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ABSTRACT

The nervous system regulates perception, cognition and behavioral responses by serving as the
body’s primary communication system for receiving, regulating and transmitting information.
Neurons are the fundamental structures and units of the nervous system. Their differentiation and
maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular
markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins
dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are
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intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of
biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the
markers of mature neuronal differentiation and their relationship with nervous system diseases.
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1. Introduction

Neurons are the fundamental functional units of the
nervous system, responsible for transmitting and pro-
cessing information. Its structural development and
maturation are crucial for the proper functioning of the
brain’s nervous system. During brain development and
maturation, neurons undergo various changes. They send
out branches, known as axons and dendrites, to the
periphery and receive stimulation from specific protein
molecules produced in the cell. This process allows
them to form synapses with adjacent neurons, construct
neural circuits and networks and maintain the normal
morphology and function of neurons [1,2]. Biomarkers
during differentiation of mature neurons mainly include
protein molecules that are specifically expressed dur-
ing neuronal development and functional maturation,
and the type, localization and expression level of the
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biomarkers depend on the growth and function of
different parts of the neuron [3-5]. Intracellular markers
ensure neuronal specificity, cytoskeletal markers main-
tain cellular morphology during neuronal differentiation
and synaptic markers ensure inter-neuronal information
transfer. These markers are important for cell identifi-
cation, functional observation, disease diagnosis, and
prognosis [6-8]. Studying the production and expression
of these biomarkers can enhance our understanding of
neuronal development and maturation processes, as well
as the associated molecular mechanisms.

In the field of neurology, biomarkers are utilized to
objectively monitor and assess normal physiology, patho-
logical processes and therapeutic responses. Abnormal
expression of certain markers has been utilized as a
basis for diagnosing related diseases [9,10]. In this paper,
we discuss mature neuronal biomarkers according to
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a roadmap (Figure 1) and analyze their localization,
structure and function in mature neurons, as well as their
relationship with nervous system diseases.

2. Mature neuron-specific intracellular markers

As neurons mature, the levels of neuron-specific biomark-
ersincrease. Today, researchers use neuronal intracellular-
specific markers to identify neurons and observe neu-
ronal growth [11]. Mature neuronal cells contain a nucleus
and cytoplasm. Markers for the nucleus and cytoplasm
have been identified based on immunolocalization anal-
ysis [12-14]. Thus, the properties of neuron-specific
intracellular markers are commonly used to identify
neuronal cells. In addition, when brain injury occurs
and neuronal cells are destroyed, intracellular-specific
markers are released into the cerebrospinal fluid and
blood, which may serve as a new tool for diagnosing
disease [15,16].

2.1. Neuronal nuclei

In 1992, Mullen et al. [12] first discovered that Neuronal
nuclei (NeuNs) recognizes a vertebrate nervous system
and neuron-specific nuclear protein in mouse brain
tissue. NeuN expression is exclusively associated with
neural tissue. Unlike other biomarkers, it is primarily
localized in the nucleus of mature neurons, making it
the most specific marker for mature neurons (Table 1,
Figure 2). A small distribution of NeuN was also found
in the perinuclear cytoplasm. Immunoblotting assay
revealed two bands of NeuN proteins: 46 and 48 kDa. The
46 kDa NeuN protein was predominantly located in the
nucleus of neurons, while the 48 kDa NeuN protein was
predominantly present in the cytoplasm, possibly due to
their unique short amino acid sequences [17,18]. NeuN
is encoded by the RNA binding fox-1 homolog 3 (RBFOX-
3) gene, which belongs to the RNA binding fox-1 homolog
(RBFOX) family of genes and regulates the differentiation
of neurons in the brain and promotes their structural and
functional maturation [19,20]. Additionally, there may be
variations in NeuN expression among different types of
neurons, as NeuN expression was not detected in certain
cells such as Purkinje cells of the cerebellum, sympathetic
ganglion cells, photoreceptor cells of the retina and
dopaminergic neurons in the substantia nigra [18].

NeuN is involved in the development of mature
neurons. The RBFOX knockout animal model constructed
by Jacko et al. [20] showed defects in the development
of structures such as the cytoskeleton, cytoplasmic mem-
brane and synapses, resulting in limited electrophysiolog-
ical activity. Currently, NeuN antibodies are widely used
in neuroscience, stem cell biology and disease diagnosis.
The anti-NeuN protein can be utilized to determine neu-

ronal phenotype and identify neuronal differentiation. Its
expression level has been used to directly assess neuronal
survival or death, and NeuN-positive cells have been used
as a reliable marker to quantify the efficacy of treatments
in experimental therapeutic studies [20]. In addition,
NeuN has potential applications in the pathological
diagnosis of neuro-oncology. Zhang et al. [21] conducted
immunohistochemical analysis of tumor samples from
patients with neurocytoma and found that some neu-
rocytomas had NeuN immunoreactivity in the nucleus.
However, a comprehensive understanding of the role and
expression pattern of NeuN in the diagnosis of different
tumors is lacking, and further studies are needed to
clarify the exact role of NeuN in neural development and
maturation.

2.2. Neuron-specific enolase

Neuron-specific enolase (NSE) is an enzyme with enolase
activity that is specific to neurons. In 1965, Moore and
McGregor [13] isolated proteins from the bovine brain
and identified the soluble brain protein 14-3-2, with a
molecular weight of 78 kDa, which is widely distributed in
intracranial neural tissues. Subsequent studies identified
the protein 14-3-2 as NSE [22]. In vertebrates, enolase
isozymes consist of different subunits called «, 8 and
y. Among these, enolase « is ubiquitous; enolase B is
muscle-specific; and enolase y is neuron-specific. There
are five known enolase isozymes, aw, 88, vy, aB and
ay.The yy and ay dimer isozymes are found in neurons
and peripheral neuroendocrine cells, respectively [22,23].
Therefore, NSE is also known as y-enolase or enolase-2
(Eno2). The level of NSE gradually increases as neurons
mature morphologically.

In vivo, NSE catalyzes the cleavage of «-
phosphoglycerol to produce phosphoenolpyruvate,
which maintains normal glucose metabolism and ATP
production throughout glycolysis [24]. NSE is commonly
used as a marker for neurons and neuroendocrine
cells, making it a useful tool for assessing neuronal
injury and neuroendocrine tumors. Haque et al. [23]
found that the expression level of NSE was significantly
elevated in rats following acute spinal cord injury (SClI),
and that inhibition of NSE expression and activity
could reduce secondary injury after SCl. Moreover,
elevated levels of NSE, a marker for neuroendocrine
cells, are associated with poorly differentiated tumors.
Immunohistochemical experiments on samples from
patients with adenocarcinoma tumors found that NSE
expression levels increased when these sites were
predisposed to malignancy [25]. This information
is valuable for diagnosing, staging, and treating
related tumors. Additionally, NSE also possesses
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Figure 1. Roadmap for this review.

Table 1. Markers of mature neurons.

Marker Years Location Function Ref.

NeuN 1992 Cell nuclei Recognition neurons; determine the neuronal phenotype; assess survival and [12,20,21]
death of neurons; and differential diagnosis of nerve tumors

NSE 1965 Cytoplasm Maintain normal glucose metabolism; assess neuronal damage and [13,23-25]
neuroendocrine tumors; and monitor craniocerebral injury

UCH-L1 1983 Cytoplasm and axons Promote cell proliferation; protect neurons; monitor brain injury; and [14,28-30,32-34]
involvement in tumor metastasis

MAP-2 1975 Cytoplasm and axons Promote neuron maturation; maintain the morphological structure of neurons; [39,40,42,43]
modulate synaptic plasticity; and involved in signaling within neurons

Tau 1974 Cytoplasm and axons Participate in the formation of microtubules and maintain the stability of [44,46,48-50]

neuronal cytoskeleton; affect synaptic plasticity and signal transduction; and
maintain the integrity of DNA and RNA

TUBB3 1986 Cytoplasm and axons Ensure the growth and maintenance of axons; and promote the proliferation, [52-54,57]
invasion and metastasis of tumor cells
NF 1957 Axons Maintain the growth stability of axons; monitor nerve damage; and [58-60]
diagnosing neurological disorders
SYP 1985 Synaptic vesicle Stable membrane fusion hole; modulate vesicle circulation and synaptic [65,67-70]
plasticity; and monitor neuroendocrine tumors
SYN 1977 Synaptic vesicle Involved in the growth and development of neurons; promote aggregation of [71,76-78]
synaptic proteins and vesicles; and maintain neurotransmitter transmission
SYT 1981 Synaptic vesicle Controls vesicle fusion with presynaptic membranes; and maintain synaptic [79,80,82,83]
transmission
GAP-43 1981 Presynaptic Maintain neuronal development and synaptic formation; and regulate the [85,87-89]
membrane budding of vesicles
SNAP-25 1989 Presynaptic Promote vesicles and presynaptic membrane fusion; and involved in axon [92,93,96]
membrane growth
VAMP 1989 Synaptic vesicle Participate in membrane fusion, achieve exocytosis and transmitter release; [91,94,96,97]
and promote elongation of axons
Syntaxin 1992 Presynaptic Maintain vesicle exocytosis; and involved in neural development, axon [91,92,95,96]
membrane germination and growth
PSD-95 1981 Postsynaptic Promote synaptic maturation; regulate intracellular signaling; and maintain [98,99,102,103]

membrane synaptic plasticity.
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Figure 2. Localization of biomarkers in mature neurons. (A) In neurons, NeuN is located in the nucleus; NSE and UCH-L1 are mainly
located in the cytoplasm; MAP-2, Tau and TUBB3 are mainly located in cytoplasm and axons; NF is located in the axon. (B) In neuronal
synapses, SYN, SYP, SYT and VAMP are located in synaptic vesicles; GAP-43, SNAP-25 and Syntaxin are located in the presynaptic

membrane; PSD-95 is localized in the postsynaptic membrane.

neurotrophic functions. It can regulate neuronal survival,
differentiation and synapse regeneration by activating
the phosphatidylinositol-4,5-bisphosphate  3-kinase
(PI3K) and mitogen-activated protein kinase (MAPK)
signaling pathways [26]. In clinical practice, NSE is easily
affected by external factors, resulting in low accuracy of
results. Therefore, it is necessary to constantly improve
the detection methods and technologies of NSE [27].

2.3. Ubiquitin C-terminal hydrolase L1

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a member
of the ubiquitin C-terminal hydrolase family. It was
originally discovered by Jackson et al. [28] in human
brain extracts with a molecular weight of about 24.8 kDa,
and was named ‘protein gene product 9.5" Immunocyto-
chemical staining showed that in the normal mouse brain,
UCH-L1 showed strong and uniform cytoplasmic staining
throughout the neurons [14]. The gene encoding UCH-
L1, also known as the Parkinson disease 5 (PARK5) gene,
is located on chromosome 4P14, Its structure consists of
two lobes, one of which consists of five ¢-helices and the
other of two a-helices and six 8-folds. These a-helices and
B-folds form a relatively compact a-S-o structure.UCH-
L1 also contains an N-terminal domain and a C-terminal
domain. Its N-terminus binds to ubiquitin and is involved
in the localization and regulatory functions of UCH-

L1, whereas the C-terminus regulates the stability of
substrate proteins by catalyzing hydrolysis reactions and
removing ubiquitin from the substrate proteins [14,29].

UCH-L1 is associated with cell proliferation, neuronal
survival and synaptic plasticity [29,30]. Overexpression
of UCH-L1 inhibits cell mitosis, leading to decreased cell
proliferation, while underexpression of UCH-L1 results
in abnormal accumulation of proteins, affecting the
normal physiological functions of the brain [30,31].
Reichelt et al. [29] found that non-functional UCH-L1
impairs the proteasome and drives podocyte injury in
mice with membranous nephropathy. Clinically, UCH-
L1 is now widely used in the screening, diagnosis and
therapeutic monitoring of patients with brain injury [32].
Recent studies have found that UCH-L1 is associated
with tumor metastasis [14,33,34]. The expression of UCH-
L1 in primary gastric cancer and liver metastasis of
gastric cancer was detected by immunohistochemical
staining in vitro. UCH-L1 promotes the metastasis of
gastric cancer cells by up-regulating protein kinase B (Akt)
and extracellular signal-requlated kinases (ERK1/2), and
by constructing a mouse model of lung metastasis, it was
found that upregulation of hypoxia-inducible factor-1«
(HIF-1¢) activity promoted the metastasis of breast cancer
cells and lung cancer cells [33,34]. However, there is still
some controversy about the mechanism of action of UCH-
L1 in other tumors.



3. Cytoskeletal markers of mature neurons

The morphology and structure of neuronal cells are
essential for maintaining normal function, and the
cytoskeleton determines neuronal morphology [35]. As
neurons differentiate and mature, the levels of cytoskele-
tal markers increase, regulating the polarization and
stability of neurons by supporting and maintaining their
morphological structure [36]. Additionally, cytoskele-
tal markers participate in cell transport and synaptic
transmission of neurons [37]. By examining the expres-
sion of cytoskeletal markers in neurons, it can be
inferred that the neurons have a normal structure and
function.

3.1. Microtubule-associated protein-2

Microtubule-associated protein-2 (MAP-2) is an essential
part of the cytoskeleton and influences cell structure and
function by controlling microtubule stability, dynamics
and localization [38]. It is a member of the MAPs
family and is expressed from the mitotic stage of cell
proliferation. MAP-2 is a high molecular weight protein,
which was discovered by Sloboda et al. [39], using primary
rat hippocampal cultures prepared from fetal rats, and
it mainly exists in the axons and dendrites of neurons.
It consists of multiple structural domains, including a
core structural domain and multiple C-terminal structural
domains, which allow MAP-2 to attach to microtubules
and regulate their stability and dynamics. MAP-2 proteins
have five isoforms, A, B, C, D and E. By studying the nerve
tissue of rats, it was found that their distribution showed
obvious specificity [40,41]. Among them, MAP-2A and
MAP-2B are mainly localized in neuronal dendrites, MAP-
2C is present in axons and dendrites, MAP-2D is concen-
trated in neuronal cytosol, and MAP-2E is exclusive to glial
cells. These isoforms display varying expression during
neuronal development, with MAP-2C being replaced by
MAP-2A during maturation, while MAP-2B is expressed
throughout development.

The level of MAP-2 expression is closely associated
with neuronal maturity [42]. During the early stages of
neuronal development, MAP-2 expression is low and
gradually increases as neurons mature. MAP-2 regulates
intracellular signaling pathways by interacting with other
proteins, such as protein kinases, thereby influencing
neuronal functions [43]. Synapses are key structures
for communication between neurons, and MAP-2 is
involved in synapse formation and information transmis-
sion. Kim et al. [40] found that MAP-2 was involved in
activation-dependent synaptic plasticity in the mature
hippocampal network by isolating hippocampal neurons
from rat brains and inducing long-term potentiation.
The absence or mutation of MAP-2 results in abnormal

FUTURE SCIENCE OA 5

development and loss of function in neural synapses.
However, the specific mechanisms and regulatory net-
works involved need to be further investigated.

3.2. Tau protein

Tau protein is another highly abundant MAP found
mainly in the axons of neurons. In 1974, Igbal et al. [44]
first isolated neurofibrillary tangles and paired helical
filaments proteins from the brains of Alzheimer patients.
Subsequently, Weingarten et al. [45] isolated proteins
essential for microtubule assembly from pig brains and
named them Tau protein, revealing that paired heli-
cal filament proteins and Tau protein are the same
substance. The Human Tau protein is encoded by the
microtubule-associated protein tau (MAPT) gene, located
on chromosome 17q21. Its structure consists of an
N-terminal proline-rich region, a microtubule-binding
domain, and a C-terminal, The microtubule-binding
domain in Tau protein interacts with microtubules to
maintain cytoskeletal stability [46]. In addition, when
the gene encoding Tau protein is mutated, it reduces
the affinity of Tau protein to bind microtubules and
affects the formation of neuronal cytoskeleton in the
brain. Tau protein is a phosphoprotein, its phospho-
rylation state is strictly regulated by multiple kinases
and phosphatases in physiological conditions. However,
when the phosphorylation process of Tau protein is
imbalanced, the affinity of Tau protein for microtubules
decreases, leading to an increase in Tau protein aggre-
gation and further exacerbating microtubule instability
[46,47].

Tau proteins are proteins enriched in axons and
have been implicated in cytoskeleton stabilization and
synaptic transmission [46]. Tau protein binds to micro-
tubules and is translocated into axons via members
of the dynamin and kinesin families, stabilizing the
structure of axonal microtubules [48]. Researchers have
found that induced pluripotent stem cell (iPSC)-derived
neurons can secrete tau proteins, which are delivered
to neighboring neurons and interact with synapses and
mitochondria. When neuronal activity increases, secreted
tau interacts with proteins on the outer surface of
synaptic vesicles [49]. These findings reveal that Tau
protein is essential for the transmission of information
between nerve cells. Additionally, studies using primary
neuronal cultures have shown that Tau also interacts with
nucleic acids and localizes to the nucleus. Tau protein
can directly bind to DNA and RNA, protecting them
from oxidative damage and helping to maintain DNA
and RNA integrity [50]. It provides new ideas for us
to further explore the multifunctionality of Tau protein.
However, the regulatory mechanism involved in Tau
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protein is very complex, which increases the difficulty of
research.

3.3. Class lll beta-tubulin

The growth and development of the nervous system
is highly dependent on the cytoskeleton, the main
component of which is the microtubule, which con-
sists of heterodimers of o and gB-microtubule proteins.
The «o/B-microtubulin heterodimer is a combination
of different @ and B-microtubulin isoforms. Currently,
there are eight a-microtubulin isoforms and seven f-
microtubulin isoforms in humans [51]. Of these, Class Il
beta-tubulin (TUBB3) protein expression is restricted to
neurons and peaks during axon guidance and neuronal
maturation [52,53]. TUBB3 was first isolated from a mouse
cDNA library in 1986 [54] and has a molecular weight
of approximately 50 kDa. The TUBB3 gene is located on
chromosome 16g24.3 and encodes the 450 amino acid
TUBB3 protein. TUBB3 consists of two identical subunits,
each containing a GTP-binding site and a microtubule-
binding site. The state of the GTP-binding site of the
TUBB3 protein can affect the stability and dynamics
of microtubules, and regulate the kinetic properties of
microtubules by interacting with GTP-binding proteins.
Meanwhile, the microtubule-binding site of the TUBB3
protein interacts with other microtubule proteins and
participates in microtubule formation and maintenance
[55,56].

TUBB3 is primarily located in axons and dendrites
and is involved in neurogenesis, axon guidance, and
maintenance. Latremoliere et al. [52] found that the
growth rate of axons in neurons of TUBB3 knockout
mice was greatly reduced compared with normal mice.
Tischfield et al. [53] constructed a TUBB3 knockout mouse
model revealing axon guidance defects. Downregulation
or mutation of TUBB3 gene expression leads to malfor-
mations in cortical development and the development of
certain related neurological disorders, such as congenital
extraocular myofibrillar fibrosis type 3 (CFEOM3) [56].
Moreover, overexpression of the TUBB3 protein has
been associated with various malignant tumors, includ-
ing brain tumors, lung cancers, renal carcinomas and
malignant melanomas. It is involved in tumor cell pro-
liferation, invasion and metastasis [57]. Considering the
close relationship between TUBB3 protein and cancer,
inhibition of TUBB3 protein expression in an in vitro
mouse model significantly hindered tumor growth and
metastasis [51,57]. Therefore, further in-depth studies on
the function and regulatory mechanism of TUBB3 protein
are needed to develop new therapeutic strategies and
drug targets to bring hope for the treatment of related
cancers.

3.4. Neurofilament

Neurofilament (NF) proteins, which are intermediate
filament proteins, are highly conserved and are mainly
found in neuronal axons. They were discovered by
Maxfield et al. [58] in 1957, when they were isolated from
squid axons. NF proteins are arranged in parallel along
the long axis of the axon and consist of neurofilament
light chain (NFL), neurofilament medium chain (NFM),
neurofilament heavy chain, alpha-linked proteins, and
peripheral proteins. The first three proteins are often
referred to as the “neurofilament triplet” NFL is widely
expressed and can self-assemble to form functional
fibers, but neurofilament medium chain or neurofilament
heavy chain alone cannot form functional fibers [59]. In
addition, these NFs share the same structural domains,
including an N-terminal head domain, a helical core rod
domain of 1a, 1b, and 2a/b, and a variable C-terminal tail
domain [60]. The process of NF proteins assembly begins
with the dimerization of NFL or a-internexin with other
NFs, which then aggregate in an antiparallel manner,
resulting in the formation of tetramers. Eight transversely
associated tetramers then arrange themselves to form
a cylindrical structure. Subsequent annealing processes
facilitate the longitudinal and lateral extension of the
cylindrical NF, ultimately leading to the formation of NFs
with a diameter of 10 nm [61] (Figure 3). As neuron
matures, nestin and waveform proteins are replaced by
NF proteins. Axons gradually elongate, and connect,
and protein transportation, assembly and modification
processes commence.

NF proteins act as part of the cytoskeleton and are
localized in neuronal axons. The exact function of NF is
unknown, but it can stabilize the morphology of axons
and regulate the growth and positioning of axons and
dendrites to achieve efficient and high-speed nerve con-
duction [60]. Also, NF interacts with other proteins and
organelles, such as mitochondria and microtubules. This
suggests that NF proteins may have additional undiscov-
ered functions beyond axon stability [62]. The expression
of NF proteins is limited to mature neurons and is one of
the earliest visible markers in the mature nervous system.
NFL, the most significant component of NF, is particularly
important, and its expression level can be used to assess
axon functionality. Gaetani et al. [59] observed in patients
with amyotrophic spinal sclerosis an abnormally elevated
level of cerebrospinal fluid NFL expression leading to
axonal dysfunction and neurodegeneration. Thus, NF
proteins are highly specific for neuronal cell injury and
death and are widely used as valuable markers in the
diagnosis of neurological disorders. In addition to axons,
a large number of studies can be used to explore the
function of NF in the future.



FUTURE SCIENCE OA 7

NFL
68 kDa

NFM
150 kDa

NF triplet

NFH
200 kDa

a-internexin
66 kDa

Peripherin
57 kDa

Head

N —-— @ () cC

N —E—

N — —— - c

N ———@——- C

Rod
Coil 1a  Coil 1b

Tail
Coil 2a/b
C

Figure 3. Assembly and structure of NF proteins. NF is formed by the formation of NFL or «-internexin by binding to the conserved rod
domain to form a coiled spiral dimer with other NFs, two dimers assembled in a contralateral parallel fashion to form a tetramer, and
eight laterally bound tetramers to form a cylindrical structure, which is lengthened longitudinally and compressed to form a slender
filamentous NF. The domains of all neurofilament proteins consist of an N-terminal domain, a helical core containing 1a, 1b and 2a/b,

and a variable C-terminal tail domain.

4. Synaptic markers of mature neurons

Neurons in the CNS form interconnected networks
through synapses, which are the functional connections
between neurons and the primary sites of information
transmission [63]. Neuronal synaptic markers are specific
proteins or molecules used to label neuronal synapses. By
observing the expression levels of synaptic markers, we
can understand the development of neuronal synapses
and study the connections and communication modes
between neurons [64]. This deepens our understanding
of the function of the nervous system.

4.1. Synaptophysin (SYP)

SYP is a protein located on the membrane of synaptic
vesicles in neurons. It was discovered by Jahn et al. [65]
in 1985 from rat brain synaptic vesicles and is also
known as p38. SYP has a relative molecular mass of
38 KDa and accounts for approximately 7-10% of total
synaptic vesicle proteins. In humans and mammals,
the SYP gene is located at Xp11.2-p11.23 on chromo-

some X and is highly conserved. The structure of SYP
consists of four transmembrane structural domains, a
short N-terminal signal peptide, and a long C-terminal
hydrophobic peptide, the latter two of which are exposed
on the cytoplasmic surface of the vesicle membrane.
The presence of a hydrophilic region between the first
and second transmembrane structural domains of SYP
allows it to be encapsulated in the vesicle membranes
of synaptic vesicles of neurons and to interact with
other synaptic proteins [66]. Furthermore, the N-terminus
of SYP contains many highly conserved amino acid
sequences, while the C-terminus interacts with various
proteins to regulate vesicle cycling [67]. SYP is expressed
early in neurogenesis and is significantly upregulated
during synaptogenesis [65]. Therefore, SYP can be used
as a marker of synaptogenesis and neuronal maturation.

SYP regulates membrane fusion, cytokinesis, vesicle
recycling, and synaptic plasticity by interacting with a
variety of proteins. Hsiao et al. [68] discovered that
SYP controls membrane fusion pore dynamics during
Ca%*-triggered exocytosis and soluble N-ethylmaleimide-
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sensitive factor attachment protein receptor (SNARE)
proteins are crucial in the formation of membrane
fusion pores at the onset of cytotoxicity. Specifically, the
transmembrane structural domain Il of SYP interacts with
the SNARE complex to stabilize the membrane fusion
pores. Chang et al. [67] studied mouse synapses and
found that SYP interacts with dynamin to regulate vesicle
fusion, maintain synaptic plasticity and ensure normal
neurotransmitter release. Under normal physiological
conditions, SYP is involved in the recycling of vesicle-
associated membrane protein (VAMP) in the vesicular
cycle. Gordon et al. [69] found that SYP in mouse
hippocampal neurons can transport synaptic VAMP to
vesicles, making them capable of fusion, while SYP
deficiency causes VAMP to disperse along axons, become
trapped on the plasma membrane and limit vesicle
endocytosis. Furthermore, Konukiewitz et al. [70] con-
ducted immunohistochemical staining of tumor tissues
and found that SYP could be used as a new clinical
diagnostic marker for neuroendocrine tumors, especially
for the effective diagnosis of pancreatic neuroendocrine
tumors. However, its accuracy and specificity need to be
analyzed for clinical application

4.2. Synapsin

Synapsin (SYN) is mainly situated on the surface of
synaptic vesicles and is a phosphorylated protein closely
linked to neuronal development and neurotransmitter
release. The SYN protein family consists of three isoforms:
SYN I, SYNIland SYNIII. SYN | was originally discovered by
Paul Greengard in 1977 from bovine brains [71], followed
by SYN Il in slices of rat cerebral cortex [72]. SYN Il was
discovered in 1998 during the early work study of the
Human Genome Project [73]. In humans, SYN I, SYN I
and SYN Ill are produced by selective splicing and located
on chromosomes X, 3 and 22. The N-terminal domain of
SYN is highly conserved, and the C-terminal domain is
relatively unstable. This allows SYN proteins to interact
with other proteins to form a complex regulatory network
that regulates synaptic development and messaging [74].
SYN is mainly localized at synapses, whereas SYN llI
is mainly found in extrasynaptic regions of the adult
brain [75]. This suggests that SYN I, unlike SYN | and II,
does not play a major role in synaptic activity, but rather
in early neural development.

Interneuronal communication relies on exocytosis
from synaptic vesicles. SYN, a presynaptic vesicle mem-
brane protein, can regulate synaptic vesicle dynamics.
Recent studies have shown that SYN aggregates vesicles
through liquid-liquid phase separation, providing a new
organizational framework for synapses [76]. Addition-
ally, SYN binds to related proteins and facilitates the

aggregation of synaptic proteins and vesicles to uphold
neurotransmitter transmission. Yu et al. [77] conducted
electrophysiological and electron microscopic examina-
tions on synaptic vesicles of Hidradenitis elegans and
found that SYN regulates neurotransmitter release by
binding vesicles to cytoskeletal proteins in the axon. In
the absence of SYN, vesicles were unable to be captured
at the release site and thus could not fuse with the mem-
brane, failing neurotransmitter release. SYN has also been
implicated in synaptic plasticity. Song et al. [78] showed in
hippocampal neurons cultured from SYN subtypes knock-
out mice that synaptic growth was delayed and axon
branching was absent, which is not conducive to axon
growth and development, and that different isoforms
of the SYN family had different roles at the presynaptic
terminals, which provided a new way of thinking about
the development, and different subtypes of SYN family
had different effects on presynaptic terminals. However,
the specific mechanism of action and the relationship
between subtypes are still unclear.

4.3. Synaptotagmin

The Synaptotagmin (SYT) family is a crucial regulator
of calcium-dependent membrane fusion events, located
on synaptic vesicles in brain neurons. The SYT protein,
identified by Matthew et al. [79] in 1981, has a molecular
weight of 65 KDa, consists of 220 amino acids, and
mainly affects neurotransmitter release and membrane
translocation. Structurally, SYT has an N-terminal site in
the vesicle and a C-terminal site in the cytoplasm and
also includes a transmembrane domain, a parafollicular
domain and a calcium-binding C2 domain consisting of
C2A and C2B. These domains are linked to transmem-
brane domains on vesicles via parafollicular junctional
domains to form the SYT core framework. In the presence
of Ca?t, the C2 domain inserts into the vesicle mem-
brane, mediating vesicle fusion and regulating transmit-
ter release [80]. Humans have seventeen SYT isoforms,
with SYT1, SYT2 and SYT7 regulating synaptic vesicle
release, SYT3 involved in endocytosis of synaptic proteins,
SYT4 and SYT11 responsible for vesicle transport, SYT6
involved in BDNF release, SYT10 as a neuroprotective
effector protein and SYT11 involved in membrane repair,
among others [81]. The functional diversity of these
isoforms contributes to understanding nervous system
functioning.

Normal brain function relies on precise control of
membrane fusion events. SYT serves as both a promoter
and inhibitor of vesicle fusion. The C2A and C2B domains
of SYT spontaneously oligomerize and inhibit fusion
by binding to Ca?*. Until an excess of Ca’" breaks
down the SYT ring, membrane fusion, and release are



triggered [80]. SYT is essential for maintaining reliable
synaptic transmission. Lebowitz et al. [82] discovered
that neurotransmitter transmission depends on SYT1 and
synchronized release in response to initial stimulation
in murine neuronal cells. Loss of SYT blocks rapid syn-
chronized neurotransmitter release, leading to reduced
synaptic transmission and short-term depression, as well
as insensitivity to presynaptic Ca?*. Ullah et al. [83]
found that vesicles need to undergo processes such as
docking and initiation before fusion can occur and that
SYT interacts with receptors on the plasma membrane
(e.g., Syntaxin1, SNAP-25) to promote vesicle docking
and initiate vesicle fusion via Ca®* influx. In addition,
Tawfik et al. [84] found that stimulation of SYT7 in the
mouse brain increased the number of vesicles fused
through SYT1 but negatively affected their fusion rate,
suggesting both synergistic and competitive interactions
between synaptic receptors. It can be concluded that the
mechanism of SYT action is complex and the study is
limited by biological complexity.

4.4. Growth associated protein-43

Growth associated protein-43 (GAP-43), also known as B-
50 or neuromodulin, is a low molecular weight phospho-
protein primarily found in the growth cone terminals and
presynaptic membranes of neurons. It was discovered
in 1981 by Skene and Willard [85] through intraocular
methionine injection in rabbits. The human GAP-43 gene
is located on chromosome 3 and contains two promoters:
P1 and P2. GAP-43 expression is mediated by a helix-loop-
helix mechanism acting on the active P2 promoter, from
which the majority of GAP-43 mRNA is also derived [86].
Although GAP-43 is classified as a neuron-specific protein,
there is growing evidence that it is not restricted to
neurons. Caprara et al. [87] found that GAP-43 was
expressed in adult mouse myoblasts, myotubes and adult
skeletal muscle fibers, and was located between the
calcium-releasing unit and mitochondria of mammalian
skeletal muscle, where it was involved in maintaining
intracellular calcium homeostasis.

During neuronal development, there is a significant
increase in the expression level of GAP-43 protein. Sub-
sequently, GAP-43 influences ion channels and signaling
by phosphorylating and releasing calmodulin, which
promotes the polymerization of microtubulin and actin at
the growth cone of the presynaptic membrane and reg-
ulates vesicle outgrowth [87,88]. Overexpression of GAP-
43 protein promotes synaptic plasticity and enhances
connections and communication between neurons. How-
ever, reduced GAP-43 expression hinders neurotransmit-
ter release, leading to disease [86]. Wang et al. [89]
established an optic nerve injury model in rats and found
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that inhibition of GAP-43 could promote retinal cell apop-
tosis, promote the expression of GAP-43, and increase
the number of axons in the optic nerve. Additionally,
Cheng et al. [90] provided optogenetic stimulation to
stroke mice and found that the upregulation of nerve
growth factor and brain-derived neurotrophic factor
(BDNF) was accompanied by an increase in GAP-43 levels.
The activation of nerve growth factor and BDNF signaling
promotes neuroprotection, synaptogenesis, and neural
regeneration, making GAP-43 an important effector
driven by BDNF.

4.5. Soluble N-ethylmaleimide-SNARE

SNARE complex proteins are the core components con-
necting vesicles to the plasma membrane and are mainly
composed of synaptosomal-associated protein 25 (SNAP-
25), VAMP/Synaptobrevin, and syntaxin [91,92]. SNAP-
25 was discovered by Oyler et al. [93] in 1989 in the
mouse brain, with a molecular weight of 25KDa, and
is expressed in the presynaptic membrane of neurons.
VAMP was extracted from synaptic vesicles in rat brains
by Baumert et al. [94] in 1989, with a molecular weight of
18KDa, and it consists of a SNARE structural domain and
a C-terminal transmembrane structural domain. Syntaxin,
which is the largest family of proteins in the SNARE com-
plex, was discovered in 1992 by Bennett et al. [95] using
monoclonal antibody-immunoprecipitation techniques
and is located in the presynaptic membrane. It consists of
one SNARE domain, a C-terminal transmembrane region,
and an N-terminal regulatory domain. SNAP-25 has two
SNARE motifs, and VAMP and Syntaxin each contain
one SNARE motif, which assembles sequentially from
the N-terminus to the C-terminus to form a four-helix
bundle SNARE complex that releases energy for inducing
membrane fusion [91] (Figure 4).

The SNARE complex is a core protein for membrane
fusion during neurotransmitter release. Upon activation
of SYT by CaZt, it interacts with t-SNARE on the cell
membrane, leading to the fusion of the cell membrane
and plasma membrane for cytosolic and transmitter
release [92]. However, the loss of proteins in the SNARE
complex results in reduced synaptic vesicular exocytosis
and decreased neurotransmitter release [96]. SNARE
complex is critical for the growth and development
of organisms [91]. They are involved in major mem-
brane fusion events during mouse fertilization, such as
acrosomal vesicle cell division and female and male
gamete fusion. Syntaxin deletion causes physiological
abnormalities and survival difficulties in embryonic mice.
In nervous system development, SNAP-25, VAMP-2 and
Syntaxin-1A are involved in the sprouting and growth
of axons in nerve cells [91,96]. The SNARE complex is
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Figure 4. SNARE complex formation and neurotransmitter release. (A) The release of neurotransmitters requires the involvement of the
SNARE complex as well as the regulatory protein SYT (red). Components of the SNARE complex include SNAP-25 (green), Syntaxin
(yellow), and VAMP (purple). (B) Assembly of SNARE complexes. Syntaxin and VAMP bind to the SNARE domain of SNAP-25,
respectively, to form a parallel four-helix bundle. (C) When calcium flows in, through Ca?* binding to SYT, the vesicular membrane and
plasma membrane fuse and open the fusion pore, allowing neurotransmitter release.

essential for cognitive function and long-term memory
consolidation. Vanguilder et al. [97] observed that the
protein expression levels of the hippocampal region in
rats of different ages showed a significant decrease in
proteins related to neurotransmitter release, including
SNAP-25, VAMP-2, Syntaxin-1, SYT1 and SYP as age
increased. In summary, the SNARE complex is well known
for its role in neurotransmitter release, but it is also
present throughout the life stages of an organism, and
the functions of the SNARE complex involved in this stage
are yet to be discovered.

4.6. Postsynaptic density protein-95 (PSD-95)

The postsynaptic density (PSD) is a complex of post-
synaptic membrane signaling molecules, and PSD-95 is
the most abundant and important scaffolding protein in
the PSD [98]. In 1981 Sampedro et al. [99] found PSD-
95 in the PSD through immunohistochemical study in
the brains of mice and rats. It has also been known as
synapse-associated protein 90, with a molecular weight
of 95 KDa, and is a member of the related guanylate kinase
family (MAGUK). PSD-95 comprises three PSD-95/Discs
large/Zonula occludens-1 (PDZ) structural domains at the
N-terminal end (PDZ1, PDZ2 and PDZ3), a Src homology
3 (SH3) structural domain in the middle, and a guano-
sine kinase (GUK) structural domain at the C-terminal
end, in which the three structural domains, PDZ3, SH3
and GUK, are tightly associated to form a conserved
supermodule PSG [100]. Hamilton et al. [101] combined
discrete molecular dynamics and single-molecule forster
resonance energy transfer to characterize PSG super-

modules revealed that domains in PSG supermodules
can interact with each other as well as recognize and
bind key synaptic ligands. Meanwhile, the PDZ structural
domain regulates function by binding to specific protein
sequences, the SH3 structural domain interacts with pro-
teins to regulate signaling and the GUK structural domain
has protein kinase activity [98,100]. Thus, the different
structural domains in PSD-95 bind to relevant protein
receptors and signaling molecules and are involved in
synapse formation, regulation of intracellular signaling,
and maintenance of synaptic plasticity.

PSD-95 is a key protein involved in synapse develop-
ment and maturation. Husseini et al. [102] discovered that
overexpression of PSD-95 in hippocampal neurons drove
synapse maturation and increased the number of den-
dritic spines. Conversely, in PSD-95 knockout mice, synap-
ticaggregation was disrupted, accompanied by abnormal
dendritic spine development and transmitter delivery.
Furthermore, PSD-95 heavily influences the localization
of postsynaptic AMPA-type glutamate receptor (AMPAR)
and NMDA-type glutamate receptor, which are crucial
scaffolding proteins for cell signaling molecules. This
enables rapid and efficient synaptic transmission by
precisely juxtaposing AMPAR with presynaptic release
sites. PSD-95 also binds directly to subunits of NMDA-
type glutamate receptor and stabilizes its expression
on the synaptic surface. Downregulation of PSD-95
leads to the loss of AMPAR-containing synapses, thus
affecting the normal signaling function [98]. Additionally,
Zhang et al. [103] found that PSD-95 is associated with
synaptic plasticity. Inhibiting PSD-95 expression disrupts
synaptic plasticity and hinders the cAMP-responsive



element-binding protein/BDNF pathway, resulting in cog-
nitive dysfunction in mice. Conversely, elevating PSD-
95 expression enhances cognitive function in mice.
Nevertheless, the applicability of these findings may be
limited by differences between animal models and the
human nervous system.

5. Mature neuronal markers & neurological
disorders

Neurological diseases are characterized by complex
pathophysiological mechanisms. Our understanding of
the pathogenesis, diagnosis and treatment of neurolog-
ical diseases still has significant gaps. Studies have found
that abnormalities in biomarker levels are associated with
neurological diseases and change with disease onset and
progression [16,104,105]. Additionally, biomarkers serve
to predict and diagnose diseases and provide directions
for exploring the mechanisms of diseases and their
potential therapeutic options [106,107].

5.1. Stroke

Stroke is a major cause of disability and neurological
disorders globally. Markers are now being used to diag-
nose, assess and predict stroke severity due to limitations
in neuroimaging techniques. Onatsu et al. [108] found
that serum NSE and Tau levels were positively correlated
with infarct size in stroke patients, indicating potential as
predictors of severe clinical manifestations. Bi et al. [109]
discovered that Tau promotes neuronal damage after
stroke, while Tau-deficient mice are protected from brain
damage and neurological deficits. Pekny et al. [110] found
that high levels of NFL in the blood were associated with
poor clinical prognosis after stroke. Sandelius et al. [111]
observed a transient increase in cerebrospinal fluid GAP-
43 in ischemic stroke patients, which was correlated
with stroke severity, cerebral white matter lesions, and
degree of atrophy. Haifeng Lu et al. [112] found that SYT3
was upregulated in ischemic stroke mice, and its knock-
down prevented ischemic injury and promoted recovery.
However, the association between the above stroke
biomarkers and the pathological mechanisms involved
is not clear. The association between stroke biomarkers
and clinical manifestations needs to be further analyzed
and applied in clinical trials, which is expected to be an
effective tool for stroke prevention and diagnosis.

5.2. Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder
associated with abnormal accumulation of associated
proteins. The disease is typically identified at an advanced
stage of complete neuronal degeneration and lacks
timely and effective treatment. Therefore, markers are
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essential to detect the disease in its early stages for
prevention [22,113]. Research has shown that PD patho-
genesis involves NSE, UCH-L1, Tau and SNARE complex.
Papu¢ et al. [15] found elevated levels of NSE in the
cerebrospinal fluid of patients with PD patients, which is
considered an important marker of axonal degeneration
in PD. UCH-L1 has been linked to the formation of
Lewy bodies, a key pathological feature of PD [104].
Reduced levels of UCH-L1 in the fluid are associated
with cognitive dysfunction in PD and can serve as a
potential marker for diagnosing cognitive dysfunction in
PD patients [104,114]. Meanwhile, @-synuclein is involved
in the pathogenesis of PD, and Tau promotes the
aggregation and proliferation of a-synuclein [115,116].
Knocking out the Tau protein in PD mice resulted in
reduced symptoms [116]. Additionally, the aggregation
of a-synuclein and its binding to the SNARE complex
lead to synaptic dysfunction and could serve as new
easily accessible markers [10]. Further studies on the link
between biomarkers and clinical manifestations of PD
are needed to determine the specificity and accuracy
between them. Meanwhile, the expression of PD biomark-
ers can be synthesized and more PD biomarkers can be
explored to provide a basis for early intervention and
treatment of PD in the future.

5.3. Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disease,
and the pathological deposition of Tau is a hallmark
of AD. Currently, the detection of phosphorylated Tau
in plasma and cerebrospinal fluid can be used as a
criterion for the diagnosis of AD. Anti-Tau regimens have
become a focus for the treatment of AD in the clinic,
and related Tau marker technology has been widely
used in clinical trials and practice [9]. In addition to Tau
protein deposition, synaptic dysfunction is also a key
feature of AD. Lanxia Meng et al. [117] found that the
overexpression of SYN in the hippocampus resulted in
synaptic dysfunction and cognitive impairment in AD
mice. Meanwhile, Jia et al.[106] concluded that exosomes
GAP-43, SNAP-25 and SYT can be used as effective
biomarkers for predicting AD 5-7 years prior to cognitive
impairment, which provides new evidence for clinical
AD screening. Sandelius et al. [118] found that GAP-43
was significantly expressed in AD patients and correlated
with the degree of neuro progenitor fiber tangles and
B-amyloid in the hippocampus, amygdala and cortex.
Recently Kivisakk et al. [105] observed elevated levels of
PSD-95 and SNAP-25 proteins in the cerebrospinal fluid
of AD patients and used them as markers associated with
synaptic pathology in AD. In summary, AD biomarkers are
closely related to the pathomechanisms and symptoms
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of the disease. Monitoring the specificity between AD
and these markers can improve the diagnostic rate of AD.
Currently, the combination of AD biomarkers and animal
model studies is insufficient. Therefore, there is a need
to widely apply biomarkers to animal experiments and
develop therapeutic programs based on the pathological
processes involved.

5.4. Spinal cord injury

SCl is a complex and serious neurological disorder for
which no effective treatment has been found. The use of
markers to prevent and monitor the occurrence of SCl is
currently of interest to scholars. McCoy et al.[119] showed
that SCI leads to upregulation of NSE, and NSE inhibitors
attenuate the activation of related kinases and promote
functional recovery after SCI. Therefore, inhibition of NSE
could be a potential therapeutic strategy to prevent neu-
rodegeneration and promote nerve cell regeneration and
repair after SCI. NSE and NF were found to be significantly
elevated in the blood of patients with acute SCI, and they
were used as markers of acute SCI [23,59]. In addition,
SCl is associated with hyperphosphorylation of Tau, and
it was found that cerebrospinal fluid and serum Tau phos-
phorylation levels were significantly elevated in SCl rats,
and there was a positive correlation between Tau protein
levels and SCI severity [120]. Recently, Stukas et al. [16]
found that cerebrospinal fluid and serum levels of UCH-
L1 were significantly elevated in patients with acute
SCl, ranging from 10 to 100-times higher than normal.
After the condition of SCI patients improved, UCH-L1
levels decreased significantly. This suggests that UCH-L1
can be used as a marker to reflect the severity of SCI
injury and prognosis. Using the expression characteristics
of these biomarkers in SCI for clinical observation is
a promising avenue for future research. Constructing
SCI animal models to observe the relationship between
biomarkers and pathology will provide new targets and
directions for future SCl treatment and intervention.

5.5. Multiple sclerosis

Multiple sclerosis (MS) is a chronic inflammatory disease
of the central nervous system caused by autoimmunity,
which leads to tissue damage and disability. Neuroaxonal
damage is a critical factor in the development of perma-
nent disability in MS, resulting in abnormal expression of
markers [121]. According to Disanto et al. [122] observed
that NFL levels were significantly higher in MS patients
than in normal subjects, and the correlation between
serum NFL levels, disease activity and severity can be
used to monitor tissue damage and treatment outcomes.
Also, abnormal Tau levels have been associated with

chronic axonal damage. Virgilio et al. [107] concluded that
cerebrospinal fluid Tau levels in MS patients predicted the
accumulation of early disability in MS patients predicted
the accumulation of early disability and may have predic-
tive value in diagnosing MS, leading to early treatment.
Furthermore, disability in MS is primarily caused by axonal
loss, and Petrova et al. [123] found a notable decrease
in spinal synapses in the spinal cord of MS patients
post-mortem, using immunohistochemistry with SYP and
SYN. Although some progress has been made in the
research of MS biomarkers, the specific mechanism of MS
biomarkers is still unclear. Therefore, we need to conduct
animal experiments and clinical diagnostic analyses of
MS patients and explore more MS-related biomarkers
to provide a more reliable basis for the prevention and
treatment of MS patients.

6. Conclusion

Mature neuronal biomarkers are valuable tools in neuro-
science research as they aid in understanding neuronal
development. In nerve regeneration research, biomarkers
are commonly used to identify cells and observe cell
growth status. Different biomarkers are differentially
expressed at different stages of neuronal differentiation.
For example, in the early stages of neuronal devel-
opment, NeuN can be used for labeling; however, as
neuronal development matures, more options are avail-
able for labeling with NSE and MAP-2. In addition, neu-
ronal cytoskeletal and synaptic markers are also widely
used for neuronal identification labeling and functional
assessment. TUBB3 and MAP-2 and Tau maintain the
normal morphology of neurons and promote axonal
and dendritic extension and branching formation.NF
stabilizes axonal and dendritic growth and localization,
enabling efficient message transmission. Synaptic vesi-
cle biomarkers (SYP, SYN, SYT) are involved in vesicle
transport and cycling to ensure normal neurotransmitter
release. Presynaptic membrane biomarkers (GAP-43) are
involved in the regulation of vesicle outgrowth and
work in synergy with vesicle biomarkers to promote
neurotransmitter release. SNARE complex acts as a bridge
between the vesicle and plasma membrane, initiating
membrane fusion and the release of neurotransmitters
from the vesicle into the synaptic gap. The postsynap-
tic membrane biomarker (PSD-95) receives presynaptic
release signals, integrates released neurotransmitters and
maintains synaptic plasticity.

Recent studies have implicated markers such as
presynaptic proteins (Bassoon and Piccolo), neurotoxins
(Neurexin) and postsynaptic proteins (SHANK, Homer
and SAPAP) in the regulation of neuronal growth, devel-



opment and function [124-126]. Bassoon and Piccolo
are components of the presynaptic region that main-
tain synaptic integrity and regulate synaptic vesicle
release. Neurexin is central to transsynaptic cell adhesion
and signaling during synapse specification and main-
tenance, and Shank, Homer and SAPAP establish the
PSD of glutamatergic synapses through a dense network
of molecular interactions. However, few studies have
been conducted on these biomarkers, and their specific
mechanisms of action and functional relationships are
unclear.

7. Future perspective

As neuroscience research continues, it is believed that
biomarkers of mature neurons will play an even more
important role in future research. Researchers should
search for new neuronal biomarkers to support the
identification and classification of neurons. In addition,
in neurological diseases, nerve cells are damaged and
the associated biomarkers are released into body fluids.
Observation of biomarkers from cerebrospinal fluid and
blood have become a diagnostic criterion for related
diseases as an easy way to screen for diseases and is in
the stage of clinical application. However, the research
between biomarkers and neurological diseases is still
in the stage of animal experiments, and in the future,
biomarkers can be tested with human tissues and then
further applied to clinical patients. In addition, the devel-
opmental and functional regulatory mechanisms of the
nervous system are very complex, and more biomarkers
need to be combined to observe neuronal development.
Currently, single-cell technology is developing rapidly,
and utilizing this technology to detect the expression of
biomarkers in neuronal cells and explore their association
with neurological diseases will bring broader therapeutic
prospects.

Article highlights

« Mature neuron-specific intracellular markers: focuses on the most
neuron-specific biomarkers so that researchers can better apply
them to their experiments.

« Cytoskeletal markers of mature neurons: discussion of biomarkers
that maintain neuronal morphology and structure and analysis of
their function.

- Synaptic markers of mature neurons: understanding the
development of neuronal synapses, analyzing the expression of
synapse-related biomarkers and deepening the understanding of
neuronal function.

- Mature neuronal markers and neurological disorders: the use of
neuronal biomarkers in neurological disorders and how they
predict and diagnose disease.

« Conclusions and future perspectives: summarizing the neuronal
biomarkers discussed, discovering more novel and relevant
neuronal biomarkers and looking forward to their future clinical
applications.
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