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Abstract

INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neu-

rodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hip-

pocampal volume (HCV), in Alzheimer’s disease (AD) using cerebrospinal fluid (CSF)

proteomics.

METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta

[Aβ]42), T+ (CSFphosphorylated tau181), andN+orN−basedonNg,NfL, orHCVsep-

arately. CSF proteomics were generated and compared between groups using analysis

of covariance.

RESULTS:Only a few individuals were A+T+Ng−. A+T+Ng+ and A+T+NfL+ showed

different proteomic profiles compared to A+T+Ng− and A+T+NfL−, respectively.
Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite

directions. Compared to A+T+HCV−, A+T+HCV+ showed few proteomic changes,

associated with oxidative stress.

DISCUSSION: Different N markers are associated with distinct neurodegenerative

processes and should not be equated. N markers may differentially complement dis-

ease staging beyond amyloid and tau. Our findings suggest that Ng may not be an

optimal Nmarker, given its low incongruency with tau pathophysiology.
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Highlights

∙ In Alzheimer’s disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hip-

pocampal volume (HCV)+ showed differential protein expression in cerebrospinal

fluid.

∙ Ng+ andNfL+were associatedwith neuroplasticity, although in opposite directions.

∙ HCV+ showed few proteomic changes, related to oxidative stress.

∙ Neurodegeneration (N) markers may differentially refine disease staging beyond

amyloid and tau.

∙ Ngmight not be an optimal Nmarker, as it relates more closely to tau.

1 BACKGROUND

The biological ATN staging scheme for Alzheimer’s disease (AD) cat-

egorizes individuals based on amyloid (A), tau (T), and neurodegen-

eration (N) biomarkers in cerebrospinal fluid (CSF) or on imaging.1

Proposed N biomarkers include, among others, neurogranin (Ng), neu-

rofilament light (NfL), and hippocampal volume (HCV).1,2 To date, the

pathophysiological processes underlying these candidate N biomark-

ers within the ATN staging scheme in AD are not fully understood.

The initially proposed Nmarkers were CSF total tau (t-tau), glucose

metabolism on fluorodeoxyglucose positron emission tomography, and

atrophy on structural magnetic resonance imaging (MRI) in AD-related

brain regions, including the hippocampus.1 More recently, other N

markers in CSF have been proposed, including Ng and NfL proteins.2

In the present study, we focus on the candidate N markers CSF Ng,

CSF NfL, and HCV. Ng is a neuron-specific postsynaptic protein, which

plays a role in synaptic plasticity. Increased CSF Ng levels have been

reported specifically in AD compared to other neurodegenerative dis-

eases, and are presumably associated with synaptic dysregulation.2–5

NfL is an intermediate filament, which plays a role in the assembly

and maintenance of the neuronal cytoskeleton. High CSF NfL levels

are associated with large-caliber axonal degeneration in AD, but also

in other neurodegenerative diseases.2,6,7 The hippocampus is part of

the limbic system and plays an important role in memory and learn-

ing. It is among the earliest regions showing atrophy in AD. Reduced

HCV is an important early marker of brain atrophy in AD, as well as

in other neurodegenerative diseases.8,9 To date, it remains unclear

to what extent different N markers reflect similar or distinct neu-

rodegenerative processes in AD. Previous studies showed that CSF

Ng reflects amyloid beta (Aβ)-dependent neurodegeneration, while

CSF NfL is associated with neurodegeneration independently of Aβ
pathology.10 CSF and neuroimaging biomarkers of neurodegeneration

often show low correlation, which suggests that these markers may

reflect different neurodegenerative aspects.11,12

To our knowledge, no study has yet compared the proteomic sig-

nature underlying distinct N markers, that is, Ng, NfL, and HCV.

Therefore, the aim of this study is to use large-scale proteomics to

assess commonalities and differences across Ng, Nfl, and HCV, and to

understand whether these N markers reflect similar or distinct under-

lying pathophysiological processes in AD. CSF protein level alterations

reflect ongoing biochemical and metabolic changes in the brain and

studying a large number of proteins can provide a robust characteri-

zation of the underlying pathophysiological mechanisms in AD.13,14 In

the present study, we included individuals without dementia and with

abnormal amyloid and tau markers (A+T+) and compared CSF pro-

teomic profiles of those with an abnormal N marker to those with a

normalNmarker. Secondary analyseswere conducted inA+T− individ-

uals without dementia using the same methodology. More knowledge

about the underlying biological processes of the different Nmarkers in

AD will be important for improving AD staging, which may be relevant

for the design of clinical trials.15–18

2 METHODS

2.1 Participants

Four hundred seven participants were enrolled from the Maastricht

BioBank Alzheimer Center Limburg cohort (BB-ACL, n = 52) memory

clinic study,19 the Washington University (WashU) Knight Alzheimer

Disease Research Center (ADRC, n = 90), study20 and the European

Medical Information Framework for Alzheimer’s Disease Multimodal

Biomarker Discovery study (EMIF-AD MBD, n = 265).21 All patients

provided informed consent for research. All centers approved partic-

ipation in this study after local medical ethics committee approval.

Participants were included in the current project if they had normal

cognition/subjective cognitive decline (NC) or mild cognitive impair-

ment (MCI), baseline CSF samples available, and baseline data of CSF

Aβ42 and CSF phosphorylated tau (p-tau)181 measures, and at least

one of the following baselinemeasures: CSFNfL, CSFNg, or HCV.

2.2 Neuropsychological assessment

All participants were administered a neuropsychological assessment,

including theMini-Mental State Examination (MMSE) and tests assess-

ing several cognitive domains, including memory. Memory tests dif-

fered between centers but most common tests were the Rey Auditory
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Verbal Learning Test (BB-ACL and EMIF-AD MBD studies) and the

Free and Cued Selective Reminding Test (WashU Knight ADRC study).

Detailed information about the neuropsychological tests and calcu-

lation of Z scores can be found elsewhere.19,21,22 NC was defined

as neuropsychological test performance ranged within 1.5 standard

deviation (SD) of the average corrected for age, sex, and years of educa-

tion. MCI was defined according to the criteria of Petersen, and based

on <1.5 SD in at least one of the neuropsychological tests assessing

several cognitive domains.21,23

2.3 CSF protein analysis

CSF was obtained by lumbar puncture, centrifuged, and stored at

−80◦C in polypropylene tubes. CSF samples were shipped on dry ice

to the neurochemistry lab of the University of Gothenburg in Möl-

ndal, Sweden, where central proteomic and peptidomic analyses were

performed using an untargeted tandem mass tag (TMT) technique

with 10+1 plexing, using high-pH reverse phase high-performance liq-

uid chromatography for peptide prefractionation14,24,25 to quantify ≈

500 proteins as well as endogenous peptides in the same CSF sam-

ple aliquot. More information is described elsewhere.14,24,25 In total,

3102 proteins were quantified using TMT spectrometry. We selected

proteins that had at least one third of observations per participant

group. For related proteins that had identical values due to fragment

non-specificity, we randomly selected one protein for analysis.14 All

analyses were performed according to themanufacturer’s instructions

and using two batches (batch 1 n = 285, batch 2 n = 122) of reagents

by board-certified laboratory technicians who were blinded to clinical

information.

Targeted analyses were performed for well-established CSF mark-

ers, that is, Aβ40, Aβ42, Aβ42/40 ratio, p-tau181, t-tau, NfL, and Ng.

For the BB-ACL and the EMIF-AD MBD cohorts, the neurochemistry

lab of University of Gothenburg in Sweden analyzed centrally the

levels of Aβ40, Aβ42 (using V-PLEX Plus Aβ Peptide Panel 1 [6E10]

Kit from Meso Scale Discovery [MSD]), NfL (using NF-light enzyme-

linked immunosorbent assay [ELISA], UmanDiagnostics), andNg (using

an in-house immunoassay). Moreover, Aβ42, t-tau and p-tau levels

were measured locally with INNOTEST ELISAs (Fujirebio) and for a

subset with Alzbio3 xMAP Luminex (n = 29). For the WashU Knight

ADRC cohort, levels of Aβ40, Aβ42, t-tau, and p-tau were measured

by chemiluminescent enzyme immunoassaywith a LUMIPULSEG1200

(Fujirebio), NfL was measured with the NF-light ELISA (UmanDiag-

nostics), and Ng was measured by quantitative fluorescent two-site

immunoassays using single-molecule counting (SMC) technology on

the Singulex Erenna platform.26,27

2.4 Genetic analysis

Protocols for apolipoprotein E (APOE) genotyping are described

elsewhere.21,28,29 In brief, APOE genotype was assessed using poly-

merase chain reaction (PCR) techniques for two single nucleotide

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using PubMed. In the ATN framework of Alzheimer’s dis-

ease (AD), various neurodegeneration (N) markers have

been suggested, such as neurogranin (Ng), neurofilament

light (NfL), and hippocampal volume (HCV). It is unclear

whether theseNmarkers reflect similar or distinct under-

lyingmechanisms.

2. Interpretation: Ng, NfL, and HCV were associated with

distinct cerebrospinal fluid proteomic profiles, reflecting

different neurodegenerative processes in AD. While Ng

and NfL were both associated with neuroplasticity, they

acted in opposite directions. Only a few individuals were

A+T+Ng−, indicating that Ng may not be an optimal N

marker. Different N markers should not be equated and

may differentially complement disease staging beyond

amyloid and tau.

3. Futuredirections: Future studies should characterize fur-

ther the dysregulated processes associated with each

neurodegeneration biomarker, as well as the associated

clinical outcomes, to improve AD diagnosis and prog-

nosis, which may be relevant for the design of clinical

trials.

polymorphisms (SNPs; rs429358 for the “ε4 allele” and rs7412

the “ε2 allele”). Participants were classified as APOE ε4 carriers or

non-carriers, determined by the presence of at least one APOE ε4
allele.

In a subset of participants of the EMIF-AD MBD study (n = 234),

polygenic risk score (PGRS) analyses were performed on imputed

genome-wide SNP genotyping data generated with the Global Screen-

ing Array (Illumina, Inc.) using PRSice (v2.3).30 PGRSs were calculated

by adding the sum of each allele weighted by the strength of its

association with AD risk as calculated previously by a genome-wide

association study (GWAS) on AD.31 Prior to calculating PGRS, clump-

ing was performed to remove SNPs that are in linkage disequilibrium

(r2 > 0.1) within a slicing 1 M bp window. After clumping, PGRS were

computedusing various SNP inclusion thresholds.14 PGRS resultswere

validated in theWashUKnight ADRC cohort (n= 91).32,33

2.5 Image analysis

At each site, MRI scans were acquired using local protocols. For all

studies, a thorough quality check was performed. Images were seg-

mented using FreeSurfer (version 5.3.0 for EMIF-AD MB and BB-ACL

studies and version 5.0 for the WashU Knight ADRC study, https://

surfer.nmr.mgh.harvard.edu).34 Subcortical volumes (including HCV)

were normalized by total intracranial volume (TIV).35,36

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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2.6 Participant classification

Persons were classified using the ATN scheme. Local CSF Aβ42 was

used as a measure of amyloid (A) and local CSF p-tau as a measure of

tau (T).We used cohort-specific cut-offs to define abnormal biomarker

levels. The Aβ42 cut-offs were redefined for each cohort using unbi-

ased Gaussian mixture modeling, as different methodologies had been

used by the centers to define Aβ42 cut-offs (Table S1 in supporting

information). CSF NfL, CSF Ng, or HCV were used as a measure of

neurodegeneration (N). As those parameters were measured centrally

for EMIF-AD MBD and BB-ACL studies, common cut-offs were cal-

culated for both studies and separately for the WashU Knight ADRC

cohort, using unbiased Gaussian mixture modeling.37,38 If the Gaus-

sian mixture modeling showed only one distribution, the Youden index

was used.39 The cut-offs for N markers are presented in Figure S1 in

supporting information. For primary analysis, we included individuals

with A+T+N+ and A+T+N−. For secondary analysis, we included indi-
viduals with A+T−N+ and A+T−N−. Individuals with NC A−T− were

included as control group.

2.7 Pathway enrichment analysis

Gene Ontology (GO) enrichment analysis was performed using Pro-

tein ANalysis THrough Evolutionary Relationships (PANTHER, version

15.0)40 to identify the biological processes, cellular components, and

molecular functions related to the increased or decreased proteins of

each group comparison. This tool used the Fisher exact test with false

discovery rate (FDR; using the Benjamini–Hochberg procedure41) and

weonly reported pathwayswith an FDR–correctedP value<0.05.42,43

Associated GO terms were clustered in broader categories to reduce

redundancy and facilitate interpretation. We validated these path-

ways and categories using the online database STRING version 11.044

and ClueGO, a Cytoscape plug-in.45 We further annotated proteins as

indicative of increased blood–brain barrier (BBB) permeability from

Neumeier et al.,46 Dayon et al.,47 and Rapoport and Pettigrew48 or

as highly expressed by the choroid plexus (ChP) of the lateral ventri-

cles according to the Allen Brain Map49 through Harmonizome50 and

ABAEnrichment analysis.51

2.8 Statistical analysis

To investigate the associations among the different ATN biomark-

ers, we performed Spearman rank correlation tests. For parametric

analyses, we transformed the biomarker values to Z scores as abso-

lute values for biomarkers varied across assays. To characterize the N

groups, clinical, CSF, and imaging measures were compared between

groups using analyses of covariance (ANCOVA) corrected for age and

sex for continuous variables and chi-square for categorical variables.

CSF protein levels were normalized according to the mean and SD of

the control group. PGRS were compared between groups using linear

models.

Individuals with NC and MCI were combined for analyses. For the

main analysis, we compared proteomic profiles of individuals without

dementia andwithA+T+N+ to thosewithA+T+N−. In secondary anal-
ysis, we compared proteomic profiles of individuals without dementia

and with A+T−N+ to those with A+T−N−. Groups were also com-

pared to controls (NC A−T−). In post hoc analyses, proteomic profiles

were studied separately in individuals with NC and MCI. In post

hoc analyses, our main analyses were corrected for potential batch

effects, and as there is an age-dependent increase of CSF NfL, we

also determined post hoc an age-adjusted cut-off of ≥ 2 SD, using

previously reported age-adjusted Z score formulas.52 For EMID-AD

MBD and Maastricht BB-ACL, the formula for age-adjusted Z scores

was:Z score = (log2[NfL value]− [5.957+ (age×0.053)])/396.549. For

WashU Knight ADRC, the formula for age-adjusted Z scores was: Z

score = (log2[NfL value] – [6.911+ (age×0.038)])/507.565.

Statistical analyses were performed using R 4.1.3. and IBM SPSS

Statistics version 26. Two-sided statistical significance was used and

set at P< 0.05.

3 RESULTS

3.1 CSF proteomic profiles for neurodegeneration
biomarkers

We compared CSF protein levels in persons with AD (A+T+) with an

abnormal N marker to those with a normal N marker. Comparisons

to controls are presented in Tables S2–S4 in supporting informa-

tion. A similar secondary analysis in A+T− individuals is presented in

Supplementary Results and in Tables S2–S5 in supporting information.

3.1.1 CSF neurogranin as a neurodegeneration
marker

Using Ng as N marker, 12 participants were classified as A+T+N−
and 143 as A+T+N+ (Figure 1A). A+T+N+ individuals showed higher

levels of Aβ40, Aβ42, p-tau, and t-tau compared to A+T+N−. No signif-
icant differences in the Aβ42/40 ratio were found between A+T+N+
and A+T+N−. There were no A+T+N− individuals with NC (Table 1).

No significant AD PGRS differences were found between N− and N+
(Figure S2A in supporting information).

CSF proteomic profiling showed that 177 proteins were increased

and 14 were decreased in A+T+N+ compared to A+T+N− (Figure 2A,

Table S2A). Increased proteins were associated with nervous system

development, cell adhesion and migration, protein secretion and mod-

ification, and blood vessel development. No pathways were related

to the decreased proteins (Figure 2B,C, Table S2B). Twenty-nine per-

cent (four proteins) of those decreased proteins were associated with

increased BBB permeability.

In A+T− individuals, similar proteomic results were found when

comparing N+ to N− (Figure 1B, Supplementary Results, Figure S3 in

supporting information, Table S2C,D).
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(A) (B)

F IGURE 1 A, Stacked bar graph showing the numbers of N+ andN− participants within the A+T+ group for the three neurodegeneration
markers (i.e., CSF neurogranin, CSF neurofilament light, and hippocampal volume). The number of individuals with normal cognition (NC; orange)
andmild cognitive impairment (MCI; blue) is also shown. B, Stacked bar graph showing the numbers of N+ andN− participants within the A+T−
group for the three neurodegenerationmarkers (i.e., CSF neurogranin, CSF neurofilament light, and hippocampal volume). The number of
individuals with NC (yellow) andMCI (green) is also shown. A−, absence of amyloid pathology determined by CSF Aβ42 level above cut point; A+,
presence of amyloid pathology determined by CSF Aβ42 level below cut point; T−, normal CSF p-tau level below cut point; T+, abnormal CSF p-tau
level above cut point; N−, absence of neurodegeneration or neuronal injury determined by CSF neurogranin, CSF neurofilament light, or
hippocampal volume; N+, presence of neurodegeneration or neuronal injury determined by CSF neurogranin, CSF neurofilament light, or
hippocampal volume. Aβ, amyloid beta; CSF, cerebrospinal fluid; HCV, hippocampal volume;MCI, mild cognitive impairment; NC, normal cognition;
NfL, neurofilament light; Ng, neurogranin; p-tau, phosphorylated tau.

3.1.2 CSF neurofilament light as a
neurodegeneration marker

Using NfL as N marker, 33 participants were classified as A+T+N−
and 123 as A+T+N+ (Figure 1A). A+T+N+ individuals were older,

more often males, and more often diagnosed with MCI than A+T+N−.
A+T+N+ individuals had higher levels of Aβ40, p-tau, t-tau, and Ng; a

lowerAβ42/40 ratio; and smallerHCV compared toA+T+N− (Table 1).

No significantADPGRSdifferenceswere foundbetweenA+T+N− and

A+T+N+ (Figure S2A).

CSFproteomic analysis showed that13proteinswere increasedand

144 were decreased in A+T+N+ compared to A+T+N− (Figure 3A,

Table S3A). No pathways were associated with the increased proteins.

Decreased proteins were related to biological pathways linked with

cell adhesion and migration, nervous system development, extracel-

lular matrix (ECM), lipids, protein processing, hemostasis and blood

vessel development, transforming growth factor β signaling, and lyso-

some organization (Figure 3B,C, Table S3B). Fifty-eight decreased pro-

teins were enriched for expression in the ChP (40%, ABAenrichment

P= 0.034).

In A+T− individuals (Figure 1B), similar proteomic pattern was

found as in A+T+ individuals, with mainly decreased proteins in N+
compared to N− (Supplementary Results, Figure S4A in supporting

information, Table S3C). Nonetheless, biological pathways were dis-

tinct from those in A+T+. In A+T−, increased proteins were enriched

for biological pathways related to the immune system,while decreased

proteins were enriched for ion homeostasis, cell migration, immune

system and inflammation, protein degradation, and lipids and epithelial

cells (Figure S4B,C, Table S3D). Decreased proteins were also enriched

for expression in the ChP (41%, ABAenrichment P= 0.001).
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TABLE 1 Sample characteristics of A+T+ individuals classified using different neurodegeneration (N) biomarker.

A. Neurodegeneration biomarker (N)= neurogranin (Ng)

Controls n= 145 A+T+N− n= 12 A+T+N+ n= 143 P value N+ vs. N−

Age, years 64.6 (8.6) 71.6 (5.9) 71.1 (6.8) 0.798

Female (%) 83 (57.2) 7 (59.3) 80 (55.9) 0.873

Education, years 13.2 (3.6) 10.9 (3.1) 12.4 (3.9) 0.226

APOE ε4 carriers (%) 28 (24.1) 6 (54.5) 94 (67.1) 0.395

MCI diagnosis / 12 (100.0) 97 (67.8) 0.019

MMSE 28.9 (1.2) 26.3 (3.1) 26.6 (2.8) 0.749

Memory, Z score 0.2 (0.9) −1.0 (1.5) −1.9 (1.4) 0.798

CSF Aβ40, Z score 0.3 (1.2) −1.0 (1.1) 0.1 (1.8) 0.025

CSF Aβ42, Z score 0.5 (1.3) −1.6 (0.4) −0.9 (1.2) 0.031

CSF Aβ42/40 ratio, Z score 0.9 (1.0) −1.7 (0.6) −1.7 (0.8) 0.808

CSF p-tau, Z score −0.4 (0.5) 0.99 (0.43) 1.8 (1.3) 0.049

CSF t-tau, Z score −0.3 (0.5) 0.8 (0.7) 1.6 (1.3) 0.050

CSFNg, Z score −0.3 (0.7) −0.9 (0.3) 0.6 (1.1) <0.001

CSFNfL, Z score 0.0 (1.5) 0.6 (1.8) 1.3 (4.0) 0.530

HCV, Z score 0.1 (1.3) −0.7 (1.5) −1.7 (0.7) 0.151

B. Neurodegeneration biomarker (N)= neurofilament light (NfL)

Controls n= 145 A+T+N− n= 33 A+T+N+ n= 123 p-value N+ vs. N−

Age, years 68.1 (6.9) 72.0 (6.5) 0.003

Female (%) 26 (78.8) 61 (49.6) 0.003

Education, years 13.2 (4.0) 12.1 (3.8) 0.136

APOE ε4 carriers (%) 19 (59.4) 83 (69.2) 0.295

MCI diagnosis 13 (39.4) 96 (78.0) <0.001

MMSE 27.1 (3.1) 26.4 (2.8) 0.212

Memory, Z score −0.6 (1.4) −1.0 (1.4) 0.488

CSF Aβ40, Z score −0.7 (0.8) 0.2 (1.8) <0.001

CSF Aβ42, Z score −0.7 (1.0) −1.0 (1.2) 0.373

CSF Aβ42/40 ratio, Z score −1.5 (0.7) −1.8 (0.8) 0.007

CSF p-tau, Z score 1.3 (0.9) 1.8 (1.4) 0.008

CSF t-tau, Z score 1.0 (0.9) 1.7 (1.3) 0.001

CSFNg, Z score 0.2 (0.8) 0.6 (1.2) 0.032

CSFNfL, Z score −0.4 (0.7) 1.7 (4.3) 0.013

HCV, Z score −1.0 (1.6) −1.8 (1.7) 0.018

C. Neurodegeneration biomarker (N)= hippocampal volume (HCV)

Controls n= 145 A+T+N− n= 55 A+T+N+ n= 83 p-value N+ vs. N−

Age, years 68.8 (6.6) 72.0 (5.9) 0.004

Female (%) 26 (47.3) 49 (59.0) 0.174

Education, years 13.6 (3.8) 12.0 (3.5) 0.018

APOE ε4 carriers (%) 32 (59.3) 60 (74.1) 0.070

MCI diagnosis 21 (38.2) 69 (83.1) <0.001

MMSE 27.8 (2.2) 26.2 (2.9) 0.001

Memory, Z score −0.1 (1.2) −1.4 (1.4) <0.001

CSF Aβ40, Z score 0.0 (1.6) 0.3 (1.8) 0.161

CSF Aβ42, Z score −0.5 (1.3) −1.0 (1.0) 0.026

(Continues)
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TABLE 1 (Continued)

C. Neurodegeneration biomarker (N)= hippocampal volume (HCV)

Controls n= 145 A+T+N− n= 55 A+T+N+ n= 83 p-value N+ vs. N−

CSF Aβ42/40 ratio, Z score −1.6 (0.9) −1.8 (0.7) 0.029

CSF p-tau, Z score 1.3 (0.9) 2.0 (1.5) 0.001

CSF t-tau, Z score 1.3 (1.0) 1.9 (1.5) 0.008

CSFNg, Z score 0.5 (1.0) 0.6 (1.2) 0.465

CSFNfL, Z score 1.3 (5.4) 1.1 (1.9) 0.656

HCV, Z score 0.1 (0.9) −2.6 (1.2) <0.001

Notes: Controls were individuals with normal cognition and normal levels of Aβ42 and p-tau. A+T+N− individuals were non-demented (NC+MCI) individuals

with abnormal levels of Aβ42 (A) and p-tau (T) and normal levels of neurodegeneration marker (N, either Ng, NfL, or HCV). A+T+N+ individuals were non-

demented (NC+MCI) individuals with abnormal levels of Aβ42 (A), p-tau (T), and neurodegeneration marker (N, either Ng, NfL, or HCV). Values represent

mean (standard deviation) or number (percentages). Significant p-values (< 0.05) are bold. The sample size was smaller for some variables: A total of 13

values aremissing for education, 36 forAPOE ε4, and 54 formemory. Twenty-three values aremissing for Aβ40, Aβ42, andHCV; 37 for NfL; 45 for Ng; and 74
for HCV. Aβ40, Aβ42, t-tau, p-tau, Ng, andNfL values are presented as Z scores with controls as a reference.
Abbreviations: APOE, apolipoprotein E; Aβ, amyloid beta; CSF, cerebrospinal fluid; HCV, hippocampal volume; MCI, mild cognitive impairment; MMSE, Mini-

Mental State Examination; NC, normal cognition; NfL, neurofilament light; Ng, neurogranin; p-tau, phosphorylated tau; t-tau, total tau.

(A)

(B) (C)

F IGURE 2 Cerebrospinal fluid (CSF) proteomics in A+T+ individuals without dementia by neurogranin status. A, Volcano plot displaying the
log2 fold-change against the−log10 statistical p-value for the comparison of A+T+N+ versus A+T+N− (N= neurogranin). Significantly different
proteins are red. The top 15 proteins are named. B, C, Selected biological processes GeneOntology (GO) terms for decreased (B) and increased (C)
proteins in the comparison of A+T+N+ versus A+T+N−.
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(A)

(B) (C)

F IGURE 3 CSF proteomics in A+T+ individuals without dementia by neurofilament light status. A, Volcano plot displaying the log2
fold-change against the−log10 statistical p-value for the comparison of A+T+N+ versus A+T+N− (N= neurofilament light). Significantly different
proteins are red. The top 15 proteins are named. B, C, Selected biological processes GeneOntology (GO) terms for decreased (B) and increased (C)
proteins in the comparison A+T−N+ versus A+T−N−. CSF, cerebrospinal fluid; TGFβ, transforming growth factor beta.

3.1.3 Hippocampal volume as a neurodegeneration
marker

Using HCV as N marker, 55 participants were classified as A+T+N−
and 83 as A+T+N+ (Figure 1A). A+T+N+ individuals were older and

more often diagnosed with MCI, and had lower levels of Aβ42, a
lower Aβ42/40 ratio, and higher p-tau and t-tau levels than A+T+N−
(Table 1). No significant PGRS differences were found between

A+T+N− and A+T+N+ (Figure 2A).

CSF proteomic profiling showed that 7 proteins were increased and

22 were decreased in A+T+N+ compared to A+T+N− (Figure 4A,

Table S4A). No biological pathways were associatedwith the increased

proteins. Decreased proteins were associated with oxidative stress

(Figure 4B,C, Table S4B).

Similar proteomic results were found in A+T− (Figure 1B, Supple-

mentary Results, Figure S5 in supporting information, Table S4C,D).

3.2 Comparison of proteomic profiles of distinct
N markers

Next, we compared the proteomic results of the N+ versus N− groups

for the three N markers in A+T+ individuals. NfL+ was mainly asso-

ciated with decreased proteins, while we found mainly increased

proteins for Ng+. There was limited overlap in these proteins (4%

to 5%; Figure 5A). Yet, top biological pathways were overlapping

and associated with neuronal plasticity (Figure 5B), suggesting hyper-

plasticity in Ng+ and hypoplasticity in NfL+. HCV+ showed limited

overlap with protein changes in Ng+ and NfL+ groups (between

2% and 35% of overlap; Figure 5A). Nonetheless, A+T+HCV+
showed overlap in the top 10 dysregulated GO biological pathways

with A+T−Ng+, related to oxidative stress (Figure 5B). Compari-

son results for A+T− individuals can be found in the Supplementary

Results.
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F IGURE 4 Cerebrospinal fluid (CSF) proteomics in A+T+ individuals without dementia by hippocampal volume status. A, Volcano plot
displaying the log2 fold-change against the−log10 statistical p-value for the comparison A+T+N+ versus A+T+N− (N= hippocampal volume).
Significantly different proteins are red. The top 15 proteins are named. B, C, Selected biological processes GeneOntology (GO) terms for
decreased (B) and increased (C) proteins in the comparison of A+T−N+ versus A+T−N−.

3.3 Correlations between ATN markers

Figure 6A displays the correlation between ATN biomarkers. In a sub-

set of 128 A+T+ individuals with availability of the three N markers,

Ngwas positively correlatedwith p-tau, t-tau, NfL, Aβ40, andAβ42 and
negatively correlatedwith the ratio Aβ42/40. NfLwas positively corre-
latedwith t-tau, p-tau, Ng, andAβ40, and negatively correlated toHCV.
HCV was positively correlated with the ratio Aβ42/40 and Aβ42 and

negativelywith p-tau, t-tau, andNfL. In a subset of 58A+T− individuals

with availability of the three N markers, we found that Ng was posi-

tively correlated with p-tau and t-tau, and negatively correlated with

the ratio Aβ42/40, while NfL was positively correlated with t-tau.
Most of the A+T+ participants had more than one abnormal N

marker, includingmost often Ng (Figure 6B). In A+T−, most individuals

presented only one abnormal Nmarker (Figure 6C).

3.4 Post hoc CSF proteomic analyses

In post hoc analyses, proteomicprofileswere studied separately in indi-

viduals with NC and MCI (Table S6A–F in supporting information). In

A+T+, results remained similar between individuals with NC and MCI

for all N markers (Table S6A–C). In A+T−, results remained similar

when Ng was used as the N marker, but were somewhat different in

MCI A+T−when NfL or HCVwere used as Nmarkers (Supplementary

Results and Table S6D–F).

As a sensitivity analysis, we corrected our main analysis for batch

effects, which resulted in similar findings. We also compared the

key demographic and clinical characteristics between participants

with all three N markers to those with at least one N marker, and

found no statistically significant differences, indicating similar sample

characteristics between the groups.

Finally, as there is an age-dependent increase of CSF NfL, we deter-

mined post hoc an age-adjusted cut-off of ≥ 2 SD (see Materials

and Methods). The use of this age-adjusted cut-off resulted in similar

results.

4 DISCUSSION

Comparing neurodegeneration markers in AD individuals without

dementia, we found that CSF Ng, CSF NfL, and HCV were each asso-
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F IGURE 5 Comparison of the proteomic profiles of the groups classified using distinct Nmarkers. A, Heatmap representing the log2
fold-change values of the proteins with significant level changes in each comparison using different neurodegenerationmarkers. B, GeneOntology
biological pathway enrichment analysis with a dot plot representing the top 10 biological pathways enriched for the different comparisons.
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F IGURE 6 Association between the different neurodegeneration biomarkers. A, Correlationmatrix for AD biomarkers using the Spearman
rank correlation test in A+T+ individuals with no dementia (upper part of the graph) and in A+T− individuals with no dementia (lower part of the
graph). The figure presents the p-value and correlation coefficient (ρ). The color scale depicts the strength of the Spearman correlation coefficient
in the significant correlations. B, Venn diagram depicting the distribution of the three neurodegeneration biomarkers in a subset of 128 A+T+
individuals andwith availability of the three Nmarkers. C, Venn diagram depicting the distribution of the three neurodegeneration biomarkers in a
subset of 58 A+T− individuals andwith availability of the three Nmarkers. Aβ, amyloid beta; AD, Alzheimer’s disease; HCV, hippocampal volume;
NC, normal cognition; NfL, neurofilament light; Ng, neurogranin; p-tau, phosphorylated tau; t-tau, total tau.

ciated with distinct CSF proteomic profiles. Yet, Ng+ and NfL+ protein

changes showed overlap in top biological pathways, which were asso-

ciated with neuroplasticity, though in opposite directions. HCV+ was

associated with relatively few proteomic changes that were related to

oxidative stress.Overall, our results show that differentNmarkers rep-

resent distinct pathophysiological mechanisms in AD and cannot be

used interchangeably.

A high number of increased proteins were associated with Ng+
compared to Ng−. Those increased proteins were related to aberrant

neuroplasticity.30 This is consistent with the global function of Ng in

the central nervous system and with its role as a biomarker of synap-

tic dysregulation in AD. Findings could be also partially linked to tau,

as CSF t-tau is linked in AD with changes in proteins associated with

neuronal plasticity.30 Other dysregulated pathways associated with

Ng were linked to angiogenesis. Cerebral hypoperfusion is a key hall-

mark of AD and a previous study reported a high positive correlation

between CSF Ng levels and CSF levels of vascular endothelial growth

factor, a protein involved in modulation of vascular remodeling, per-

meability, and angiogenesis. Angiogenesis could also be part of the

neuronal plasticity response, as previously reported.30,53 A high per-

centage of the decreased proteins related to Ng+, in both A+T− and

A+T+, showed an association with BBB functioning (39% to 41%). This

is in linewith a study on traumatic brain injury reporting increasedCSF

Ng levels as a result of damage to the BBB.54 The proteomic profile

of Ng+ was similar across AD pathology stages (A+T+ and A+T−), as
well as across clinical stages (NCorMCI). This suggests thatNg reflects

Aβ-dependent degeneration10 independently of the clinical stage and
tau status. Still, it should be noted that the levels of Ng were higher
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in A+T+N+ compared to A+T−N+. T-tau, p-tau, and Ng incongruency
was uncommon, which is in line with the high correlation between Ng

and tau (both p- and t-tau) in our study, as also previously reported.55

Along with the shared associations of Ng and tau with aberrant neuro-

plasticity, this suggests thatNgmay servemoreas a tau-relatedmarker,

rather than a neurodegenerationmarker.

A high number of decreased proteins were associated with NfL+
compared to NfL−. The proteomic profile of NfL+was different across

AD pathology stages (A+T− and A+T+), and for the A+T− also across

clinical stages (NC or MCI). This could be explained by the fact

that NfL reflects neurodegeneration independently of Aβ pathology.10

Hypoplasticity pathways in A+T+, including downregulated pathways

related to neurogenesis and nervous system development, might be

related to the degeneration of neurons associated with the increased

levels of NfL in the CSF.2,6,7 The opposite profile of Ng and NfL, in

which Ng is associated with hyperplasticity and NfL with hypoplastic-

ity, may reflect different temporal dynamics in AD pathology. Changes

in Ng levels may occur earlier in the disease progression, reflecting

synaptic dysfunction2–5 and hyperplasticity, and potentially precede

neurodegenerativeprocesses.Conversely, alterations inNfL levelsmay

occur later, reflecting axonal degeneration and hypoplasticity. A high

percentage of the decreased proteins in NfL+ were highly expressed

by the ChP (40% to 41%). The ChP is located inside the brain ventri-

cles and is responsible for the production of CSF; transport of ions,

proteins, nutrients, lipids, and metabolic precursors across the epithe-

lium to the CSF; and clearance of proteins from the CSF.56 Hence,

pathways dysregulated in NfL+ could be linked with ChP dysfunction,

that is, pathways associated with ion homeostasis, immune system,

lipids, and ECM.57,58 The ChP seems to also play an important role in

neuroplasticity and synaptic functions.59 Yet, the implication of ChP

functioning in AD in relation to CSF NfL changes warrants further

investigation. Pathways associated with protein degradation and pro-

cessingwere also downregulated inNfL+, which could partially explain
the downregulation of proteins.

Contrary to our expectations, HCV+ in AD was not associated with

many protein changes in CSF. In A+T+, we found that decreased pro-

teins were associated with oxidative stress, while in A+T− we found

no pathways associated with the significant proteins. Oxidative stress

is one of the earliest events occurring in AD and the hippocampus is

a brain structure highly sensitive to oxidative stress.60,61 Oxidative

stress in the hippocampus alters neurogenesis, dendritic complex-

ity, and learning and could lead to atrophy.62 As we only found few

proteomic changes in HCV, it might be that the pathophysiological

mechanisms associated with hippocampal atrophy are not directly

reflected in the CSF, but maybe more in the tissue itself.63 Alter-

natively, as hippocampal atrophy is a relatively late marker in AD,

it might be difficult to identify HCV changes using dichotomization

in early AD stages, especially in preclinical AD. Yet, several previous

studies have successfully used dichotomized HCV measures in early

AD.64,65 Another hypothesis could propose that, because lower HCV

are not exclusive to AD but also occur in other neurodegenerative

diseases,66,67 each of these conditions might exhibit its own distinct

proteomic profile. In cases in which multiple pathologies coexist, the

proteomic signatures associatedwith each pathology could potentially

be diluted or obscured by the presence of others.

The non-interchangeability between N markers is in line with con-

clusions from previous studies.12,68 Nonetheless, it should be noted

that most of the A+T+ participants showed abnormalities in more

than one N marker, and almost all had abnormal levels of Ng. This is

in line with the strong correlation that we observed between tau and

Ng levels, consistent with previous findings.10 Moreover, NfL showed

a positive correlation with Ng and negative correlation with HCV. In

A+T−, the levels of the three N markers were not significantly cor-

related and most of the A+T− individuals had only one abnormal N

marker. This indicates that, whenever only abnormal levels of Aβ42 are
found, distinct neurodegeneration mechanisms can occur in different

persons with AD. The N markers can represent AD but also non-AD

pathologies, as Nmarkers are not AD specific.1

Our study has several strengths and limitations. To the best of our

knowledge, this is the first study reporting CSF proteomic profiling of

distinct neurodegeneration biomarkers in AD. Our results are a first

step toward a better pathophysiological characterization of the dis-

tinct neurodegeneration processes happening in AD. Another main

strength of this study is that our overall sample size for proteomic

analyses was large, encompassing 407 individuals. Yet, for some sub-

groups, the sample size was rather small. While this reflects lower

frequency of subgroups, this could have reduced our statistical power.

Furthermore, to define biomarker abnormality, we had to calculate

cut-offs for the neurodegeneration markers, as no reference values

were available. Future studies should validate our cut-points in inde-

pendent or larger datasets. Furthermore, the methodology to quantify

ATN biomarkers varied between centers, potentially introducing vari-

ability into the results. However, we defined center- or study-specific

cutoffs to account for this. Further research is also needed to unravel

the causes and consequences of the dysregulated processes associated

with the distinct N markers. Longitudinal studies are needed to inves-

tigate the cognitive outcomes of each neurodegeneration marker in

relation to proteomic profiles.

Together, our findings suggest that Nmarkers cannot be used inter-

changeably, as Ng, NfL, and HCV markers measure largely different

neurodegenerative processes in AD. Yet, Ng+ and NfL+ showed some

overlap in biological pathways related to neuroplasticity. Ng might not

be a good Nmarker given its close associations with tau pathophysiol-

ogy. HCV+ was associated with fewer proteomic differences. The use

of different N markers may refine disease staging beyond amyloid and

tau by providing complementary information, which has implications

for clinical trial design.
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