Involvement of an NAD(P)H oxidase as a $pO₂$ sensor protein in the rat carotid body

Andrew R. CROSS,* Lydia HENDERSON,* Owen T. G. JONES,* Marco A. DELPIANO,t Joachim HENTSCHEL[†] and Helmut ACKER[†]1

*Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, U.K., and tMax-Planck-Institut fur Systemphysiologie, Rheinlanddamm 201, D-4600 Dortmund 1, Federal Republic of Germany

The rat carotid body tissue reveals ^a photometrically measurable haem signal with absorbance maxima at 560 nm, ⁵¹⁸ nm and ⁴²⁵ nm, suggesting the presence of ^a b-type cytochrome; this was confirmed by pyridine haemochrome and CO spectra. The quantity of cytochrome b was estimated to be 310 pmol \cdot mg of protein⁻¹. This haem is capable of H₂O₂ formation, which can be inhibited by 10μ M-diphenyliodonium (DPI). The hypoxia-induced increase in nervous chemoreceptor discharge and the reduction of FAD and NAD(P)⁺ were also inhibited by DPI (10 μ M). These results suggest that an oxidase such as the NAD(P)H oxidase of neutrophils may act as a $pO₂$ sensor protein in the rat carotid body, probably inducing the $pO₂$ chemoreceptor process by $H₂O₂$ formation.

INTRODUCTION

The carotid body located at the carotid sinus is able to transduce changes of oxygen pressure in the arterial blood into nervous signals regulating respiration and circulation in order to avoid hypoxic situations in the body. The mechanism of the void hypoxic situations in the body. The mechanism of the
reaching process is still a matter for discussion. A generally transducing process is still a matter for discussion. A generally accepted concept defines this process as a pO_s -dependent transmitter release from carotid body type ^I cells, which generates action potentials in post-synaptic nerve endings of the sinus nerve (for review see Acker, 1989). Recent voltage clamp studies have shown that outward K^+ currents of type I cells are inhibited by hypoxia (Hescheler et al., 1989; Lopez-Lopez et al., 1989), and this was substantiated by the observation that the probability \mathbf{r}_{k+1} channels in these cells being open decreased under hypoxiality If K^T channels in these cells being open decreased under hypoxia
Delpiano & Hescheler, 1989). Nat. and Ca²⁺ currents in these ϵ are understand by hypoxical by hypoxical building and controller extensive α . Ether are unaffected by hypoxia (Hescheler et al., 1989, Lopez- $\frac{1}{2}$ explanation of the K channel λ plans the depotatization of type I cans direct hypoxia (Equation Lopez et al., 1989), which might lead, by opening of voltagedependent Ca^{2+} channels, to an influx of Ca^{2+} into the cytosol of these cells. The resulting increased intracellular Ca^{2+} level would facilitate transmitter release via the participation of intracellular $Ca²⁺$ stores (Pietruschka, 1985; Biscoe et al., 1989; Delpiano & Acker, 1989; Shaw et al., 1989). The molecular mechanism of the inhibitory effect of low $pO₂$ on K⁺ channel activity and thus on the chemoreceptor properties of type I cells is unknown, but the involvement of a haem-type $pO₂$ sensor protein has been discussed (for a review see Acker, 1989). In a recent publication, Acker et al. (1989) described hypoxic light absorbance difference spectra in the rat carotid body which could be inhibited by diphenyliodonium (DPI) (Gatley & Sherratt 1976), a specific inhibitor of the NADPH oxidase in neutrophils (Cross $\&$ Jones, 1986). It has been suggested, therefore, that a similar oxidase. may be located in the carotid body tissue. The present paper gives a more detailed characterization of an NAD(P)H oxidase in the rat carotid body and considers its possible involvement as a haem-type pO_2 sensor protein in the chemoreceptor process of the carotid body.

MATERIALS AND METHODS

Carotid body preparation and superfusion

After prolonged flushing of the common carotid arteries with Macrodex 6% (Knoll, Glandorf, Germany) to eliminate red blood cells from the tissue, carotid bodies with the intact sinus nerve and the immediate vessels were excised from rats anaesthetized with pentobarbitone (3-4 mg/rat) and heparinized with 1300 units/rat. The carotid bodies were denuded of all other structures, and either sampled for spectral analysis or placed in a small μ cite chamber mounted on the stage of an upper in a single Lucite chamber mounted on the stage of an upright microscope
Climpus, Hamburg, Germany) for FAD and NADPH fluo-(Olympus, Hamburg, Germany) for FAD and NADPH fluorescence measurements and nervous chemoreceptor discharge recently included the intervention of the cleaned organs (length 500, um, width 300, tm, the thickness 150 μ m) were then superfused with modified Locke's thickness 150 μ m) were then superfused with modified Locke's solution, as described by Delpiano & Acker (1989), equilibrated with different O_n mixtures with the aid of a gas mixing pump (Wösthoff, Bochum, Germany) and viewed with a $40 \times$ water immersion objective lens and $10 \times$ ocular lenses. Oxygenation of the superfusion medium was monitored close to the tissue with a needle pO_s electrode whose tip was located near the objective lens. Temperature was routinely maintained at about 35 $^{\circ}$ C and pH was kept at 7.36.

Spectral analysis car an analysis
...

Carotid bodies $(n = 35)$ were suspended in 1 ml of phosphatebuffered saline, pH 7.2, and sonicated for three cycles of 20 s at $50 W$ with a Branson Soniprobe, with $30 s$ of cooling in an ice/water bath between each cycle. Reduced minus oxidized difference spectra were recorded on a sensitive split-beam spectrophotometer as described by Cross et al. (1984). Briefly, sonicated samples were split into two 400 μ l aliquots and a baseline was recorded eight times and averaged; a few grains of solid sodium dithionite were added to the sample cuvette and the spectrum was re-recorded and averaged. The baseline spectrum. was then subtracted from the reduced spectrum. CO difference spectra were obtained by bubbling a stream of CO through the sample for 30 s before recording the spectrum. Pyridine haemo-

the beviation used: DPI, diphenyliodonium.

chrome spectra were obtained by treatment of samples with alkaline pyridine before recording difference spectra (Smith, 1975).

Measurement of H_2O_2 production

Dihydrorhodamine 123 and rhodamine 123 (Molecular Probes, Eugene, OR, U.S.A.) were dissolved in dimethyl sulphoxide to give stock solutions of 50 mm. The dihydrorhodamine was stored under $N₂$. The non-fluorescent dihydrorhodamine is converted to rhodamine in the reaction with H_2O_2 (Rothe *et al.*, 1988). This fluorescent positively charged dye is taken up by cells. The conversion of dihydrorhodamine 123 to rhodamine 123 by a superoxide-generating system is insensitive to superoxide dismutase but sensitive to catalase. This indicates that H_2O_2 , but not O₂⁻ itself, reacts with dihydrorhodamine.

Images of the fluorescent cells were obtained using a Bio-Rad MRC-500 confocal scanning optical microscope mounted on a Nikon inverted microscope. The bath solution was maintained at 37 °C by an infra-red lamp linked to a thermocouple. The carotid body was placed over a $50 \times$ objective lens in a buffered physiological saline solution containing 67μ M-dihydrorhodamine, and the images were recorded several minutes later.

NAD(P)H and FAD fluorescence photometry

Light from a xenon arc-lamp (ILC Technology, Sunnyvale, CA, U.S.A.), which was filtered for NAD(P)H fluorescence ϵ A, U.S.A.), which was interference filter (Sebott) and for FAD fluorescence excitation by a 460 nm interference \mathbf{f} and for \mathbf{FAD} , fluorescence excitation by a 460 nm interference filter (Schott), both with a half-bandwidth of 7 nm, transilluminated the $\frac{1}{2}$ card body time. The spectrum of the emitted light from the $\frac{1}{2}$ the passed through a cut-off f filter $[400 \text{ nm} \text{ cm} \text{ N} \text{A} \text{D}(\text{D})\text{H}$ tissue passed through a cut-off filter [400 nm for NAD(P)H fluorescence and 490 nm for FAD fluorescence). Spectra were analysed using a Veril-S-60 filter (Leitz, Wetzlar, Germany) and recorded with a photomultiplier (EMI 9502A; Hayes, Middx., U.K. U.K., both placed on the tube of the microscope of \mathbf{W} $t_{\rm max}$, both placed on the third ocular three of the interesting trinocular head. NAD(P)H fluorescence was measured at 459 ± 2 nm (*n* = 6) and FAD fluorescence at 535 ± 4 nm (*n* = 6).

Light microscopy

The excised carotid body was fixed by immersion for ¹ h in 0.025 M-sodium cacodylate-buffered ² % glutaraldehyde (20 °C, 0.025 M-sodium cacodylate-buffered 2% glutaraldehyde (20 °C, pH 7.4), washed with the same buffer and post-fixed for 2 h in 2% OsO₄ (4 °C, pH 7.4). After dehydration in increasing concentrations of ethanol (up to 70%) the tissue was contrasted with 1% uranyl acetate plus 1% phosphotungstic acid in 70% ethanol overnight (4 $^{\circ}$ C), followed by complete dehydration. The sample was embedded, via the intermediary medium propylene oxide, in Epon 812. Semi-thin sectioning $(1 \mu m)$ was carried out on a Reichert Ultracut E. Sections stained with Richardson Toluidene Blue solution were viewed and photographed with a Leitz Dialux 20 light microscope.

Materials

DPI was synthesized as described by Collette et al. (1956).

Fig. 1. Absorbance spectra of carotid body preparations

Samples were prepared and absorbance spectra were determined as diffusive were prepared and absorbance spectra were determined as α -oxidization minus and memous section. Trace a, difficultebodies; b, reduced minus ani-valuated university spectrum; or some area carotic bodies; b, reduced minus oxidized pyridine haemochrome spectrum; c, spectrum of the dithionite-reduced preparation after CO treatment minus the dithionite-reduced spectrum.

Afferent chemoreceptor discharge recording

Chemoreceptor discharge was recorded from the sinus nerve by the method of Delpiano & Acker (1989). Briefly, multifibre filaments (5-20 active fibres) lifted into a paraffin oil pool above t_{max} the superior medium were recorded with the aid of a unipolar super ple superfusion medium were recorded with the and of a dimpolar platinum electrode and displayed on a dual-beam storage oscilloscope (Textronik 5113; Köln, Germany). The amplified spikes were fed into a window discriminator, counted with a ratemeter
and audiomonitored. NAD(P)H and FAD fluorescence, as well as the chemoreceptor discharge rate, were monitored with a multipen ink recorder (Rikadenki, Freiburg, Germany).

RESULTS AND DISCUSSION

Reduced minus oxidized difference spectra revealed the pres-Required minus oxidized difference spectra revealed the presence of a haem signal with absorbance maxima at 560 nm, 518 nm and 425 nm, suggesting a b-type cytochrome (Fig. 1, spectrum a). The presence of protohaem as the prosthetic group was confirmed by the pyridine haemochrome spectrum, which had the characteristic absorbance maximum of the band centred at 556–557 nm (Porra & Jones, 1963) (Fig. 1, spectrum b). Using a molar absorption coefficient of $21.6 \text{ mm}^{-1} \cdot \text{cm}^{-1}$, the quantity of cytochrome b was estimated to be 310 pmol·mg of protein⁻¹. Neither NADH (1 mm) nor NADPH (1 mm) caused detectable reduction of the cytochrome. The lack of reduction by these electron donors may be due to disruption of the system during sonication, rapid re-oxidation of reduced haem by molecular oxygen or the requirement for another electron donor. Haem

Fig. 2. Light microscopic and rhodamine 123 confocal images of a carotid body

 $T_{\rm eff}$ and including microscopy (left side) and incubated with dimensional $T_{\rm eff}$ The carotid body was prepared for light microscopy (left side) and incubated with dihydrorhodamine 123, and images (right side) were obtained as described in the Materials and methods section. Only the highly fluorescent cells are within the plane of focus of the objective lens. The fluorescence intensity is shown in pseudocolours and increases from blue to red. Bar = 100 μ m. cb, carotid body; sn, sinus nerve. A cluster of type I cells is indicated by the circle.

. 3. Knowannik 125 comocar mages of carotid body cens

Fig. 2. For caption see facing page.

proteins that react with oxygen frequently bind CO. The dithionite-reduced carotid body preparation formed a complex with CO (Fig. 1, spectrum c) with troughs around ⁵⁶⁰ and 430 nm and a peak at 420 nm. It is apparent from the size of the spectral changes that not all of the haem is complexed to CO, and in this respect the CO-binding characteristics are similar to those of the neutrophil cytochrome b_{-245} (Cross et al., 1981, 1982), which is believed to be the terminal oxidase in the NADPHdependent superoxide-generating system of phagocytic cells. Cytochrome b_{-245} also has a low affinity for CO ($K_m = 1.4$ mm) (Cross et al., 1982), despite a much higher affinity for O_2 (K_m = 5-30 μ M) (Gabig et al., 1979; Gabig & Babior, 1979; Kakinuma & Kaneda, 1982; Edwards et al., 1983; Morel et al., 1985). The low CO affinity of the carotid body haem we describe here is in accordance with other measurements, which showed that the chemoreceptor discharge of the carotid body also has a low affinity for CO and first starts to increase in acute experiments at 63 $\%$ saturation of haemoglobin by CO (Lahiri, 1980).

$H₂O₂$ production

The confocal microscope scans and collects emitted light from I he confocal microscope scans and collects emitted light from $\frac{1}{2}$ W_{tot} while the plane of focus of the objective ieds (bifottom α) $f(x)$ and $f(x)$ a discrete stimulation the whole time $f(x)$ from a discrete slice within the whole tissue. Non-fluorescent cells are not visible. $\frac{1}{2}$ (eq. shows a light microscopic picture of a cross-section picture of a cross-section of a cross-s

 $\frac{1}{16}$. $\frac{1}{2}$ (i.e. $\frac{1}{2}$ i.e. $\frac{1}{2}$ i.e. $\frac{1}{2}$ i.e. $\frac{1}{2}$ with $\frac{1}{2}$ i.e. $\frac{1}{2}$ i.e through a carotid body. The typical carotid body tissue (cb) with clusters of type I cells and sinus nerve (sn) are to be seen. As an $\frac{1}{2}$ and $\frac{1}{2}$ can construct of the construction of α allipic, one cluster of type I cens is marked by a clicle. These typical clusters are also visible on the right side, where three optical cross-sections at different depths through a carotid body, which has been incubated in dihydrorhodamine, are shown. The highly fluorescent cells are in the plane of the focus (red colours).

Fig. 3 shows an area of the carotid body under higher magnification (bar $50 \mu m$). The fluorescent cytosol round the nucleus is clearly visible. The generation of rhodamine 123 (shown by fluorescence) suggests that the tissue is producing $H₂O₂$. Images were obtained from carotid bodies maintained at room temperature for periods of greater than 20 min before the addition of dihydrorhodamine 123. However, no image was obtained from a carotid body which had been incubated at room temperature in 10 μ M-DPI for 20 min. This suggests that the

Fig. 4. Nervous chemoreceptor response to hypoxia and DPI

Nervous chemoreceptor discharge was recorded from the sinus nerve as described in the Materials and methods section. The Figure shows original recordings of the sinus nerve action potentials photographed at points 1, 2 and 3 during the experiment; $pO₂$ level in the superfusion medium and integrated nervous chemoreceptor activity are shown.

 \sim ₂ uepenuer

(a) $\mathbf{v} = \mathbf{v}$ μ increases changed changes and $\mathbf{NAD}(\mathbf{r})$ and \mathbf{rAD} fluorescence changes during stepwise changes of the $pO₂$ in the superfusion medium are given from three different experiments. The broken lines give the baselines and the 100% values. Response curves of the three measured parameters to $pO₂$ are shown. Values are means \pm s.e.m. The broken lines are response curves in the presence of DPI (10 μ m). 1 Torr = 133.3 Pa.

 \mathcal{L} rhodamine was due to a specific DPI-inhibitable was due to a specific DPI-inhibitable \mathcal{L} determine was due to a specific DPI-trimonable activity of the tissue. The DPI-treated carotid body was washed and incubated in 67 μ M-rhodamine. After washing to remove the excess external dye, images of the tissue were obtained. These indicated that, in the DPI-treated tissue, the cells still maintained a membrane potential, and so were living. These results suggest that the carotid body is capable of generating H_2O_2 in a DPI-
inhibitable way.

Relationship between chemoreceptor discharge and NAD(P)H/FAD fluorescence

Fig. 4 shows the effects of hypoxia and DPI on the chemoreceptor nervous discharge of the carotid body. Lowering the $pO₂$ in the superfusion medium from 45.1 kPa to 2.5 kPa resulted in a typical increase in chemoreceptor discharge (Delpiano $\&$ Acker, 1989). Addition of DPI (10 μ m) to the superfusion medium induced an increase in the basal nervous activity, which slowly declined and reached control values after about 1 h. A second hypoxic stimulation 10 min after DPI application again resulted in an increase in chemoreceptor activity, but a third one, after about 27 min, did not induce a response. This irreversible inhibition of the hypoxia-induced nervous chemoreceptor response at about 27 min after DPI application was observed in ten experiments. The result indicates that DPI is not impairing action potential generation in the post-synaptic nerve endings of the sinus nerve, but that DPI must act specifically on the $pO₂$ dependent chemoreceptor process in the carotid body.

The pO_2 in the medium was changed stepwise from 45.1 kPa to 2.5 kPa, and this change was correlated with the nervous chemoreceptor activity ($n = 5$), the NAD(P)H fluorescence ($n =$

 \Box nange in chemoreceptor discnarge as well as in \Box

Values are given as percentages of control; i.e. normoxic conditions without DPI. Reduction of $NAD(P)^+$ and FAD are clearly to be seen, as is the initial excitation of the chemoreceptor discharge.

 6) and the FAD fluorescence $(n-6)$, as shown in Fig. 5. Fig. $\frac{5}{5}$ gives the three parameters for the three parameters from the three different three different states from the three different states from the three different states of the three different states of the three diff experiments. By relating, in each experiment, the changes at the experiments. By relating, in each experiment, the changes at the $\frac{100}{2}$ different pO_s values to the maximal response (100%), the mean response curves of the three parameters were obtained (Fig. $5b$) under control conditions (solid lines) and in the presence of DPI (broken lines). The pO_2 at the half-maximal value of the response curve under control conditions was 8.4 kPa for the chemoreceptor discharge, 8.8 kPa for the NAD(P)H fluorescence and 8.7 kPa for the FAD fluorescence. This similarity of the half-maximal values hints at a close interaction between the three parameters during the chemoreceptive process in the carotid body under hypoxia. DPI application led to a complete inhibition of the hypoxia-induced nervous chemoreceptor response and to an attenuation of the fluorescence changes.

Fig. 6 shows the mean time course of the response of chemoreceptor discharge $(n = 10)$ and NAD(P)H $(n = 6)$ and FAD ($n = 6$) fluorescence to DPI application. The control value of the different parameters before administering DPI was taken as 100 $\%$ for this purpose. It can be seen that $NAD(P)^+$ and FAD become reduced, as during hypoxia, whereas the chemoreceptor activity, after an initial increase, declined to values slightly below control. A stabilization of the values was reached after 1 h. The time course of the chemoreceptor discharge is similar to that of nerve recordings under prolonged hypoxia in the carotid body in vitro (Delpiano & Acker, 1989), where a decline of the chemoreceptor discharge after an initial increase can also be observed (Delpiano $&$ Acker, 1989).

It might therefore be speculated that the presumed interaction
of DPI with the haem protein mimics, at least partly, the pO_2

Received 2 July 1990/22 August 1990; accepted ³ September 1990

chemoreception in the carotid body by preventing. electron transfer through the oxidase and consequently $H₂O₂$ formation. However, future experiments will have to give stronger support for this speculative pO_2 -dependent H_2O_2 formation and its possible importance for pO_a chemoreception in the carotid body. The following two hypotheses are attractive to study in this context. The involvement of $H₂O₂$ in $pO₂$ chemoreception was proposed by Sies (1977), with the model that glutathione peroxidase degrades hydroperoxides and thereby induces a transition in the GSH/GSSG redox system, which as the major cellular pool of mobile thiol groups can change protein formations, e.g. for ion channels. Another possibility for the regulation of ion channel conductivity is that the haem protein in the carotid body is linked to guanylate cyclase, as described in the bovine lung (Gerzer et al., 1981), thus regulating the cyclic GMP content, which is known to decrease in the carotid body under hypoxia (Wary et al., 1989).

REFERENCES

- Acker, H. (1989) Annu. Rev. Physiol. 51, 835–844
Acker, H. (1989) Annu. Rev. Physiol. 51, 835–844
- Acker, H., Dufau, E., Huber, J. & Sylvester, D. (1989) FEBS Lett. 256, 75-78 $\frac{1}{2}$ $\frac{1}{2}$
- coe, T. J., Duchen, M. R., Eisner, D. A., O'Neill, $\ddot{\cdot}$ millos, M. (1989) J. Physiol. (London) 416, 421-434
- Collette, J., McGreer, D. & Crawford, R. (1956) J. Am. Chem. Soc. 78, 3819-3820 $-3819-3820$
Cross, A. R. & J. C. G. G. (1996) Biochem. J. 237, 111-1166
- Cross, A. R. & Jones, O. T. G. (1986) Biochem. J. 237, 111–116
- Cross, A. R., Jones, O. T. G., Harger, A. M. & Segal, A. W. (1981)
Biochem. J. 194, 599-606 Biochem. J. 194, 599-606
- oss, A. R., Higson, F. K., Jones, O. I. A. W. (1982) Biochem. J. 204, 479-485
- Cross, A. R., Parkinson, J. F. & Jones, O. T. G. (1984) Biochem. J. 223,
337-343 $337-343$
- Delpiano, M. A. & Acker, H. (1989) Brain Res. 482, 235-246
- Delpiano, M. A. & Hescheler, J. (1989) FEBS Lett. 249, 195-198
- Edwards, S. W., Hallett, M. B., Lloyd, D. & Campbell, A. K. (1983)
FEBS Lett. 161, 60–64 FEBS Lett. 161, 60–64
 \overline{a}
- Gabig, T. G. & Babior, B. M. (1979) J. Biol. Chem. 254, 9070-9074
- Gabig, T. G., Bearman, S. J. & Babior, B. M. (1979) Blood 53, 1133-1139
- Gatley, J. S. & Sherratt, H. S. A. (1976) Biochem. J. 158, 307-315
- Gerzer, R., Böhme, E., Hofmann, F. & Schultz, G. (1981) FEBS Lett. $132, 71 - 74$
- Hescheler, J., Delpiano, M. A., Acker, H. & Pietruschka, F. (1989) Brain Res. 486, 79-88
- Kakinuma, K. & Kaneda, M. (1982) Adv. Exp. Med. Biol. 141, 351-360

Lahiri, S. (1980) Fed. Proc. Fed. Am. Soc. Exp. Biol. 39, 2648-2652

- Lopez-Lopez, J., Gonzales, C., Urena, J. & Lopez-Barneo, J. (1989) J. Gen. Physiol. 93, 1001-1015
- Morel, F., Doussiere, J., Stasia, M.-J. & Vignais, P. V. (1985) Eur. J. Biochem. 152, 699-679
- Pietruschka, F. (1985) Brain Res. 347, 140-143
- Porra, R. J. & Jones, O. T. G. (1963) Biochem. J. 87, 186-192
- Rothe, G., Oser, A. & Valet, G. (1988) Naturwissenschaften 75, 354-355
- Shaw, K., Montague, W. & Pallot, D. J. (1989) Biochim. Biophys. *A*
1013, 42–46
- Shotton, D. & White, N. (1989) Trends Biochem. Sci. 14, 435-439
- Sies, H. (1977) in Tissue Hypoxia and Ischemia (Ruvich, M., Coburn, R., Lahiri, S. & Clance, B., eds.), pp. 51-66, Plenum Publishing Corp., New York
- Smith, K. M. (1975) in Porphyrins and Metalloporphyrins (Smith, U. M., ed.), pp. 804-807, Elsevier, Amsterdam and New York
- Wary, W. J., Cheng, G. F., Dinger, B. G. & Fidone, S. J. (1989) Neurosci. Lett. 105, 164-168