Skip to main content
. Author manuscript; available in PMC: 2024 Oct 23.
Published in final edited form as: Supercond Sci Technol. 2017;30(3):10.1088/1361-6668/30/3/033005. doi: 10.1088/1361-6668/30/3/033005

Table 1.

Summary of results for extrapolations from the minimum dataset for the high-Jc OST-RRP® conductor, showing the reductions in minimum-dataset extrapolation errors for the ESE relation given by equation-set (2) (indicated as red-italic RMSE and RMSFD values in the last two columns). Small differences in the overall RMSFD and RMS percentage errors indicate a considerable difference in the quality of the fit, as shown by comparing the relative RMSFD and RMSE values for cases 2–7 with the percentage errors at individual Ic data points in the semi-logarithmic figures 35 that follow. Differences in parameters between corresponding cases are highlighted in red (‘var’ denotes ‘variable’).

Case # OST Dataset (high-Jc RRP® conductor): Extrapolation test cases RMSFD (%) RMSE (%)
Test case with all free parameters
1 All parameters simultaneously fitted (to show the large extrapolation errors when fitting all the scaling parameters) 58.1

Polynomial bc2(ε), Taylor (2005)
2 Durham: polynomial bc2(ε),μ=2,η=var,w=2.2,s=1,v=1.5,p=0.5,q=2.0613 15.7 0.200
3 ESE: polynomial bc2(ε),μ=2,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 7.1 0.115

Deviatoric bc2(ε), ten Haken (1994), Godeke et al (2006), Arbelaez et al (2009), Mentink (2008,2014)
4 G/ITER: deviatoric bc2(ε),μ=1,η=2,w=3.0,s=1,v=1.52,p=0.5,q=2.0613 11.7 0.156
5 ESE: deviatoric bc2(ε),μ=1,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 7.0 0.114

6 MAG: deviatoric bc2(ε),ημ=1,μ=var,w=3.0,s=1,v=1.52,p=0.5,q=2.0613 9.5 0.130
7 ESE: deviatoric bc2(ε),ημ=1,μ=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 7.7 0.114

Extended Power Law bc2(ε), NIST (Ekin 2006)
8 ESE: extended power law bc2(ε),μ=0,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 7.3 0.126
9 ESE: extended power law bc2(ε),μ=1,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 6.8 0.110
10 ESE: extended power law bc2(ε),μ=2,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 7.0 0.114

Invariant Strain Function bc2(ε), Markiewicz (2006)
11 ESE: invariant strain bc2(ε),μ=1,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 6.9 0.112

Exponential bc2(ε), CERN (Bordini et al 2013)
12 ESE: exponential bc2(ε),μ=0,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 8.7 0.131
13 ESE: exponential bc2(ε),μ=1,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 8.3 0.121
14 ESE: exponential bc2(ε),μ=1,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613, fit onlyε00.48% 15.6 0.189
15 ESE: exponential bc2(ε),μ=2,η=var,w=3.0,s=var,v=1.5,p=0.5,q=2.0613 8.5 0.128

FP was trimmed below 200 AT for table 1 and below 125 AT for table 2 to minimize flux creep effects at the lowest FP levels (near Tc and Bc2). The specific trim level (discussed further in section 3.8) had negligible effect on the RMSE, but did affect the RMSFD results. Therefore, the RMSE results are general, whereas the RMSFD results are restricted to comparisons within each table. [The difference in table-to-table RMSFD levels depends on the FP trim level set relative to the conductor’s FPmax or K(0,0) value. That is, the relative trim level was lower (not as restrictive) for the OST-RRP® conductor because it is normalized by significantly higher Jc and K(0,0) values, compared to the WST-ITER conductor (FPtrim/K(0,0)=0.4% for the OST-RRP® dataset, versus 0.7% for the WST-ITER dataset). This resulted in the inclusion of more outlier data points for the OST-RRP® dataset at the extremes.]