set vary from wire to wire, but the core parameters are stable enough that they transfer well 

between similar conductors. As discussed in sections 5.4–5.9, they can be measured either 

all at once in a unified apparatus, or combined from measurements in separate temperature 

and strain apparatuses.

The core temperature parameters, T c
∗(0) and η, are particularly useful for extrapolating 

production conductor measurements made at ∼4.2 K to other temperatures. These 

parameters can be effectively obtained from one Ic(B, T ) measurement on one production 

conductor. Lacking such a measurement, default values can be used, as listed in section 

5.5. Default values still give reliable extrapolations for 4.2 K data, but over a more limited 

temperature range.

5.10.2. Extrinsic errors.—Extrinsic errors depend on reasonably matching the sample 

used for the core parameter measurement to the production samples. This includes heat 

treatment, Ic criterion, strain introduced by differential thermal contraction with the sample 

holder, and differences in magnetic self-field arising from different sample holder shapes 

(section 5.7). Strain mismatches can be the most difficult to correct if the sample holder 

materials and mounting conditions are mismatched. The greatest strain uncertainty usually 

arises from Lorentz forces that can strain unsoldered conductors, e.g., as the conductor is 

forced to settle into the grooves of a Ti-alloy holder. When the opportunity is available to 

plan the design of separate apparatuses, the best control of sample-holder strain is to use the 

same holder material, with the sample soldered continuously along its length to eliminate 

variability in strain. This is readily done with beryllium-copper holders. (Melted paraffin 

wax is also used to reduce disturbance-induced quenches; however, it is mechanically 

weaker than soldering for controlling strain.) The most reliable assessment of such extrinsic 
errors is given by a comparison of the single Ic(B) curves of the production samples with the 

core-parameter source data, at the temperature and strain where they should overlap.

5.10.3. Intrinsic errors.—Intrinsic errors are those introduced by extrapolating the 

entire dataset from only a single Ic(B) curve with core parameters from a matched or similar 

conductor. In this section, we evaluate such errors over a wide range of temperatures and 

strains for a number of large datasets.

Fitting is carried out with equation-sets (11) or (12), following the steps given at the 

beginning of section 3:

• Core parameter values are obtained from the whole-dataset fits in tables A1–A5 

[T c
∗(0), η, s, plus those in bc2(ε)]. The core parameters could also have been 

obtained from minimum-dataset extrapolations, instead of whole-dataset fits 

(examples are given in Ekin et al 2016b). The core values are chosen to be either 
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self-field corrected (tables A3–A5) or not (tables A1 and A2), to be consistent 

with the Ic(B) data being extrapolated. If magnetic self-field corrections are 

applied to the data, both B and FP( = IcB) are corrected before fitting. (Magnetic 

self-field corrections, which depend on both wire diameter and sample holder 

geometry, were determined from the finite element analysis of Bordini 2010, also 

tabulated in Cheggour et al 2017).

• The remaining parameters [C, Bc2
∗(0, 0), p and q] are fit from a single Ic(B)

curve chosen near 4.2 K and zero applied strain, since this is usually the 

most convenient for routine production measurements. The fit is carried out by 

minimizing the sum of the squared pinning-force residuals Σ(FP − FP
fit)2.

• Values of p and q are either fit from the single Ic(B) curve along with 

C, Bc2
∗(0, 0), or they are fixed with the same p and q values used to determine 

the core parameters, listed in tables A1–A5. The accuracy of both procedures is 

assessed.

• RMS FP errors are determined by analysis of the differences between the single-

curve extrapolations and the complete dataset measurements.

Extrapolation accuracy is evaluated for fourteen cases. Three examples are given below. The 

first example is a comparison of the complete OST-RRP® dataset with extrapolations from 

fitting one Ic(B) curve at 4.07 K and 0.35% strain. In this example, data are corrected for 

magnetic self field, and the extrapolated curves are calculated with p and q fixed at the same 

values used to determine the core parameters (second row of table A3).

Figure 12 shows the temperature results for this first example. Utilizing the ESE-Hybrid1 

equation-set (11) and the Exponential strain model [equations (19)–(22)], the entire dataset 

was extrapolated from a single Ic(B) curve at 4.07 K (green circle symbols). Extrapolations 

were carried out to a low temperature of 1.9 K and a high temperature of 12 K. This 

temperature range includes a wide variety of applications, from HL-LHC (1.9 K) to cryo-

cooled NMR magnets (5 and 10 K). The resulting overall RMS FP error is ∼0.10%, which 

is remarkably low, considering the wide span of temperatures and strains extrapolated from 

this single Ic(B) measurement. From the accuracy of the extrapolation shown at 2.45 K 

in figure 12 (blue star symbols), the short additional extrapolation to 1.9 K should be 

reliable for the HL-LHC magnets (where it is difficult to obtain short-sample transport 
measurements because of high-current heating effects).

Figures 13(a) and (b) show strain extrapolations for the same example. Strain extrapolation 

results are shown only near the extreme ends of the temperature range: at 2.45 K in figure 

13(a) (the lowest temperature where data are available), and at 10 K in figure 13(b). Again, 

the overall RMS error is surprisingly low, about 0.10%, especially considering the wide 

range of extrapolated strains: from –0.75% to +0.31% (corresponding to intrinsic strains of 

–1.05% to +0.01%).

Figure 14 shows the single-curve strain extrapolations for a second example: the WST-

ITER conductor, with data not corrected for magnetic self field. The Ic(B) curves are 
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extrapolated from a single Ic(B) curve measured at 4.03 K and 0.32% strain (shown by cross 

symbols, embedded in the upper group of curves). Extrapolations were carried out with 

the ESE-Hybrid1 equation-set (11) and the Invariant strain function [equations (17)–(18)]. 

Results are shown at 4.03 K for a relatively wide range of applied strains from –0.72% to 

+0.56% (corresponding to intrinsic strains of –1.02% to 0.26%). The RMS extrapolation 

error was only ∼0.12% for the full range of available temperatures and strains. In this 

example, extrapolations were carried with the same p and q values used to determine the 

core parameters (second row of table A2).

In the final example, figure 15 shows the results for extrapolating a single Ic(B) curve at 4.03 

K (blue star symbols) to a wide temperature range for the Luvata ITER conductor. Again, 

extrapolations were carried out with the ESE-Hybrid1 equation-set (11) and the Exponential 

strain model [equations (19)–(22)]. As in figures 12–14, a small RMS error of 0.14% is 

obtained, which includes extrapolations to an even lower temperature of 2.26 K than in 

figure 12 (red diamond symbols in figure 15).

Other single-curve extrapolations were also carried out with different sets of core data, and 

either fixed or fitted values of p and q. The differences that values of p and q make are 

summarized as follows:

• Extrapolations carried out with default values p = 0.5 and q = 2.0, and core 

parameters determined with the same default p and q values, give RMS FP errors 

that are only slightly higher than for core parameters determined with fitted p
and q values. For example, RMSE = 0.10% for the OST-RRP® data (listed in the 

heading to figure 12) with fitted p and q, versus 0.12% with default values of 

p = 0.5 and q = 2.0. This is an increase in error of only 0.02%. Also, these single-

curve extrapolation errors are less than 0.01% higher than the interpolation errors 

for fitting the entire data set (tabulated in the last column of the appendix tables 

A3 and A5).

• When p and q values are determined as part of the fit to the single Ic(B) curve 

(i.e., not matched to those used for the core parameters), the overall RMSE 

increases more (RMSE = 0.10% matched, versus RMSE = 0.17% unmatched).

Thus, the highest single-curve extrapolation accuracy is obtained when extrapolations are 

carried out with p and q values that match those used to determine the core parameters, 

whether they are fitted or default values (just as long as they are the same as those used for 

the core parameters).

5.10.4. Summary: single Ic(B) curve extrapolations.

1. Intrinsic error testing shows that RMS FP errors are only 0.10% to 0.14% when 

extrapolating full Ic(B, T , ε) datasets from a single Ic(B) curve measured at a 

convenient temperature and strain (such as ∼4 K and the initial strain state). 

Fourteen test cases were run, covering: (1) moderate-Jc and high-Jc conductors, 

(2) magnetic self-field corrected and uncorrected data, and (3) the Hybrid1 and 

Hybrid2 temperature models, and Exponential and Invariant strain models. All 
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had comparably low errors. The best accuracies were obtained with values of p
and q corresponding to those used to determine the core parameters employed to 

carry out the extrapolations.

2. The core scaling parameters (section 5.3) are quite stable, and thus can be 

obtained from measurements on similar conductors with the same architecture 

and heat treatment. Because of the stability of the core parameters, the samples 

do not need to be exactly matched. The stability of the core parameters is 

essential to the extrapolation capability for single Ic(B) curves.

3. The non-core scaling parameters, C and Bc2
∗(0, 0), have a variability that is 2 

to 5 times higher than that of the core parameters (appendix tables A3–A5). 

Fortunately, C and Bc2
∗(0, 0) are the very parameters that can be most effectively 

determined by a single Ic(B) curve. The results show that C and Bc2
∗(0, 0) values 

fit from a single Ic(B) curve give RMS FP errors within a few hundredths of a 

percent of those obtained from interpolating the entire dataset.

4. Extrinsic errors introduced by apparatus differences between the core-parameter 

measurements and the Ic(B) curve measurement can be corrected, at least to first 

order, with the techniques in section 5.7. Of particular importance is the care 

used to match sample strain, which can be done most conveniently by matching 

sample-holder materials and mounting conditions for the different apparatuses.

6. Synthesis and summary of Parts 2 and 3

Parts 2 and 3 of this series are highly integrated. A combined summary is provided to give a 

self-contained overview of both parts.

6.1. Overview

The ESE relation is derived in Part 2 from analysis of hundreds of pinning-force curves 

and raw scaling data in a wide range of Nb3Sn conductors. This new parameterization of 

the USL is fundamentally different from present non-extrapolative fitting equations, where 

the parameters are empirically postulated or determined from limited pinning-force data. 

The basis of the ESE relation lies in its derivation from extensive raw scaling data, which 

gives the relation extrapolation capability similar to fundamental scaling. However, unlike 

fundamental scaling, it can be applied with the convenience of a global-fitting equation, 

where all the parameters are determined in a quick straightforward manner by simultaneous 

fitting, without analysis of raw scaling data.

The relation enables useful extrapolations in several new areas:

• Unified T − ε apparatuses: ESE can be used to extrapolate minimum datasets, 

thereby reducing the measurement space required to obtain full Ic(B, T , ε)
datasets to about 1/5th the size. Depending on whether the conductor is 

moderate-Jc or high-Jc, effective RMS extrapolation errors for ESE are in the 

range 2–5 A at 12 T, which approaches the Ic measurement error (1–2%). Also, 

there is no requirement for orthogonal B − T − ε measurement grids to register 

Ekin et al. Page 35

Supercond Sci Technol. Author manuscript; available in PMC 2024 October 23.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



pinning-force curves into a master scaling curve, as with fundamental scaling. 

(Sections 2, 3 and 5.2.)

• Combination of data from separate temperature and strain apparatuses: With the 

ESE relation, it is possible to combine data from different apparatuses, measured 

at different times, and in different laboratories (e.g., one apparatus dedicated to 

strain measurements and the other to temperature measurements). This provides 

flexibility and productive use of more limited data. (Table 3 and sections 5.4–

5.9.)

• Extrapolation of Ic(B, T , ε) datasets from single Ic(B) curves: Intrinsic error 

testing shows that full Ic(B, T , ε) datasets can be extrapolated from single Ic(B)
curves, with RMS pinning-force errors of only 0.10%–0.14%. These errors 

are only a few hundredths of a percent higher than those for whole dataset 

interpolations (appendix tables A1–A5). The source data for the single Ic(B)
curve can be measured at a convenient temperature and strain (such as 4.2 K 

and the initial strain state), which makes it particularly useful for characterizing 

production quantities of wire for large magnet applications. (Section 5.10.)

6.2. Summary of Part 2: Derivation of the ESE relation

1. An extensive analysis was made of each separable part of the general 

parameterization of the USL, equation-set (1), which contains ten parameters 

plus those in bc2(ε). The parameters were determined either individually or 

in small groups with extensive raw scaling data from a number of large 

Nb3Sn datasets, including two new, very complete datasets (tabulated online 

in their entirety in the supplemental website accompanying these articles, 

www.ResearchMeasurements.com).

The analysis showed the existence of three scaling constants for practical Nb3Sn 

conductors:

v = 1.50 ± 0.04 upper-critical-field temperature parameter [equation (4), Part 2];

w = 3.0 ± 0.3 cross-link parameter, which can be precisely determined only from large sets of 
raw scaling data [equation (9), Part 2];

u = 1.7 ± 0.1 moderate-strain curvature para meter [equation (26), Part 2].

These constants have the same values for both high-Jc and moderate-Jc

conductors. They are also independent of the factors used in their analysis: (1) 

they change by only Δ < 1% for magnetic self-field corrections; (2) Δ < 2% for a 

five-fold adjustment the trim levels used to determine raw scaling data); and (3) 

Δ < 1% for different values of p and q (including the default values p = 0.5 and 

q = 2). Their stability derives in part from the fact they depend only on the ratios 

of the raw scaling data Bc2
∗(T , ε)/Bc2

∗(0, 0) and K(T , ε)/K(0, 0).
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The raw scaling data analysis also shows that the rest of the parameters are 
conductor specific and thus need to be fitted for each conductor, rather than fixed 

(as is often the case).

2. When these parameter results are combined with the general parameterization of 

the USL, they determine the ESE relation, which reduces the number of fitting 

parameters in the general parameterization to five plus those in bc2(ε).

Extrapolative scaling expression (ESE)

Ic(B, T , ε)B = C[bc2(ε)]s(1 − t1.5)η − μ(1 − t2)μbp(1 − b)q

(13a)

with reduced magnetic field b ≡ B/Bc2
∗(T , ε) and reduced temperature t ≡ T /T c

∗(ε), 
where:

Bc2
∗(T , ε) = Bc2

∗(0, 0)(1 − t1.5)bc2(ε)

(13b)

Tc
∗(ε) = Tc

∗(0)[bc2(ε)]1/3

(13c)

with five scaling parameters: C, Bc2
∗(0, 0), T c

∗(0), s, either η or μ (but not both), 

plus the parameters in bc2(ε).

3. The parameterization of the ESE equation is flexible to the extent that:

• p and q, the shape parameters of the pinning force curve, are preferably 

fit (simultaneously with the other parameters) to minimize errors in 

the magnetic field dependence. However, the analysis in tables A3–A5 

shows that overall RMS pinning-force error is increased by less than 

∼0.02% if default values p = 0.5 and q = 2.0 are used instead, especially 

when the range of relative field b is not extensive. Such default 

values become essential if the magnetic-field range of the available 

data is insufficient to determine their values (necessary data ranges are 

summarized in section 5.5.1 of Part 3).

• η or μ, the parameters for the temperature part of the prefactor 

ℎ(t), can be prescribed according to any of the temperature models 

summarized in section 4.2 of Part 2, but for general applicability, 

both parameters should not be fixed (as in the G/ITER model). The 

need for a fitted temperature parameter may rise from composition 

inhomogeneities (figure 6 in Part 2). Also, although interpolation 

accuracies are similar for most of the ℎ(t) models, there are significant 

practical and extrapolation differences (described in item 4 below).
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• bc2(ε) [aka S(ε)], the strain part of the upper critical field, can be 

parameterized effectively with any of the bc2(ε) models summarized 

in appendix B of Part 2. However, there are also practical differences 

between bc2(ε) models (item 5 below).

4. Preferred parameterization for η and μ: Although most of the temperature ℎ(t)
parameterizations give nearly the same fitting accuracy, the Hybrid1 model 

(with μ = 1 and η fitted) and Hybrid 2 model (with μ = η/2 and η fitted) 

offer advantages in parameter consistency and overall fitting accuracy. Most 

important, these two models have consistently demonstrated extrapolation errors 

of only ∼1% when data above 4 K are extrapolated down to 2.26 K, as shown for 

raw scaling data in figures 16(a) and (b) in Part 2, and for Ic data in figures 12, 

13, and 15 in this article. This temperature extrapolation capability is especially 

useful for transport data, where the very low temperature regime is difficult 

to access because of heating effects and instabilities. Such factors do not have 

the same effect on magnetization measurements, but magnetization data do not 

always represent transport data because of inhomogeneity effects (item 9 below).

Use of the Hybrid1 ℎ(t) parameterization with the ESE relation gives the 

extrapolative form:

ESE, with Hybrid1

Ic(B, T , ε)B = C[bc2(ε)]s(1 − t1.5)η − 1(1 − t2)bp(1 − b)q,

(14)

ESE, with Hybrid2

Ic(B, T , ε)B = C[bc2(ε)]s (1 − t1.5)(1 − t2) η/2bp(1 − b)q,

(15)

where the rest of the equation sets (14) and (15) are given by equations (13b) and 

(13c). Fitted scaling parameter values for these two models are nearly the same. 

Representative values are given for several practical conductors in appendix 

tables A1.3 and A1.5.

5. Preferred parameterizations for bc2(ε): Again, there is little difference in fitting 

accuracy for ESE with any of the strain functions, but there are considerable 

convenience and functional differences between the bc2(ε) strain models (details 

summarized in Part 2: section 6.4 and appendix B). For small magnet design 

at moderate strains, the Power Law model is preferred because of its simplicity 

and single strain-sensitivity parameter. For large magnet systems, where high-

compressive three-dimensional (3-D) strains become important, the following 

two models have significant advantages:
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• The Invariant strain function is noteworthy in that uniaxial strain 

measurements can be extended to three dimensions through the use 

of strain invariants. Also, this model intrinsically incorporates the 

moderate strain curvature parameter u = 1.7 in its lowest order term, 

the second strain invariant J2. This gives this strain function consistency 

and extrapolation capability over the dominant peak strain range (figure 

11 in Part 2). The Invariant model is preferred when high interpolation 

accuracy is needed. The parameterization is given by (Markiewicz 

2006):

bc2(ε) = 1 − a1I1
−1 1 + a2J2 + a3J3 + a4J2

2 −1

(

1

6

)

with strain invariants:

I1 = ε1 + ε2 + ε3,

(

1

7

a

)

J2 = 1/6[(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2],

(

1

7
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b

)

J3 = (ε1 − I1/3)(ε2 − I1/3)(ε3 − I1/3) .

(

1

7

c

)

For uniaxial strain (without the hydrostatic parameter a1), the Invariant 

parameterization reduces to:

bc2(ε) = [1 + c2ε0
2 + c3ε0

3 + c4ε0
4]−1,

(

1

8

)

where in this case, ε is the axial (longitudinal) strain, ε0 is the intrinsic 

axial strain defined as ε0 ≡ ε − εm, and εm is the axial strain at the 

maximum Ic(ε). The relation of the uniaxial fitting parameters ci to the 

3-D parameters ai is given in Markiewicz (2006).

• The Exponential model has a combination of useful features. It: (1) 

treats 3-D strains, (2) provides a single strain-sensitivity index C1, (3) 

implicitly incorporates the moderate strain curvature constant u = 1.7 in 

its lowest order term J2 (figure 12 in Part 2), and (4) can extrapolate 

moderate strain data to high compressive strains (figure 13 in Part 

2). This parameterization is given in terms of the total 3-D strain by 

(Bordini et al 2013):
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bc2(ε) = e−C1
J2 + 3
J2 + 1J2 + e−C1

I1
2 + 3

I1
2 + 1

I1
2

2 .

(

1

9

)

For the case of strain applied along the axis of a single round wire, the 

strain invariants I1 and J2 reduce to

I1 = (1 − 2ν)εa + εl0 + 2εt0,

(

2

0

a

)

J2 = 1
3 εl0 − εt0 + (1 + ν)εa

2

(

2

0

b

)

with the empirical relationship

εt0 = − ν εl0 + 0.1.
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(

2

1

)

In equations (20a) and (20b), εa denotes the applied longitudinal (axial) 

strain [to distinguish it from the total 3-D strain in equation (19)], εl0

and εt0 are the longitudinal and transverse residual strains (expressed 

in percent), and ν is the effective Poissonʼs ratio, measured to be 

about ν = 0.36 for Nb3Sn. The longitudinal residual strain is given 

approximately by εl0 ≈ − εm, where εm is the longitudinal (axial) strain 

at the maximum Ic(εa). In terms of intrinsic axial strain, ε0 ≡ εa + εl0, the 

strain invariants for the case of uniaxial applied stain simplify to

I1 = (1 − 2ν)ε0 + 0.2

(

2

2

a

)

J2 = 1
3 (1 + ν)ε0 − 0.1 2

(

2

2

b

)
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On balance, the Exponential model is generally preferred among the different 

strain models because of its combination of features and single fitting parameter 

C1.

6. The unique combination of the ESE relation with the Hybrid and Exponential 
parameterizations offers an additional type of extrapolation capability. It not 

only provides for the extrapolation of T − ε cross terms from minimum datasets 

(figure 1 in Part 3), but can also extrapolate both temperature and strain 

data along the two axes in figure 1 to greater range limits (i.e., the type-two 

extrapolations described in section 2.3 of Part 3).

The ESE relation with the Hybrid2 and Exponential parameterizations is being 

implemented by EuroCirCol and the Future Circular Collider design studies, and 

by CERN for HL-LHC magnet margin calculations.

7. Differences between the ESE relation and present non-extrapolative fitting 
equations:

Durham fitting equation: w is fixed at w = 2.2 instead of the scaling constant 

value w = 3.0, and s is fixed at s = 1 instead of being a free fitting parameter as in 

the ESE relation (section 3.3).

G/ITER fitting equations: The temperature parameters η and μ are fixed at η = 2
and μ = 1, and the strain scaling parameter s is fixed at s = 1, instead of allowing 

these parameters to be fitted as in the ESE equation (section 3.4).

MAG fitting equation: This simplified mathematical form results only if s is 

fixed at s = 1, instead of a free parameter as in the ESE relation (raw scaling 

values for s are usually significantly higher than 1, between s = 1.1 and 1.4) 

(section 3.4).

8. Magnetic self-field correction: The data in these articles have been analyzed 

both without and with correcting for magnetic self field (sections 4 and 5 in 

Part 2, respectively). Self-field correction factors for a number of sample holder 

geometries have been calculated by Bordini (2010), and tabulated in Cheggour et 

al (2017).

• The self-field correction shifts data to higher fields (figure 14 in Part 2), 

but the pinning-force curves at different temperatures and strains still 
register into a master scaling curve. Thus, unified scaling holds for both 

corrected and uncorrected data.

• Values of the scaling constants are the same for either self-field 

corrected or uncorrected data to within 1%. This is consistent with 

scaling being an intrinsic pinning property of the Nb3Sn grains, 

independent of conductor twist pitch or test holder geometry.

• Magnetic self-field corrections are suggested for large magnet 
applications, because they facilitate comparison of data between short-

sample predictions and magnet performance, between data measured 
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on different sample holders in different laboratories, and between 

magnetization and transport measurements.

9. Magnetization versus transport critical currents: An initial comparison is made 

between these two types of measurements with matched Ta-doped RRP® 

samples from the same billet, and reacted with the same heat treatment. The 

temperature dependence of the upper critical field Bc2
∗(T , ε) is notably altered 

[figure 15(b) in Part 2], which may be a result of inhomogeneous shielding 

currents from the decrease in dopant levels in the outer shell region of each of the 

sub-elements (observed with energy-dispersive x-ray spectroscopy by Tarantini 

et al 2016). The temperature dependence of the K(T , ε) term, on the other hand, 

has a more similar curvature between the two types of measurements, although 

the overall temperature slope for magnetization is somewhat lower (figure 17 in 

Part 2).

6.3. Summary of Part 3: Application of the ESE relation

1. Minimum dataset extrapolations: The minimum dataset for extrapolating full 

Ic(B, T , ε) characteristics is determined from raw scaling data to consist of two 

reduced datasets: a variable-temperature measurement Ic(B, T ), plus a variable-

strain measurement Ic(B, ε) (i.e., a ‘2-cut’ fit along the two perpendicular 

axes of the T − ε measurement map in figure 1). Extrapolations from a ‘3-

cut’ fit through the measurement map provided no significant improvement 

in extrapolation accuracy (section 3.1), verifying that the minimum dataset 

is indeed optimum. Extrapolating from the minimum dataset gives a five-

fold reduction in the number of measurements needed for full Ic(B, T , ε)
characterization by eliminating the need to measure the many T − ε cross terms 

in the measurement map. Also, such extrapolations with the ESE fitting equation 

remove the requirement for orthogonal B − T − ε measurement grids to register 

pinning-force curves into a master scaling curve (needed for the fundamental 

scaling approach).

2. FP fitting versus Ic fitting: Higher accuracy is obtained by fitting the pinning 

force FP = IcB, rather than fitting Ic. Errors at individual data points are reduced 

to about 1/5th the size (figure 9). Error reduction is especially significant at 

moderate-to-high magnetic fields, because fitting FP avoids unduly weighting the 

high Ic values at low fields. Note also that FP is the physical quantity that scales, 

not Ic.

3. Accuracy of minimum-datasets extrapolations: Test results are obtained from 

92 case studies covering most possible parameterizations and fitting protocols. 

Compared with present global-fitting equations, the ESE relation improves the 

percentage extrapolation accuracy at individual data points by up to 10–40 times, 

especially at high magnetic fields, temperatures, and strains (shown by the Ic

comparisons in figures 3–5). RMS FP extrapolation errors for ESE are reduced to 

about 0.11% and 0.15% (tables 1 and 2, respectively). Depending on whether the 
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conductor is moderate-Jc or high-Jc, this corresponds to an effective RMS Ic error 

of about 2–5 A at 12 T, which approaches the Ic measurement error.

4. Interpolation errors: The interpolation errors for ESE are also reduced to as little 

as 1/15th the size of those for present fitting equations at high temperatures, 

strains, and magnetic fields (shown by the Ic comparisons in figures 4 and 5). 

When ESE is used for interpolations, it also enables extrapolations to be made 

to the neighboring measurement space through the use of default core parameters 

(item 7 below).

5. Core parameters: T c
∗(0), η, s, and bc2(ε): These parameters are more stable than 

the other scaling parameters because they depend only on ratios of the raw 

scaling data K(T , ε)/K(0, 0) and Bc2
∗(T , ε)/Bc2

∗(0, 0). Thus, they can be reliably 

transferred between similar conductors to carry out full Ic(B, T , ε) extrapolations 

with RMS pinning-force errors of only 0.10%–0.14% (sections 5.3–5.10). This is 

especially cost effective when characterizing large quantities of production wire, 

because, with core parameters, extrapolations can be made to a full range of 

temperatures and strains from only a single Ic(B) measurement on individual wire 

samples at an easy-to-measure temperature (4.2 K) and no applied strain (section 

5.10; item 10 below).

• For different values of p and q, including default values p = 0.5 and 

q = 2.0, the core parameters changed by less than ±2% (appendix tables 

A3–A5). The change for the temperature core parameters T c
∗(0) and η is 

particularly low, only ±0.5%. Magnetic self-field corrections also do not 

have much effect on the core parameters, less than ±3%, although s can 

decrease as much as 10%.

• In contrast to the core parameters, the parameters C and Bc2
∗(0, 0)

have a variability that is 2–5 times higher. Their values also change 

considerably with the values of p and q (up to 10%–20%) (tables A3–

A5). Fortunately, these parameters are precisely the parameters most 

effectively determined by extrapolating a single Ic(B) curve.

• Note that the scaling constants v, w, and u are essentially unaffected by 

either the self-field correction or p − q values (Part 2).

6. Core parameter measurement: Measurements of the core parameters T c
∗(0), η, s, 

and bc2(ε) can be determined in two ways:

a. Preferable they are determined by fitting the ESE relation to 

a minimum-dataset measurement in a conductor with the same 

architecture, and reacted with the same heat treatment.

b. Lacking such data, default values can be used for the core parameters, 

obtained from minimum dataset measurements in similar conductors 

(item 7 below). An initial ‘catalogue’ of such default values is given in 

tables A1–A5.
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The strain core parameters, s and bc2(ε), are usually more quickly measured than 

the temperature core parameters, because they can be determined from an Ic(B, ε)
dip test in liquid helium. If a reasonable value of s is known, the strain function 

bc2(ε) can be obtained from just a liquid helium Ic(ε) measurement at a fixed 

magnetic field (illustrated by the examples in sections 5.8 and 5.9).

The temperature core parameters T c
∗(0) and η, on the other hand, generally 

require higher temperature Ic(B, T ) data from about 4 K to 12 K to determine 

their values accurately (lower-temperature data have little leverage in setting 

their values). If these two temperature parameters are known, the ESE-Hybrid 

equation-sets (14) or (15) can extrapolate transport Ic data at 4 K down to ∼2.2 

K with Ic errors of only ∼1% (figure 16 in Part 2, and figures 12 and 15 in Part 

3). In practice, Ic(B, T ) is one of the most useful measurements to make, at least 

for one sample of a given conductor type, because it provides the range of data 

needed to accurately determine many of the core parameters that will transfer to 

other conductors of that type (row 2 of table 3).

7. Default values for core parameters: When core parameter measurements are 

unavailable, or data cover a range too small to accurately determine them, default 

values can still provide reliable extrapolations into the neighboring measurement 

space (section 5.5). From the survey of values in the appendix tables A1–

A5, we find the parameters for fully optimized, ternary, strong-pinning Nb3Sn 

conductors cluster around the following common default average values:

Tc
∗(0) ≈ 16.7 K

η = 2.0 (ITER) − 2.2 RRP®‐Ta doped ;
[the higher number may correlate with compositional inhomogeneities and/or distributed diffusion barriers]

s = 1.1 RRP®‐Ta − 1.4 (ITER)
p = 0.5 and q = 2.0.

• Temperature core parameters T c
∗(0) and η: Default values provide 

reasonable extrapolation accuracy with equations (14) or (15) at 

temperatures T ≪ T c
∗(0).

• Strain core parameters s and the function bc2(ε) [aka S(ε)]: Default 

values for bc2(ε) can be readily characterized with the Exponential strain 

function, which has only a single fitting parameter C1. This parameter 

gives a useful index of strain sensitivity that facilitates intercomparison 

of conductors (e.g., see comparative values of C1 in tables A1, A3 and 

A5).

• Default values for the pinning-force shape parameters p and q: At liquid 

helium temperature, multiple fitting tests have shown that magnetic 

fields over the range ∼10 T to ⩾∼ 15 T are needed to accurately 
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determine q, and at fields below ∼5 T to determine p. Usually, it is 

easier to determine p and q from higher temperature data, above ∼4 

K. When there is ambiguity, it is better to use the default Nb3Sn 

values p = 0.5 and q = 2.0. Little accuracy is lost if extrapolations are 

consistently carried out with the same p and q values that were used 

to determine the core parameters T c
∗(0), η, s, and bc2(ε). (This is shown 

by the comparable RMS errors for different sets of p − q parameters in 

tables A3–A5.)

8. Combining measurements from separate temperature and strain apparatuses: The 

Ic(B, T ) and Ic(B, ε) data, which comprise the minimum dataset, do not need to be 

measured in a unified T − ε apparatus. They can be obtained separately from less 

complex strain and temperature apparatuses, and then combined utilizing ESE to 

provide full three-dimensional Ic(B, T , ε) datasets. Combinations of datasets more 

limited than the minimum dataset also work. Table 3 gives a guide for which 

parameters are accurately determined from more limited data. Default values 

for the missing core parameters can be substituted when data are limited, and 

updated later if more complete core parameter measurements become available. 

Two protocols for combining data from different apparatuses are illustrated in 

sections 5.8 and 5.9 (simultaneous fitting and iterative fitting). The intrinsic 
errors of such combined data are quite low, about RMSE = 0.11%–0.14%.

9. Extrinsic errors for combining measurements from different samples and 

apparatuses: Extrinsic errors depend on: (1) matching the basic filament 

configuration, composition, doping, and heat treatment of the samples, and (2) 

the care used when correcting any differences in Ic criteria, self-field effects 

from different sample holder geometries, and, in particular, mismatches in 

strain introduced by differential thermal contraction between the sample and the 

sample holder. Correction techniques are referenced in section 5.7. Uncertainties 

in the strain correction can be minimized when the opportunity is available 

to plan the design of different apparatuses, by using the same sample-holder 

material and soldering the samples continuously along their length (such as with 

beryllium-copper holders). The agreement in Ic values where the strains and 

temperatures overlap is a good indicator of such extrinsic errors.

10. Extrapolations from single Ic(B) curves for characterizing production samples 

(section 5.10): When the core parameters plus bc2(ε) have been measured in one 

of the production conductors (reacted with similar heat treatment), full Ic(B, T , ε)
datasets can be effectively extrapolated from only a single Ic(B) measurement 

on individual wire samples. Because of the stability in the core parameters, 

the samples do not need to be matched exactly. The highest accuracies are 

obtained when the same p and q values originally used to determine the core 

parameters are used to carry out the extrapolations. Intrinsic RMS FP errors of 

only 0.10%–0.14% (corresponding to effective RMS Ic errors of 1–5A at 12 T) 

are obtained in 14 test cases with the ESE-Hybrid equations (14) or (15) and the 

Exponential strain model. These low errors were obtained, for both moderate-Jc
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and high-Jc conductors, for magnetic self-field corrected and uncorrected data, 

and for core parameter values determined either with fitted p and q values, or 

with default values p = 0.5 and q = 2.0. Such extrapolations are particularly useful 

for determining transport critical currents at temperatures ≪ 4 K or ≫ 4 K, or 

at extended strains, from a single Ic(B) curve measured at ∼ 4K and no applied 

strain.

6.4. Future research

Suggested research areas for future scaling studies include:

• Measurements of the four core parameters T c
∗(0), η, s, and C1 in additional 

types of Nb3Sn conductors. Measurement of a minimum dataset is suggested 

for at least a single production sample to accurately determine the core 

scaling parameters for large magnet systems, such as HL-LHC, FCC, and 

fusion prototype magnets. [An immediate need is for the measurement of the 

temperature dependence Ic(B, T ) from ≤ ∼ 4 K to ∼12 K on a single sample 

of the Ti-doped RRP® and PIT production wires for HL-LHC to determine 

T c
∗(0) and η. This would provide for accurate extrapolation of production billet 

transport Ic measurements at ∼4.2 K down to 1.9 K, the operating temperature 

of HL-LHC.] Over time, measurements of the four core parameters in a wide 

range of Nb3Sn conductors (including different wire architectures, dopant levels, 

and a check for parameter constancy in strands extracted from Rutherford cables) 

would also provide a useful compilation of default values for different conductor 

types (i.e., expansion of tables A1–A5).

• Assessment of whether the USL, scaling constants, and the ESE relation hold 

for Nb3Sn conductors with artificial-pinning-center (APC) architectures. Even 

though the pinning force peak is shifted for APC conductors, the constants 

and core scaling parameters depend only on ratios of the raw scaling data 

Bc2
∗(T , ε)/Bc2

∗(0, 0) and K(T , ε)/K(0, 0). Such shifts in the pinning force curves 

were also observed for magnetic self-field corrections (section 5 of Part 2), but 

ESE was still applicable. So ESE or a variant expression may apply to APC 

conductors as well. However, it is emphasized that to be accurate and provide 

extrapolation capability for APC conductors, the initial analysis of the scaling 

parameter values needs to be done with raw scaling data (as in sections 4 and 5 

of Part 2). The sequence also needs to follow that outlined at the beginning of 

section 4 in Part 2.

• Assessment of the extrapolation accuracy and limits of ESE in extreme regions 

of B − T − ε parameter space for magnet modeling where routine measurements 

are difficult (e.g., at very low magnetic field for determining losses in fusion and 

other large magnet applications).

• Evaluation of the relationship between magnetization and transport data in 

different types of practical Nb3Sn conductors, beyond the initial matched-sample 

comparison made in sections 5.3 and 5.5 of Part 2. Significant differences 
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between the two types of measurements can arise from inhomogeneous screening 

currents in commercial Nb3Sn wires.

• Measurement and analysis of raw scaling data in superconducting materials other 

than Nb3Sn. Fitting equations with extrapolation capability similar to the ESE 

relation may exist for other practical materials that exhibit scaling (including 

MgB2, BSCCO, Nb3Al, and YBCO). Again, any time a master scaling curve can 

be formed, one flux-pinning curve can predict them all, if the scaling parameters 

have been determined with raw scaling data.
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Appendix

A.1. The ESE parameter set for several practical Nb3Sn conductors

In this appendix, we give examples of the ESE parameter set obtained from fitting several 

large Nb3Sn datasets, both uncorrected and corrected for magnetic self field (tables A1–A2, 

and A3–A5 respectively). These relatively large datasets (described in appendix A of Part 2) 

cover a wide range of magnetic fields B, temperatures T , and strains ε.

The parameter values in tables A1–A5 were obtained by simultaneously fitting the whole 

datasets with the ESE relation, applied with the Hybrid1 ℎ(t) parameterizations [equation 

(14)], and either the Invariant or Exponential parameterizations of bc2(ε) [equations (18) and 

(19), respectively]. Table A5 gives corresponding parameter values for ESE applied with 

the Hybrid2 ℎ(t) parameterization [equation (15)]. Fitting was carried out in terms of the 

pinning force FP, not Ic, to avoid overweighting low fields (where magnets are generally not 

designed).

The fitting steps are as follows:

1. Critical-current data are converted to pinning-force data, FP(B, T , ε) = Ic(B, T , ε)B.

2. If magnetic self-field corrections are applied, both B and FP = IcB  are 

consistently corrected (Garber et al 1989, Bordini 2010, Cheggour et al 2017).

Ekin et al. Page 49

Supercond Sci Technol. Author manuscript; available in PMC 2024 October 23.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



3. The fit is performed with a non-linear regression program, minimizing the sum 

of the squared pinning-force residuals Σ(FP − FP
fit)2.

4. The RMS errors and RMS fraction deviations listed in the last columns of tables 

A1–A5 are calculated in terms of percentage pinning-force error [equations (3a) 

and (3b)], which is also representative of the percentage critical-current RMS 

error (section 3), because the measurement error contributed by the magnetic 

field is negligible in comparison to that of Ic.

Trimming is used to facilitate convergence with the nonlinear regression program, although 

the scaling constants and core parameter values are effectively insensitive to the trim levels 

(changes of less than ∼2%). Trim levels for the temperature were set at T > 12 K (for all 

the conductors); and for the pinning force, FP < 200 AT for OST-RRP®, FP < 125 AT for 

WST-ITER, FP < 100 AT for Luvata, and FP < 25 AT for the more moderate-Jc VAC and 

EM-LMI conductors.

Source Ic(B, T , ε) datasets used in these fits are published online for the NIST measurements 

of the OST-RRP® and WST-ITER conductors at www.ResearchMeasurements.com. 

Source Ic(B, T , ε) datasets for the VAC and EM-LMI conductors were measured by the 

Durham group (Taylor and Hampshire 2005) and were obtained online at http://dur.ac.uk/

superconductivity.durham/. Micrographs for many of the conductor crossections are shown 

in appendix A of Part 2.

A.2. The ESE parameter set for data not corrected for magnetic self field

Tables A1 and A2 give values of the ESE parameter set for the Exponential and Invariant 
parameterizations of bc2(ε), respectively.

These results can be used to set default values for the core parameters T c
∗(0), η, s, and bc2(ε)

in similar wires (values listed in item 7 of the summary section 6.3; and discussed in section 

5.5). When these values are used to carry out extrapolations with ESE, the highest accuracy 

is obtained if the p and q values that are used in the extrapolations match those used in 

determining the core parameters.

A.3. The ESE parameter set for data corrected for magnetic self field

Tables A3–A5 give corresponding parameter values for the same wires as in tables A1 and 

A2, except the data are corrected for magnetic self field. (Self-field correction information 

was not available for the Durham measurements, so these wires are not included in tables 

A3–A5). Such corrections are particularly suggested for magnet applications to relate short-

sample data to magnet performance. Also, such corrections facilitate comparison between 

short-sample data measured with different sample holders in different laboratories, and 

between transport and magnetization measurements.

The effect of different values of p and q is also compared in tables A3–A5. The assignment 

of a default value for p usually becomes necessary when data are corrected for magnetic 

self field because the low field data are insufficient to determine p. RMS errors are slightly 
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lower for the case of setting p = 0.5 compared with p = 0.4. The high-field shape parameter q
was fixed at q = 2 for the last case for all three conductors in tables A3–A5 (p − q values are 

shown as bold type in all three tables). Comparisons within each table show that the values 

assigned to p and q have very little effect on the RMSE FP fitting error (<∼0.02%).

The data also show that the non-core parameters C and Bc2
∗(0, 0) are more variable than the 

other parameters. Changes of ±5% to ±10% occurred over the range of values of p and q. 

Also, the effect of applying magnetic self-field corrections resulted in differences of about 

±10% between values of C and Bc2
∗(0, 0) in tables A3 and A4, versus the corresponding 

uncorrected data in tables A1 and A2.

The core parameters [T c
∗(0), η, s, and C1], on the other hand, are relatively stable with 

respect to these two effects:

1. Δ < ± 2% for the range of p and q values tested, with even smaller changes 

(Δ < ± 0.5%) for the temperature core parameters T c
∗(0) and η (tabulated in the 

middle of tables A3–A5). (The greater variability of the core parameters for 

the Luvata conductor was not included because the available source data were 

very limited for this conductor, allowing greater scatter in the fitting parameter 

values.)

2. Δ < ± 3% for magnetic self-field corrections, although s decreased about 10% 

for the corrected data in tables A3 and A4, compared with tables A1 and A2. 

As noted for tables A1 and A2, when these core data are used to carry out 

extrapolations from limited data, the highest accuracy is obtained if the p and 

q values used in the extrapolations match those used in determining the core 

parameters.

Table A1.

The ESE parameter set, with the Hybrid1 parameterization of ℎ(t) and the Exponential 
parameterization of bc2(ε) for data not corrected for magnetic self field.

Core scaling parameters

Nb3Sn 
conductor

C
(AT)

Bc2
∗(0, 0)
(T)

T c
∗(0)

(K) η s
εl0a 

(%)
C1
b p c q c

RMSFDd 
(%)

RMSEd 
(%)

OST-
RRP®

50 
510

29.09 16.94 2.25 1.15 −0.355 0.75 0.50 2.06 9.0 0.120

WST-
ITER

21 
020

31.02 16.81 2.02 1.39 −0.302 0.82 0.57 1.83 4.8 0.114

LUVATA 14 
960

29.70 16.43 1.97 1.40 −0.321 0.66 0.56 1.70 2.0 0.078

VAC 7 
630

29.91 16.84 2.00 1.10 −0.313 0.92 0.48 1.44 4.6 0.247

EM-LMI 11 
920

30.79 17.02 2.38 0.87 −0.271 1.14 0.50 1.84 3.6 0.170

Notes:
a
The compressive prestrain values εl0( = − εm) are dependent on the strain introduced by the sample holder on cooldown, 

and therefore are not strictly part of the core parameter set. All these samples were soldered with Pb–Sn solder to Cu–Be 
sample holders.
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b
The C1 values for the Exponential bc2(ε) model in the last core-parameter column of table A1 give a strain sensitivity 

index for comparing the different conductors (because the strain parameter C1 is a not interdependent on other strain 

parameters). A comparison of the C1 values in this column shows immediately that the EM-LMI conductor has the greatest 

strain sensitivity (C1 = 1.14), followed by VAC, WST-ITER, and OST-RRP® conductors. This is not the case for the 

Invariant Strain Function parameters in table A2, or for any of the other bc2(ε) models (except the Extended Power Law 

model), because these other models have multiple parameters that compensate each other and thus require the bc2(ε)
function to be plotted before a conductor’s relative strain sensitivity is known.

Due to the very low value of ε0, irr for the OST-RRP® conductor (Cheggour et al 2010), there were not enough data on 

the tensile side of the strain peak to determine the value of εl0 ( = − εm) independently of C1. Thus, for this particular 

situation, C1 is not truly an independent strain sensitivity index, since the scarcity of tensile data gives it freedom to interact 

with εl0 to some degree to improve the fit. For example, note the difference between the εl0 and −εm values for this 

conductor in tables A1 and A2, whereas the correspondence in the values of these two parameters was close for all the 
other conductors. Although the value of C1 may not be as precise an index of strain sensitivity for this particular conductor, 

a detailed inspection of the data showed that the C1 ranking shown in the tables A1 was nevertheless correct.

c
Pinning-force shape parameters p and q were determined as part of the simultaneous global-fitting process for all the 

datasets, except the high-Jc OST-RRP® dataset. It lacked sufficient low-magnetic field data to determine p, so p was fixed 

at p = 0.5 for this particular conductor. (The parameter q was determined from the master scaling curve, but it would also 

have worked well to fix p = 0.5 and fit q as part of the simultaneous fitting process.)

d
The RMSFD and RMS FP errors in the last two columns are defined by equations (3a) and (3b) in the text. Errors are 

expressed as percentages to facilitate comparisons between conductors. The percentage RMSE FP errors in these tables 

correspond to effective RMS Ic errors of 1–5 A at 12 T, depending on the Jc of the conductor (section 3).

Table A2.

The ESE parameter set, with the Hybrid1 parameterization of ℎ(t) and the Invariant 
parameterization of bc2(ε) for data not corrected for magnetic self field.

Core scaling parameters

Nb3Sn 
conductor

C
(AT)

Bc2
∗(0, 0)
(T)

T c
∗(0)
(K)

η s εma 

(%)
c2 c3 c4 p b q b RMSFDc 

(%)
RMSEc 

(%)

OST-
RRP®

47 
950

27.58 16.65 2.25 1.21 0.302 1.02 0.72 0.18 0.50 2.06 7.3 0.104

WST-
ITER

19 
770

29.62 16.53 2.02 1.36 0.305 0.82 0.42 0.12 0.58 1.86 4.5 0.106

LUVATA 14 
170

28.60 16.21 1.97 1.40 0.323 0.66 0.67 1.14 0.56 1.71 2.0 0.082

VAC 7 
650

28.92 16.45 1.97 1.04 0.311 0.89 0.38 0.05 0.51 1.55 4.5 0.219

EM-LMI 11 
420

28.81 16.71 2.40 0.85 0.273 1.05 0.61 0.26 0.50 1.88 3.6 0.156

Notes:
a
The compressive prestrain values εm are dependent on the strain introduced by the sample holder on cooldown, and 

therefore are not strictly part of the core parameter set. All these samples were soldered with Pb–Sn solder to Cu–Be 
sample holders.
b
Pinning-force shape parameters p and q were determined as part of the simultaneous global-fitting process for all the 

datasets, except the high-Jc OST-RRP® dataset. It lacked sufficient low-magnetic field data to determine p, so, for this 

particular conductor, p was fixed at p = 0.5. (The parameter q was determined from the master scaling curve, but it would 

also have worked well to fix p = 0.5 and fit q as part of the simultaneous fitting process.)

c
The RMSFD and RMS FP errors in the last two columns are defined by equations (3a) and (3b) in the text. Errors are 

expressed as percentages to facilitate comparisons between conductors. The percentage RMSE FP errors in these tables 

correspond to effective RMS Ic errors of 1–5 A at 12 T, depending on the Jc of the conductor (section 3).
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Table A3.

The ESE parameter set with the Hybrid1 parameterization of ℎ(t) and the Exponential 
parameterization of bc2(ε) for data corrected for magnetic self field. The data show minimal 

variation of the core parameter values with changes in p and q (bold type).

Core scaling parameters

Nb3Sn 
Conductor

C
(AT)

Bc2
∗(0, 0)
(T)

T c
∗(0)
(K)

η s εl0a 

(%)
C1 b p c q c RMSFDf 

(%)
RMSEf 

(%)

OST-RRP® 51 
640

29.31 16.93 2.24 1.02 −0.352 0.77 0.4 2.12 
d

9.6 0.114

OST-RRP® 59 
990

29.73 16.92 2.23 1.01 −0.351 0.77 0.5 2.27 
d

9.2 0.094

OST-RRP® 54 
230

28.21 16.94 2.24 1.07 −0.355 0.75 0.5 2.00 12.9 0.113

WST-ITER 16 
480

30.17 16.76 1.98 1.31 −0.302 0.83 0.4 1.58 
d

6.0 0.166

WST-ITER 20 
700

32.08 16.73 1.97 1.29 −0.302 0.84 0.5 1.93 
d

4.8 0.144

WST-ITER 21 
080

32.75 16.70 1.96 1.29 −0.302 0.85 0.5 2.00 5.0 0.144

∼Δ from 
p, q

±7–
11%

±2–4% ±0.2% ±0.5% ±2% ±0.5% ±1.5% OST-RRP® and WST-ITER

LUVATA 12 
310

28.76 16.40 1.94 1.4 –0.321 0.65 0.426 
e

1.48 
e

3.3 0.146

LUVATA 14 
880

30.77 16.31 1.91 1.4 –0.322 0.64 0.5 1.80 
e

2.1 0.143

LUVATA 15 
570

32.71 16.18 1.88 1.4 –0.327 0.61 0.5 2.00 3.2 0.160

Notes:
a
The compressive prestrain values εl0( = − εm) are dependent on the strain introduced by the sample holder on cooldown, 

and therefore are not strictly part of the core parameter set. The samples were soldered with Pb–Sn solder to Cu–Be sample 
holders for these measurements.
b
The C1 values for the Exponential bc2(ε) model in the last core-parameter column of table A3 give a strain sensitivity 

index, because C1 is not interdependent on other strain parameters. Due to the very low value of ε0, irr for the OST- 

RRP® (Cheggour et al 2010), there were not enough data on the tensile side of the strain peak to determine the value of 

εl0( = − εm) independently of C1. This results in a difference between the εl0 and −εm values between tables A3 and A4 

for this conductor, whereas the correspondence was close for all other conductors.
c
The pinning-force shape parameter p was fixed to a constant value (p = 0.4 or 0.5) because the magnetic self-field 

correction shifted all the data to higher fields, which resulted in insufficient low-magnetic field data to determine p. The 

high-field shape parameter q was kept as a fitting parameter for two cases for each wire and fixed at the default value 

q = 2 for the third case.
d
Fixed from a fit to the master scaling curve.

e
Fitted simultaneously with the other parameters.

f
The RMSFD and RMS FP errors in the last two columns are defined by equations (3a) and (3b) in the text. Errors are 

expressed as percentages to facilitate comparisons between conductors. The percentage RMSE FP errors in these tables 

correspond to effective RMS Ic errors of 1 A to 5 A at 12 T, depending on the Jc of the conductor (section 3).
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Table A4.

The ESE parameter set with the Hybrid1 parameterization of ℎ(t) and the Invariant 
parameterization of bc2(ε) for data corrected for magnetic field. The data show minimal 

variation of the core parameter values with changes in p and q (bold type).

Core scaling parameters

Nb3Sn 
Conductor

C
(AT)

Bc2
∗(0, 0)
(T)

T c
∗(0)
(K)

η s εma 

(%)
c2 c3 c4 p b q b RMSFDe 

(%)
RMSEe 

(%)

OST-RRP® 49 
320

27.76 16.63 2.23 1.08 0.303 1.03 0.73 0.19 0.4 2.12 
c

8.0 0.097

OST-RRP® 57 
300

28.16 16.62 2.22 1.07 0.303 1.03 0.72 0.19 0.5 2.27 
c

7.5 0.079

OST-RRP® 51 
690

26.77 16.66 2.24 1.12 0.306 0.99 0.68 0.17 0.5 2.00 11.9 0.099

WST-ITER 15 
370

28.71 16.47 1.98 1.275 0.305 0.84 0.43 0.12 0.4 1.59 
c

5.8 0.156

WST-ITER 19 
300

30.52 16.44 1.97 1.248 0.305 0.85 0.43 0.12 0.5 1.93 
c

4.5 0.135

WST-ITER 19 
610

31.10 16.41 1.96 1.243 0.305 0.85 0.43 0.12 0.5 2.00 4.6 0.136

∼Δ from 
p, q

±7–
11%

±2–4% ±0.2% ±0.5% ±2% ±0.5% ±2% ±4% ±5% OST-RRP® and WST-ITER

LUVATA 11 
660

27.67 16.18 1.94 1.4 0.325 0.66 0.74 1.32 0.426 
d

1.49 
d

3.2 0.154

LUVATA 14 
110

29.64 16.09 1.91 1.4 0.327 0.64 0.84 1.57 0.5 1.81 
d

2.1 0.150

LUVATA 14 
800

31.52 15.99 1.88 1.4 0.339 0.65 1.37 2.72 0.5 2.00 3.2 0.166

Notes:
a
The compressive prestrain values εm are dependent on the strain introduced by the sample holder on cooldown, and 

therefore are not strictly part of the core parameter set. The samples were soldered with Pb–Sn solder to Cu–Be sample 
holders for these measurements.
b
The pinning-force shape parameter p was fixed to a constant value (p = 0.4 or 0.5) because the magnetic self-field 

correction shifted all the data to higher fields, which resulted in insufficient low-magnetic field data to determine p. The 

high-field shape parameter q was kept as a fitting parameter for two cases for each wire and fixed at the default value 

q = 2 for the third case.
c
Fixed from a fit to the master scaling curve.

d
Fitted simultaneously with the other parameters.

e
The RMSFD and RMS FP errors in the last two columns are defined by equations (3a) and (3b) in the text. Errors are 

expressed as percentages to facilitate comparisons between conductors. The percentage RMSE FP errors in these tables 

correspond to effective RMS Ic errors of 1–5 A at 12 T, depending on the Jc of the conductor (section 3).
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Table A5.

The ESE parameter set with the Hybrid2 parameterization of ℎ(t) and the Exponential 
parameterization of bc2(ε) data corrected for magnetic self field. A comparison with table A3, 

shows that the Hybrid1 and Hybrid2 parameterizations of ESE have nearly the same 

parameter values (Δ < ∼ 1%).

Core scaling parameters

Nb3Sn 
Conductor

C
(AT)

Bc2
∗(0, 0)
(T)

T c
∗(0)
(K)

η s εl0a 

(%)
C1 b p

c
q c RMSFDd 

(%)
RMSEd 

(%)

OST-RRP® 59,700 29.72 16.93 2.26 1.01 −0.351a 0.77 0.5 2.27 
e

9.2 0.095

OST-RRP® 53,950 28.20 16.95 2.27 1.07 −0.355a 0.75 0.5 2.00 12.9 0.114

WST-ITER 20,710 32.09 16.72 1.96 1.29 −0.302 0.84 0.5 1.93 
e

4.8 0.143

WST-ITER 21,080 32.76 16.69 1.95 1.28 −0.302 0.85 0.5 2.00 5.0 0.143

∼Δ from 
p, q

±2–
6%

±2–4% ±0.2% ±0.5% ±2% ±0.5% ±1.5% OST-RRP® and WST-ITER

LUVATA 14,920 30.84 16.27 1.89 1.4 –0.322 0.67 0.5 1.81 
f

2.2 0.140

LUVATA 15,590 32.74 16.14 1.85 1.4 –0.327 0.61 0.5 2.00 3.1 0.156

Notes:
a
The compressive prestrain values εl0( = − εm) are dependent on the strain introduced by the sample holder on cooldown, 

and therefore are not strictly part of the core parameter set. The samples were soldered with Pb-Sn solder to Cu-Be sample 
holders for these measurements.
b
The C1 values for the Exponential bc2(ε) model in the last core-parameter column of tables A3 and A5 give a strain 

sensitivity index, because C1 is not interdependent on other strain parameters. Due to the very low value of ε0, irr for the 

OST- RRP® (Cheggour et al 2010), there were not enough data on the tensile side of the strain peak to determine the value 

of εl0( = − εm) independently of C1 in this particular case. This results in a difference between the εl0 and −εm values 

between table A3 and tables A4 or A5 for this conductor, whereas the correspondence was close for all other conductors.
c
The pinning-force shape parameter p was fixed to a constant value (p = 0.4 or 0.5) because the magnetic self-field 

correction shifted all the data to higher fields, which resulted in insufficient low-magnetic field data to determine p. The 

high-field shape parameter q was kept as a fitting parameter for the first case for each wire and fixed at the default value 

q = 2 for the second case.

d
The RMSFD and RMS FP errors in the last two columns are defined by equations (3a) and (3b) in the text. Errors are 

expressed as percentages to facilitate comparisons between conductors. The percentage RMSE FP errors in these tables 

correspond to effective RMS Ic errors of 1 A to 5 A at 12 T, depending on the Jc of the conductor (section 3).
e
Fixed from a fit to the master scaling curve.

f
Fitted simultaneously with the other parameters.
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Figure 1. 
Temperature-strain (T − ε) map of Ic − B measurements for the very large dataset 

for the RRP® high-Jc conductor (the complete data file is given online at 

www.ResearchMeasurements.com). Each point in the figure represents an Ic − B curve 

measured at the indicated temperature-strain pair (nearly a thousand Ic measurements in 

total). The map graphically displays the minimum dataset, a simple cross cut through 

the T − ε map (in this case, at liquid helium temperature and at an applied strain of near 

zero, indicated in the figure by the two orthogonal dashed lines). Extrapolations from this 

minimum dataset were carried out to predict the critical current measured at all the other 

strains, temperatures, and magnetic fields in the map. An example of extrapolations to 

strains and magnetic fields at 12 K is indicated by a red box in the figure.
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Figure 2. 
Effect of fitting all parameters in the general parameterization of the USL to the minimum 

dataset at 0.0% strain and 4.02 K (i.e., the dashed crosscut in figure 1). (a) High accuracy 

interpolative fit to the given minimum dataset at 4.02 K when fitting all parameters 

in the general parameterization of the USL (i.e., no constants). Solid curves show the 

fitting results, whereas symbols show the measured data. (b) Results extrapolated from 

the minimum dataset to 12 K, showing the extremely poor extrapolation capability when 

simultaneously fitting all the scaling parameters to the minimum dataset. Despite the large 

general errors, note that the fit in figure (b) to the given data at 0.0% strain is highly accurate 

(dashed box).
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Figure 3. 
Minimum-dataset extrapolation tests for the Durham fitting equation, utilizing the very 

large OST-RRP® Nb3Sn dataset. Solid curves show the 12 K results extrapolated from the 

minimum dataset at 0.0% strain and 4.07 K (i.e., the dashed crosscut in figure 1)., Data 

points show the measured Ic values. (a) Extrapolation results for the Durham fitting equation 

parameterized with the Durham ℎ(t) model (i.e., μ = 2) and Polynomial bc2(ε) (appendix B.3 

of Part 2), (b) Extrapolation results for ESE, also applied with the same Durham ℎ(t) and 

Polynomial bc2(ε). In figure (b) the percentage extrapolation errors at individual data points 

at high compressive strains are reduced to as little as 1/30th to 1/40th the size of those in 

figure 3(a) (note the vertical scales are logarithmic). The main differences between the two 

figures is that in 3(b): (1) the cross-link parameter is set to the constant w = 3.0, instead 

of the Durham default value w = 2.2; and (2) the strain exponent s is freed to be a fitted 

parameter, instead of fixed at s = 1.0.
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Figure 4. 
Minimum-dataset extrapolation tests for the G/ITER fitting equation, evaluated utilizing 

the high-Jc OST-RRP® dataset. Solid curves show the predicted 12 K results extrapolated 

from the minimum dataset at 0.0% strain and 4.07 K (i.e., the dashed crosscut in figure 1). 

Individual data points show the measured Ic values. (a) The ITER fitting equation shows 

relatively large extrapolation errors, including considerable interpolation errors in fitting the 

given data at 0.0% applied strain (shown by a light box in the two figures); the Godeke 

model (fixed p = 0.5 and q = 2.0) gives larger extrapolation errors, up to 80% higher (not 

shown). (b) The ESE relation applied with the Deviatoric bc2(ε) and Hybrid1 ℎ(t) gives a 

reduction in percentage extrapolation and interpolation errors at individual data points at 

high compressive strains and fields to as little as 1/15th the size of those in figure 4(a), for 

both extrapolated and interpolated data.
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Figure 5. 
Interpolation errors for the MAG equation for fitting all the given data at 4.03 K (figures 

3 and 4 were at the extrapolated temperature of 12 K). Solid curves show the fitted 

interpolation curves, and symbols indicate the given 4.03 K data for the moderate-Jc WST-

ITER conductor. (a) The MAG equation shows relatively large interpolation errors (up to 

50% of the measured Ic data at high compressive strains and magnetic fields; note the 

semi-logarithmic scale). (b) The ESE equation, where s is freed to be a fitted parameter, 

shows reductions in interpolation errors down to as little as 1/15th the size at high magnetic 

fields and compressive strains. The particular temperature parameterization used for ℎ(t) in 

ESE for figure 5(b) made only a small difference, as shown by the comparably low RMSFD 

and RMS errors for fitting either μ or η with the ESE relation parameterized with the same 

Deviatoric bc2(ε) as the MAG relation (cases 5 and 7 in tables 1 and 2). The main difference 

in fitting errors between the MAG and ESE relations is a result of the fixed exponent s = 1
in the MAG model. For the example shown in figure (b), the globally fitted value of s in 

the ESE equation was s = 1.38, consistent with the values obtained for the ITER conductors 

(s = 1.4 ± 0.1) from analysis of raw scaling data (section 4.4 in Part 2).
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Figure 6. 
Minimum-dataset extrapolation results for ESE with the Extended Power Law bc2(t) and the 

Hybrid1 ℎ(t) parameterizations (OST-RRP® dataset). RMSFD errors were among the lowest 

for the cases studied. Solid curves show the 12 K results extrapolated from the minimum 

dataset at 0.0% strain and 4.07 K (i.e., the dashed crosscut in figure 1). Symbols show the 

measured Ic data.
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Figure 7. 
Minimum-dataset extrapolation tests for the Invariant strain function. This parameterization 

of bc2(ε) was also among the most accurate when used with ESE, shown here with the 

Hybrid1 ℎ(t) parameterization. Solid curves present the 12 K results extrapolated from the 

minimum dataset at 0.0% strain and 4.07 K; symbols indicate measured Ic values.
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Figure 8. 
Minimum-dataset strain extrapolation tests for the Exponential bc2(ε) model with ESE, shown 

for the more difficult-to-fit OST-RRP® conductor where ε0, irr was near 0% (cases 13 and 

14 in table 1). (a) Results for fitting all strains in the minimum dataset. (b) Results for 

fitting strains only over the limited range of moderate strains (ε > − 0.18 %, to the right of 

the dashed line), and then extrapolating to compressive strains of −0.72% (intrinsic strains 

of −1.03%). Accuracy is lower for figure 8b, but still reasonable considering the curves 

in figure (b) are extrapolated to an extended strain range well beyond the given data. For 

the WST-ITER conductor where ε0, irr is ∼0.3%, RMSFD errors are significantly lower when 

extrapolating moderate strain data to extended compressive strains with the Exponential 

model (RMSFD errors are only 5.7% and 6.4% for the same two cases, 13 and 14 in table 

2).
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Figure 9. 
Pinning-force fitting versus critical-current fitting. (a) Fitting the minimum dataset in terms 

of the critical current results in considerable errors between the extrapolated curves and 

the measured data points. (b) Fitting in terms of the pinning force (FP = IcB) reduces 

extrapolation error at individual data points to as little as 1/5th the size, particularly at 

higher strains and temperatures. The large improvement given by FP fitting was consistently 

observed for all test cases where high extrapolation accuracy was observed.

Ekin et al. Page 66

Supercond Sci Technol. Author manuscript; available in PMC 2024 October 23.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 10. 
Master scaling curves for the OST-RRP® dataset (not corrected for magnetic self field). (a) 

An example of a precise master scaling curve that results from registering FP − B curves (for 

this example, p is fixed at 0.5, q is fitted, and data are trimmed below FP < 125 AT). (b) The 

tail of the master curve does not scale well when low-FP data (<125 AT) are not trimmed, 

although the presence of such a low pinning-force tail does not have much effect on overall 

extrapolation errors (see text). (c) Loss of scaling when p is fitted when there is insufficient 

data below the pinning-force peak (note the high fitted value of p = 1.21 in this case).
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Figure 11. 
Illustration of the use of the ESE equation with the three-step iterative fitting procedure 

to combine two separate, mismatched datasets: Ic(B, T ) measured at an Ic criterion of 

0.1 μV cm−1 in a variable-temperature apparatus, and Ic(ε) measured at 1 μV cm−1 in a 

separate strain apparatus. The 12 T Ic(ε) pink curve obtained by an iterative process from 

1 μV cm−1 source data (light grey diamond symbols) agrees with the actual 0.1 μV cm−1

data (blue star symbols) to within about ±1%. The variable-temperature Ic(B, T ) data are 

shown at 4.03 K by the orange star symbols at 0.24% strain, near the peak of each strain 

curve.
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Figure 12. 
Temperature extrapolations from a single Ic(B) curve at 4.07 K and an applied strain of 

0.35% (green circle symbols). Data are for the OST-RRP® conductor, corrected for magnetic 

self field: symbols show measured data, and curves the extrapolated Ic(B) results. The RMS 

FP error is 0.099%, only 0.005% higher than fitting the entire measured dataset (second 

row of table A3). Extrapolations are carried out with the ESE-Hybrid1 equation-set (11) 

and the Exponential strain model [equations (19)–(22)]. The same results were obtained 

with the ESE-Hybrid2 equation-set (12) to within an RMSE of 0.01%. Extrapolations to the 

higher temperatures of 5 K and 10 K shown in the figure are relevant to Nb3Sn cryo-cooled 

NMR magnets. The extrapolation to lower temperatures of 1.9 K are included to show the 

usefulness of the ESE-Hybrid1 or Hybrid2 models for HL-LHC conductors. In this example, 

values of p and q are fixed to match those used in determining the core parameters (second 

row of table A3).
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Figure 13. 
Strain extrapolations from a single Ic(B) curve at 4.07 K and an applied strain of 0.35% 

(same conditions as figure 12). (a) Extrapolations to 2.45 K and applied strains from −0.75% 

to +0.31% (corresponding to intrinsic strains of −1.05% to 0.01%). (b) Extrapolations to 10 

K and the same range of strains. The RMS FP extrapolation error is only ∼0.10%.
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Figure 14. 
Strain extrapolations from a single Ic(B) curve at 4.03 K and an applied strain of 0.32% 

(cross symbols, nested in the upper grouping of curves). Data are for the WST-ITER 

conductor, uncorrected for self field: symbols show measured data, and curves the calculated 

Ic(B) results. The RMS extrapolation error is 0.117%, only 0.01% higher than fitting the 

entire dataset (second row of table A2). Extrapolated curves are shown at 4.03 K for a wide 

range of applied strains (–0.72% to +0.56%) (intrinsic strains of –1.02% to +0.26%). Ic(B)
curves are extrapolated with equation-set (11) and the Invariant strain function [equations 

(17)–(18)]. Values of p and q are fixed to those used for the core parameters (second row of 

table A2).
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Figure 15. 
Temperature extrapolations from a single Ic(B) curve at 4.03 K (blue star symbols), showing 

high accuracy down to 2.26 K and up to 12 K. Data are for the Luvata conductor, corrected 

for magnetic self field: symbols show measured data, and curves the calculated Ic(B) results. 

Fitting is carried out with the ESE-Hybrid1 equation (11), applied with the Exponential 

strain model [equations (19)–(22)]. Values of p and q are fixed to those used for the core 

parameters (second last row of table A3).
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