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ABSTRACT 
The nervous sy st em regulat es perc eption, c og nition and behavioral responses by serving as the 
body’s primary c ommunication sy st em for r eceiving, r egulating and transmitting information. 
Neur ons ar e the fundamental structur es and units of the nervous sy st em. Their differen tia tion and 
ma tura tion pr ocesses r ely on the expr ession of specific biomarkers. Neur on-specific intracellular 
markers can be used to determine the degree of neuronal ma tura tion. Neuronal cyt oskeletal prot eins 
dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are 
in trica tely associa ted with neuronal synaptic mar kers. Further more, abnor mal expr ession lev els of 
biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the 
markers of mature neuronal differen tia tion and their relationship with nervous sy st em diseases. 

GR APHICAL ABSTR ACT 
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. I ntro duction 

eur ons ar e the fundamental functional units of the
ervous sy st em, responsible for transmitting and pro-
essing information. Its structural development and
a tura tion are crucial for the proper functioning of the

rain’s nervous sy st em. During brain development and
a tura tion, neurons undergo v arious changes. They send

ut branches, known as axons and dendrit es, t o the
eriphery and r eceiv e stimulation fr om specific pr otein
olecules produced in the cell. This process allows

hem to form synapses with adjacent neurons, construct
eural circuits and networks and maintain the normal
orphology and function of neurons [ 1 , 2 ]. Biomarkers

uring differen tia tion of ma tur e neur ons mainly include
rotein molecules that are specifically expressed dur-

ng neuronal development and functional maturation,
nd the type, localization and expression level of the
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biomarkers depend on the growth and function of
different parts of the neuron [ 3–5 ]. Intracellular markers
ensur e neur onal specificity, cytoskeletal markers main-
tain cellular mor phology dur ing neuronal differen tia tion
and synaptic markers ensure inter-neuronal information
transfer. These markers are important for cell identifi-
ca tion, functional observ a tion, disease diagnosis, and
prognosis [ 6–8 ]. Studying the production and expression
of these biomarkers can enhance our understanding of
neur onal dev elopmen t and ma tura tion pr ocesses, as w ell
as the associated molecular mechanisms. 

In the field of neurology, biomarkers are utilized to
objectively monitor and assess normal physiology, patho-
log ical proc esses and therapeutic responses. Abnormal
expression of certain markers has been utilized as a
basis for diagnosing related diseases [ 9 , 10 ]. In this paper,
w e discuss matur e neur onal biomarkers ac c ording t o
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 r oadmap ( Figur e 1 ) and analyze their localization,
truc ture and func tion in matur e neur ons, as w ell as their
elationship with nervous sy st em diseases. 

. Ma tur e neur on-specific intr ac ellular markers 

s neur ons matur e, the lev els of neur on-specific biomark -
rs incr ease. Today, r esear chers use neur onal intr acellular -
pecific markers to identify neurons and observe neu-
 onal gr owth [ 11 ]. Matur e neur onal c ells c ontain a nucleus
nd cytoplasm. Markers for the nucleus and cytoplasm
ave been identified based on immunolocalization anal-
sis [ 12–14 ]. Thus, the properties of neuron-specific

ntracellular markers are commonly used to identify
euronal cells. In addition, when brain injury occurs
nd neuronal cells are destroyed, intr acellular -specific
arkers ar e r eleased int o the c er ebr ospinal fluid and

lood, which may serve as a new tool for diagnosing
isease [ 15 , 16 ]. 

.1. Neuronal nuclei 

n 1992, Mullen et al. [ 12 ] first discovered that Neuronal
uclei (NeuNs) rec og nizes a vert ebrat e nervous sy st em
nd neuron-specific nuclear protein in mouse brain
issue. NeuN expression is exclusively associated with
eural tissue. Unlike other biomarkers, it is pr imar ily

ocalized in the nucleus of matur e neur ons, making it
he most specific marker for matur e neur ons ( Table 1 ,
igure 2 ). A small distribution of NeuN was also found

n the perinuclear cytoplasm. Immunoblotting assay
 ev ealed tw o bands of NeuN pr oteins: 46 and 48 kDa. The
6 kDa NeuN protein was predominantly located in the
ucleus of neurons, while the 48 kDa NeuN protein was
r edominantly pr esent in the cytoplasm, possibly due to

heir unique short amino acid sequences [ 17 , 18 ]. NeuN
s encoded by the RNA binding fox-1 homolog 3 (RBFOX-
) gene, which belongs to the RNA binding fox-1 homolog

RBFOX) family of genes and regulates the differentiation
f neurons in the brain and promotes their structural and

unctional ma tura tion [ 19 , 20 ]. Additionally, there may be
 aria tions in NeuN expression among different types of
eur ons, as NeuN expr ession was not det ect ed in c ertain
ells such as Purkinje cells of the cerebellum, sympathetic
anglion c ells, phot orec ept or c ells of the retina and
opaminergic neurons in the substantia nigra [ 18 ]. 

NeuN is inv olv ed in the development of mature
eurons. The RBFOX knockout animal model c onstruct ed
y Jacko et al. [ 20 ] showed defects in the development
f structures such as the cyt oskelet on, cyt oplasmic mem-
rane and synapses, resulting in limited electrophysiolog-

cal activity . Currently , NeuN antibodies are widely used
n neuroscienc e, st em c ell biology and disease diagnosis.
he anti-NeuN protein can be utilized to determine neu-
ronal phenotype and identify neuronal differen tia tion. Its
expr ession lev el has been used to dir ectly assess neur onal
surviv al or dea th, and NeuN-positiv e cells hav e been used
as a reliable marker to quantify the efficacy of trea tmen ts
in experimental therapeutic studies [ 20 ]. In addition,
NeuN has potential applications in the pathological
diagnosis of neuro-oncology. Zhang et al. [ 21 ] conducted
immunohist ochemical analy sis of tumor samples from
pa tien ts with neurocytoma and found that some neu-
rocytomas had NeuN immunoreactivity in the nucleus.
How ev er, a compr ehensiv e understanding of the r ole and
expression pattern of NeuN in the diagnosis of different
tumors is lacking, and further studies are needed to
clarify the exact role of NeuN in neural development and
ma tura tion. 

2.2. Neuron-specific enolase 

Neuron-specific enolase (NSE) is an enzyme with enolase
activity that is specific to neurons. In 1965, Moore and
McGregor [ 13 ] isolated proteins from the bovine brain
and identified the soluble brain protein 14-3-2, with a
molecular weight of 78 kDa, which is widely distributed in
intr acr anial neur al tissues. Subsequen t studies iden tified
the protein 14-3-2 as NSE [ 22 ]. In vert ebrat es, enolase
isozymes consist of different subunits called α, β and
γ . Among these, enolase α is ubiquitous; enolase β is
muscle-specific; and enolase γ is neur on-specific . Ther e
ar e fiv e kno wn enolase iso zymes, αα, ββ , γ γ , αβ and
αγ . The γ γ and αγ dimer isozymes ar e found in neur ons
and peripheral neuroendocrine cells, r espectiv ely [ 22 , 23 ].
Ther efor e, NSE is also known as γ -enolase or enolase-2
( Eno2 ). The level of NSE gradually increases as neurons
mature morphologically. 

In viv o , NSE catalyzes the clea vage of α-
phosphogly cer ol to pr oduce phosphoenolpyruv a te,
which maintains normal glucose metabolism and ATP
pr oduction thr oughout gly c oly sis [ 24 ]. NSE is c ommonly
used as a marker for neurons and neuroendocrine
cells, making it a useful tool for assessing neuronal
injury and neuroendocrine tumors. Haque et al. [ 23 ]
found that the expr ession lev el of NSE was significantly
elev a ted in ra ts following acut e spinal c ord injury (SCI),
and that inhibition of NSE expression and activity
c ould reduc e sec ondar y injur y after SCI. Mor eov er,
elev a ted levels of NSE, a marker for neuroendocrine
c ells, are associat ed with poorly differen tia ted tumors.
Immunohistochemical experiments on samples from
pa tien ts with adenocarcinoma tumors found that NSE
expr ession lev els incr eased when these sites w er e
predisposed to malignancy [ 25 ]. This information
is valuable for diag nosing, stag ing, and treating
related tumors. Additionally, NSE also possesses
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Figure 1. Roadmap for this review. 

Table 1. Markers of mature neurons. 

Marker Years Location Function Ref. 

NeuN 1992 Cell nuclei Recognition neurons; determine the neuronal phenotype; assess survival and 
death of neurons; and differential diagnosis of nerve tumors 

[ 12 , 20 , 21 ] 

NSE 1965 Cytoplasm Maintain normal glucose metabolism; assess neuronal damage and 
neuroendocrine tumors; and monitor cr aniocerebr al injury 

[ 13 , 23–25 ] 

UCH-L1 1983 Cytoplasm and axons Promote cell proliferation; protect neurons; monitor brain injury; and 
inv olv ement in tumor metastasis 

[ 14 , 28–30 , 32–34 ] 

MAP-2 1975 Cytoplasm and axons Pr omote neur on ma tura tion; maintain the morphological structure of neurons; 
modulate synaptic plasticity; and inv olv ed in signaling within neurons 

[ 39 , 40 , 42 , 43 ] 

Tau 1974 Cytoplasm and axons Participate in the formation of microtubules and maintain the stability of 
neuronal cyt oskelet on; affect synaptic plasticity and sig nal tr ansduction; and 
maintain the integrity of DNA and RNA 

[ 44 , 46 , 48–50 ] 

TUBB3 1986 Cytoplasm and axons Ensure the growth and maintenance of axons; and promote the proliferation, 
invasion and metastasis of tumor cells 

[ 52–54 , 57 ] 

NF 1957 Axons Maintain the growth stability of axons; monitor nerve damage; and 
diag nosing neurolog ical disorders 

[ 58–60 ] 

SYP 1985 Synaptic vesicle Stable membrane fusion hole; modulate vesicle circulation and synaptic 
plasticity; and monitor neuroendocrine tumors 

[ 65 , 67–70 ] 

SYN 1977 Synaptic vesicle Inv olv ed in the growth and development of neurons; promote aggregation of 
synaptic proteins and vesicles; and maintain neurotransmitter transmission 

[ 71 , 76–78 ] 

SYT 1981 Synaptic vesicle Contr ols v esicle fusion with pr esynaptic membranes; and maintain synaptic 
transmission 

[ 79 , 80 , 82 , 83 ] 

GAP-43 1981 Presynaptic 
membrane 

Maintain neuronal development and synaptic formation; and regulate the 
budding of vesicles 

[ 85 , 87–89 ] 

SNAP-25 1989 Presynaptic 
membrane 

Pr omote v esicles and pr esynaptic membrane fusion; and inv olv ed in axon 
growth 

[ 92 , 93 , 96 ] 

VAMP 1989 Synaptic vesicle Participate in membrane fusion, achieve exocytosis and transmitter release; 
and promote elongation of axons 

[ 91 , 94 , 96 , 97 ] 

Syntaxin 1992 Presynaptic 
membrane 

Maintain vesicle exocytosis; and inv olv ed in neural development, axon 
germination and growth 

[ 91 , 92 , 95 , 96 ] 

PSD-95 1981 Postsynaptic 
membrane 

Promote synaptic ma tura tion; regula te intrac ellular signaling; and maintain 
synaptic plasticity. 

[ 98 , 99 , 102 , 103 ] 
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Figure 2. Localization of biomarkers in mature neurons. (A) In neurons, NeuN is located in the nucleus; NSE and UCH-L1 are mainly 
located in the cytoplasm; MAP-2, Tau and TUBB3 are mainly located in cytoplasm and axons; NF is located in the axon. (B) In neuronal 
synapses, SYN, SYP, SYT and VAMP are located in synaptic vesicles; GAP-43, SNAP-25 and Syntaxin are located in the presynaptic 
membrane; PSD-95 is localized in the postsynaptic membrane. 
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eur otr ophic functions. It can regulate neuronal survival,
ifferen tia tion and synapse regeneration by activating

he phospha tidylinositol-4,5-bisphospha te 3-kinase
PI3K) and mitogen-activ a ted protein kinase (MAPK)
ignaling pa thw ays [ 26 ]. In clinical practice, NSE is easily
ffected by ext ernal fact ors, resulting in low accuracy of
 esults. Ther efor e, it is necessary to constantly impr ov e
he detection methods and technologies of NSE [ 27 ]. 

.3. Ubiquitin C-terminal hydrolase L1 

biquitin C-terminal hy dr olase L1 (UCH-L1) is a member
f the ubiquitin C-terminal hy dr olase family. It was
rig inally disc ov er ed by Jackson et al. [ 28 ] in human
r ain extr acts with a molecular weight of about 24.8 kDa,
nd was named ‘protein gene product 9.5’. Immunocyto-
hemical staining showed that in the normal mouse brain,
CH-L1 showed strong and uniform cytoplasmic staining

hroughout the neurons [ 14 ]. The gene encoding UCH-
1, also known as the Parkinson disease 5 (PARK5) gene,

s located on chromosome 4P14. Its structure consists of
wo lobes, one of which consists of five α-helices and the
ther of two α-helices and six β-folds. These α-helices and
-f olds f orm a r elativ ely compac t α- β- α struc ture.UCH-
1 also contains an N-terminal domain and a C-terminal
omain. Its N-terminus binds to ubiquitin and is inv olv ed

n the localization and regulatory functions of UCH-
L1, whereas the C-terminus regulates the stability of
substrat e prot eins by catalyzing hy dr olysis r eactions and
removing ubiquitin from the substrate proteins [ 14 , 29 ]. 

UCH-L1 is associated with cell pr oliferation, neur onal
survival and synaptic plasticity [ 29 , 30 ]. Ov er expr ession
of UCH-L1 inhibits cell mitosis, leading to decreased cell
pr oliferation, while under expr ession of UCH-L1 r esults
in abnormal accumulation of proteins, affecting the
normal phy siolog ical functions of the brain [ 30 , 31 ].
Reichelt et al. [ 29 ] found that non-functional UCH-L1
impairs the proteasome and drives podocyte injury in
mice with membranous nephropathy . Clinically , UCH-
L1 is now widely used in the screening, diagnosis and
therapeutic monitoring of pa tien ts with brain injury [ 32 ].
Recent studies have found that UCH-L1 is associated
with tumor metastasis [ 14 , 33 , 34 ]. The expression of UCH-
L1 in primary gastric cancer and liver metastasis of
gastric cancer was detected by immunohistochemical
staining in vitr o . UCH-L1 promot es the metastasis of
gastric cancer cells by up-regulating protein kinase B (Akt)
and extrac ellular sig nal-regulat ed kinases (ERK1/2), and
by constructing a mouse model of lung metastasis, it was
found tha t upregula tion of hypoxia-inducible factor-1 α
(HIF-1 α) activity promoted the metastasis of breast cancer
cells and lung cancer cells [ 33 , 34 ]. How ev er, ther e is still
some contr ov ersy about the mechanism of action of UCH-
L1 in other tumors. 
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. Cytosk eletal mark ers of ma tur e neur ons 

he morphology and structure of neuronal cells are
ssen tial for main taining normal function, and the
yt oskelet on det er mines neuronal mor phology [ 35 ]. As
eur ons differ en tia te and ma tur e, the lev els of cytoskele-

al markers incr ease, r egula ting the polariza tion and
tability of neurons by supporting and maintaining their

orphological structure [ 36 ]. Additionally, cytoskele-
al markers participate in cell transport and synaptic
ransmission of neurons [ 37 ]. By examining the expres-
ion of cytoskeletal markers in neurons, it can be
nferred that the neurons have a normal structure and
unction. 

.1. Mic rotubule-assoc ia t ed prot ein-2 

icr otubule-associated pr otein-2 (M AP-2) is an essential
art of the cyt oskelet on and influenc es c ell structure and

unction by controlling microtubule stability, dynamics
nd localization [ 38 ]. It is a member of the MAPs
amily and is expressed from the mitotic stage of cell
r oliferation. M AP-2 is a high molecular weight protein,
hich was discov er ed by Sloboda et al. [ 39 ], using primary

at hippocampal cultures prepared from fetal rats, and
t mainly exists in the axons and dendrites of neurons.
t consists of multiple structural domains, including a
ore structural domain and multiple C-terminal structural
omains, which allow MAP-2 to attach to microtubules
nd regulate their stability and dynamics. MAP-2 proteins
av e fiv e isof orms, A, B , C, D and E. By studying the nerve

issue of rats, it was found that their distribution showed
bvious specificity [ 40 , 41 ]. Among them, MAP-2A and
 AP-2B ar e mainly localized in neuronal dendrites, MAP-

C is present in axons and dendrites, MAP-2D is c onc en-
rated in neuronal cytosol, and MAP-2E is exclusive to glial
ells. These isoforms display varying expression during
eur onal dev elopment, with M AP-2C being r eplaced by
AP-2A during ma tura tion, while M AP-2B is expr essed

hr oughout dev elopment. 
The level of MAP-2 expression is closely associated

ith neuronal maturity [ 42 ]. During the early stages of
eur onal dev elopment, M AP-2 expr ession is low and
radually increases as neurons mature. MAP-2 regulates

ntrac ellular sig naling pa thw ays by in teracting with other
roteins, such as protein kinases, thereby influencing
euronal functions [ 43 ]. Synapses are key structures

or communication between neurons, and MAP-2 is
nv olv ed in synapse formation and information transmis-
ion. Kim et al. [ 40 ] found that MAP-2 was inv olv ed in
ctiv a tion-dependen t synaptic plasticity in the mature
ippocampal network by isolating hippocampal neurons

rom r at br ains and inducing long-t erm pot en tia tion.
he absence or mutation of MAP-2 results in abnormal
development and loss of function in neural synapses.
How ev er, the specific mechanisms and regulatory net-
w orks inv olv ed need to be further inv estigated . 

3.2. Tau protein 

Tau protein is another highly abundant MAP found
mainly in the axons of neurons. In 1974, Iqbal et al. [ 44 ]
first isolated neurofibrillary tangles and paired helical
filaments pr oteins fr om the brains of Alzheimer pa tien ts.
Subsequently, Weingarten et al. [ 45 ] isolated proteins
essential for microtubule assembly from pig brains and
named them Tau pr otein, r ev ealing that pair ed heli-
cal filament proteins and Tau pr otein ar e the same
substance. The Human Tau protein is encoded by the
micr otubule-associated pr otein tau (MAPT) gene, located
on chromosome 17q21. Its structure consists of an
N-ter minal proline-r ich r egion, a micr otubule-binding
domain, and a C-terminal, The microtubule-binding
domain in Tau prot ein int eracts with microtubules to
maintain cytoskeletal stability [ 46 ]. In addition, when
the gene encoding Tau protein is mutated, it reduces
the affinity of Tau protein to bind microtubules and
affects the f ormation of neuronal cyt oskelet on in the
brain. Tau protein is a phosphoprotein, its phospho-
ryla tion sta te is strictly regula ted by multiple kinases
and phosphatases in phy siolog ical c onditions. How ev er,
when the phosphorylation process of Tau protein is
imbalanced, the affinity of Tau protein for microtubules
decreases, leading to an increase in Tau protein aggre-
gation and further exacerbating microtubule instability
[ 46 , 47 ]. 

Tau proteins are proteins enriched in axons and
have been implicated in cyt oskelet on stabilization and
synaptic transmission [ 46 ]. Tau protein binds to micro-
tubules and is translocated into axons via members
of the dynamin and kinesin families, stabilizing the
structure of axonal microtubules [ 48 ]. Researchers have
found that induced pluripotent stem cell (iPSC)-derived
neur ons can secr ete tau pr oteins, which ar e deliv er ed
to neighboring neurons and interact with synapses and
mitochondria. When neuronal activity increases, secreted
tau interacts with proteins on the outer surface of
synaptic vesicles [ 49 ]. These findings r ev eal that Tau
protein is essential for the transmission of information
betw een nerv e cells. Additionally, studies using primary
neur onal cultur es hav e shown that Tau also interacts with
nucleic acids and localizes to the nucleus. Tau protein
can directly bind to DNA and RNA, protecting them
fr om oxidativ e damage and helping to maintain DNA
and RNA int eg rity [ 50 ]. It provides new ideas for us
to further explore the multifunctionality of Tau protein.
How ev er, the r egulatory mechanism inv olv ed in Tau
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function of NF in the future. 
rotein is very complex, which increases the difficulty of
 esear ch. 

.3. Class III beta-tubulin 

 he gro wth and dev elopment of the nerv ous sy st em
s highly dependent on the cyt oskelet on, the main
omponent of which is the microtubule, which con-
ists of heterodimers of α and β-microtubule proteins.
he α/ β-microtubulin heterodimer is a combination
f different α and β-microtubulin isofor ms. Cur rently,

her e ar e eight α-micr otubulin isoforms and sev en β-
icrotubulin isoforms in humans [ 51 ]. Of these, Class III

eta-tubulin (TUBB3) protein expression is restricted to
eurons and peaks during axon guidance and neuronal
a tura tion [ 52 , 53 ]. TUBB3 w as first isola ted from a mouse

DNA library in 1986 [ 54 ] and has a molecular weight
f approximately 50 kDa. The TUBB3 gene is located on
hromosome 16q24.3 and encodes the 450 amino acid
UBB3 prot ein. TUBB3 c onsists of two identical subunits,
ach containing a GTP-binding site and a microtubule-
inding site. The state of the GTP-binding site of the
UBB3 protein can affect the stability and dynamics
f micr otubules, and r egulate the kinetic pr operties of
icrotubules by interacting with GTP-binding proteins.
eanwhile, the microtubule-binding site of the TUBB3

rot ein int eracts with other micr otubule pr oteins and
articipates in microtubule formation and maint enanc e
 55 , 56 ]. 

TUBB3 is pr imar ily located in axons and dendr ites
nd is inv olv ed in neur ogenesis, axon guidance, and
aint enanc e. Latr emolier e et al. [ 52 ] found that the
 rowth rat e of axons in neurons of TUBB3 knockout
ice was greatly reduc ed c ompared with normal mice.

ischfield et al. [ 53 ] c onstruct ed a TUBB3 knockout mouse
odel r ev ealing axon guidance defects. Downregulation

r mutation of TUBB3 gene expression leads to malfor-
ations in cortical development and the development of

 ertain relat ed neurolog ical disorders, such as congenital
xtraocular myofibrillar fibrosis type 3 (CFEOM3) [ 56 ].
or eov er, ov er expr ession of the TUBB3 protein has

een associated with various malignant tumors, includ-
ng brain tumors, lung cancers, r enal car cinomas and

alignant melanomas. It is inv olv ed in tumor cell pro-
if eration, in vasion and metastasis [ 57 ]. Considering the
lose r elationship betw een TUBB3 pr ot ein and canc er,

nhibition of TUBB3 protein expression in an in vitro
ouse model significantly hindered tumor growth and
etastasis [ 51 , 57 ]. Ther efor e, further in-depth studies on

he function and regulatory mechanism of TUBB3 protein
re needed to develop new therapeutic strat eg ies and
rug targets to bring hope for the trea tmen t of related

ancers. 
3.4. Neurofilament 

Neur ofilament (NF) pr oteins, which ar e in termedia te
filament pr oteins, ar e highly conserv ed and ar e mainly
found in neuronal axons. They were discovered by
Maxfield et al. [ 58 ] in 1957, when they w er e isolated fr om
squid axons. NF proteins are arranged in parallel along
the long axis of the axon and consist of neurofilament
light chain (NFL), neurofilament medium chain (NFM),
neurofilament heavy chain, alpha-linked proteins, and
peripheral proteins. The first three proteins are often
r eferr ed to as the “neurofilament triplet”. NFL is widely
expressed and can self-assemble to form functional
fibers, but neurofilament medium chain or neurofilament
heavy chain alone cannot form functional fibers [ 59 ]. In
addition, these NFs share the same structural domains,
including an N-terminal head domain, a helical core rod
domain of 1a, 1b, and 2a/b, and a variable C-terminal tail
domain [ 60 ]. The process of NF proteins assembly begins
with the dimerization of NFL or α-internexin with other
NFs, which then agg regat e in an antiparallel manner,
resulting in the formation of tetramers. Eight transversely
associat ed t etr amers then arr ange themselves to form
a cylindrical structure. Subsequent annealing processes
facilitat e the long itudinal and lat eral ext ension of the
cylindrical NF, ultimately leading to the formation of NFs
with a diameter of 10 nm [ 61 ] ( Figure 3 ). As neuron
ma tures, nestin and w aveform proteins are replaced by
NF prot eins. Axons g radually elongat e, and c onnect,
and protein transportation, assembly and modification
proc esses c ommenc e. 

NF proteins act as part of the cyt oskelet on and are
localized in neuronal axons. The exact function of NF is
unknown, but it can stabilize the morphology of axons
and regulate the growth and positioning of axons and
dendrit es t o achieve efficient and high-speed nerve con-
duc tion [ 60 ]. Also, NF interac ts with other proteins and
organelles, such as mitochondria and microtubules. This
suggests that NF proteins may have additional undiscov-
er ed functions bey ond axon stability [ 62 ]. The expr ession
of NF proteins is limited to matur e neur ons and is one of
the earliest visible markers in the matur e nerv ous sy st em.
NFL, the most significant component of NF, is particularly
important , and its e xpr ession lev el can be used to assess
axon functionality. Gaetani et al. [ 59 ] observed in pa tien ts
with amy otr ophic spinal scler osis an abnormally elev a ted
lev el of cer ebr ospinal fluid NFL expr ession leading to
axonal dysfunction and neurodegeneration. Thus, NF
pr oteins ar e highly specific for neur onal cell injury and
death and are widely used as valuable markers in the
diagnosis of neur ological disor ders. In addition to axons,
a large number of studies can be used to explore the
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Figure 3. Assembly and structure of NF proteins. NF is formed by the formation of NFL or α-in terne xin by binding to the conserved rod 
domain to form a coiled spiral dimer with other NFs, two dimers assembled in a contr alater al par allel fashion t o form a t etramer, and 
eight laterally bound tetramers to form a cylindrical structure, which is lengthened longitudinally and compressed to form a slender 
filamentous NF. The domains of all neurofilament proteins consist of an N-terminal domain, a helical core containing 1a, 1b and 2a/b, 
and a variable C-terminal tail domain. 
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. Synaptic markers of ma tur e neur ons 
eurons in the CNS form int erc onnect ed networks

hrough synapses, which are the functional connections
etw een neur ons and the pr imary sites of infor mation

ransmission [ 63 ]. Neuronal synaptic markers are specific
roteins or molecules used to label neuronal synapses. By
bserving the expr ession lev els of synaptic markers, we
an understand the development of neuronal synapses
nd study the connections and communication modes
etw een neur ons [ 64 ]. This deepens our understanding
f the function of the nervous sy st em. 

.1. Synaptophysin (SYP) 

YP is a protein located on the membrane of synaptic
 esicles in neur ons. It was discov er ed by Jahn et al. [ 65 ]

n 1985 from rat brain synaptic vesicles and is also
nown as p38. SYP has a r elativ e molecular mass of
8 KDa and ac c oun ts for approxima t ely 7–10% of t otal
ynaptic v esicle pr oteins . In humans and mammals ,
he SYP gene is located at Xp11.2-p11.23 on chromo-
some X and is highly conserv ed . The structur e of SYP
consists of four tr ansmembr ane structur al domains, a
short N-t erminal sig nal peptide, and a long C-t erminal
hy dr ophobic peptide, the latter two of which are exposed
on the cytoplasmic surface of the vesicle membrane.
The presence of a hydrophilic region between the first
and second tr ansmembr ane structur al domains of SYP
allow s it t o be encapsulat ed in the vesicle membranes
of synaptic vesicles of neurons and t o int eract with
other synaptic proteins [ 66 ]. Furthermore, the N-terminus
of SYP contains many highly conserved amino acid
sequences, while the C-terminus interacts with various
prot eins t o regulat e vesicle cycling [ 67 ]. SYP is expressed
early in neurogenesis and is significantly upregulated
during synaptogenesis [ 65 ]. Ther efor e, SYP can be used
as a marker of synaptogenesis and neuronal ma tura tion. 

SYP regulat es membrane fusion, cyt okinesis, vesicle
r ecy cling, and synaptic plasticity by interacting with a
variety of proteins. Hsiao et al. [ 68 ] discovered that
SYP controls membrane fusion pore dynamics during
Ca 2 + -triggered exocytosis and soluble N-ethylmaleimide-
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ensitive factor a ttachmen t prot ein rec ept or (SNARE)
r oteins ar e crucial in the formation of membrane

usion pores at the onset of cyt ot oxicity . Specifically , the
r ansmembr ane structur al domain III of SYP interacts with
he SNARE c omplex t o stabilize the membrane fusion
or es. Chang et al . [ 67 ] studied mouse synapses and

ound tha t SYP in teracts with dynamin t o regulat e vesicle
usion, maintain synaptic plasticity and ensure normal
eur otransmitter r elease. Under normal phy siolog ical
onditions, SYP is inv olv ed in the r ecy cling of v esicle-
ssociated membrane protein (VAMP) in the vesicular
y cle. Gor don et al. [ 69 ] found that SYP in mouse
ippocampal neurons can transport synaptic VAMP to
esicles, making them capable of fusion, while SYP
eficiency causes VAMP to disperse along axons, become

rapped on the plasma membrane and limit vesicle
ndocytosis. Furthermore, Konukiewitz et al. [ 70 ] con-
uct ed immunohist ochemical staining of tumor tissues
nd found that SYP could be used as a new clinical
iagnostic marker for neuroendocrine tumors, especially
 or the effectiv e diagnosis of pancr eatic neur oendocrine
umors. How ev er, its accuracy and specificity need to be
nalyzed for clinical application 

.2. Synapsin 

ynapsin (SYN) is mainly situated on the surface of
ynaptic vesicles and is a phosphorylat ed prot ein closely
inked to neuronal development and neurotransmitter
elease. T he SY N protein family consists of three isoforms:
Y N I, SY N II and SY N III. SY N I was orig inally disc ov er ed by
aul Gr eengar d in 1977 fr om bo vine brains [ 71 ], follo wed
 y SY N II in slic es of rat c erebral c ort ex [ 72 ]. SYN III was
iscov er ed in 1998 during the ear ly wor k study of the
uman Genome Project [ 73 ]. In humans, SYN I, SYN II
nd SYN III are produced by selective splicing and located
n chromosomes X, 3 and 22. The N-terminal domain of
YN is highly conserv ed , and the C-terminal domain is
 elativ ely unstable. T his allo ws SY N prot eins t o int eract
ith other proteins to form a complex r egulatory netw ork

ha t regula tes synaptic developmen t and messaging [ 74 ].
Y N is mainly localiz ed at synapses, whereas SY N III

s mainly found in extrasynaptic regions of the adult
rain [ 75 ]. This suggests that SYN III, unlike SYN I and II,
oes not play a major role in synaptic activity, but rather

n early neural development. 
Int erneuronal c ommunication relies on exocytosis

r om synaptic v esicles. SYN, a pr esynaptic v esicle mem-
rane pr otein, can r egulate synaptic v esicle dynamics.
ecent studies have shown that SYN agg regat es vesicles
hrough liquid-liquid phase separation, providing a new
rganizational framework for synapses [ 76 ]. Addition-
lly, SYN binds to related proteins and facilitates the
aggregation of synaptic proteins and vesicles to uphold
neurotr ansmitter tr ansmission. Yu et al. [ 77 ] c onduct ed
electrophy siolog ical and electron microscopic examina-
tions on synaptic vesicles of Hidradenitis elegans and
found that SYN regulates neurotransmitter release by
binding vesicles to cytoskeletal proteins in the axon. In
the absence of SYN, vesicles were unable to be captured
at the release site and thus could not fuse with the mem-
br ane, failing neurotr ansmitter release. SYN has also been
implicated in synaptic plasticity. Song et al. [ 78 ] showed in
hippocampal neur ons cultur ed fr om SYN subtypes knock -
out mice that synaptic growth was delayed and axon
branching was absent, which is not conducive to axon
gr owth and dev elopmen t, and tha t differen t isoforms
of the SYN family had different roles at the presynaptic
terminals, which provided a new way of thinking about
the dev elopment, and differ ent subtypes of SYN family
had different effects on pr esynaptic terminals. How ev er,
the specific mechanism of action and the relationship
bet ween subt ypes are still unclear. 

4.3. Synaptotagmin 

The Synapt otag min (SYT) family is a crucial regulat or
of calcium-dependent membrane fusion events, located
on synaptic vesicles in brain neurons. The SYT protein,
identified by Matthew et al. [ 79 ] in 1981, has a molecular
weight of 65 KDa, consists of 220 amino acids, and
mainly affects neur otransmitter r elease and membrane
tr anslocation. Structur ally, SYT has an N-terminal site in
the vesicle and a C-terminal site in the cytoplasm and
also includes a tr ansmembr ane domain, a par afollicular
domain and a calcium-binding C2 domain consisting of
C2A and C2B. These domains are linked to transmem-
brane domains on vesicles via parafollicular junctional
domains to form the SYT core framework. In the presence
of Ca 2 + , the C2 domain inserts into the vesicle mem-
brane, mediating vesicle fusion and regulating tr ansmit -
ter release [ 80 ]. Humans have seventeen SYT isoforms,
with SY T1, SY T2 and SY T7 r egulating synaptic v esicle
r elease, SYT3 inv olv ed in endocytosis of synaptic pr oteins,
SY T4 and SY T11 r esponsible for v esicle transport, SYT6
inv olv ed in BDNF r elease, SYT10 as a neur opr otectiv e
effect or prot ein and SYT11 inv olv ed in membrane r epair,
among others [ 81 ]. The functional diversity of these
isofor ms contr ibutes to understanding nervous sy st em
functioning. 

Normal brain function relies on precise control of
membrane fusion ev ents. SYT serv es as both a promoter
and inhibitor of vesicle fusion. The C2A and C2B domains
of SYT spontaneously oligomerize and inhibit fusion
by binding to Ca 2 + . Until an excess of Ca 2 + breaks
down the SYT ring, membrane fusion, and release are
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riggered [ 80 ]. SYT is essential for maintaining reliable
ynaptic transmission. Lebowitz et al. [ 82 ] discov er ed
hat neurotr ansmitter tr ansmission depends on SYT1 and
ynchr onized r elease in r esponse to initial stimulation
n murine neuronal cells. Loss of SYT blocks rapid syn-
hr onized neur otransmitter r elease, leading to r educed
ynaptic transmission and short-term depression, as well
s insensitivity to presynaptic Ca 2 + . Ullah et al. [ 83 ]
ound that vesicles need to undergo processes such as
ocking and initiation before fusion can occur and that
YT int eracts with rec ept ors on the plasma membrane
e.g., Syntaxin1, SNAP-25) to promote vesicle docking
nd initiate vesicle fusion via Ca 2 + influx. In addition,
awfik et al. [ 84 ] found that stimulation of SYT7 in the
ouse brain increased the number of vesicles fused

hrough SYT1 but negatively affected their fusion rate,
uggesting both synergistic and competitive interactions
etween synaptic rec ept ors. It can be concluded that the
echanism of SYT action is complex and the study is

imited by biological complexity. 

.4. Growth assoc ia t ed prot ein-43 

r owth associated pr otein-43 (GAP-43), also known as B-
0 or neuromodulin, is a low molecular weight phospho-
rotein pr imar ily found in the g rowth c one t erminals and
resynaptic membranes of neurons. It was discovered

n 1981 by Skene and Willard [ 85 ] through intraocular
ethionine injection in rabbits. The human GAP-43 gene

s located on chromosome 3 and contains two promoters:
1 and P2. GAP-43 expression is mediated by a helix-loop-
elix mechanism acting on the active P2 promoter, from
hich the majority of GAP-43 mRNA is also derived [ 86 ].
lthough GAP-43 is classified as a neuron-specific protein,

her e is gr owing evidence that it is not restrict ed t o
eurons. Capr ar a et al. [ 87 ] found that GAP-43 was
xpressed in adult mouse m yoblasts, m yotubes and adult
keletal muscle fibers, and w as loca ted between the
alcium-releasing unit and mitochondria of mammalian
keletal muscle, where it was involved in maintaining
ntracellular calcium homeostasis. 

During neuronal development, there is a significant
ncrease in the expression level of GAP-43 protein. Sub-
equently, GAP-43 influences ion channels and signaling
y phosphorylating and releasing calmodulin, which
romotes the polymerization of microtubulin and actin at

he growth cone of the presynaptic membrane and reg-
lates vesicle outgr owth [ 87 , 88 ]. Ov er expr ession of GAP-
3 protein promotes synaptic plasticity and enhances
 onnections and c ommunication betw een neur ons. How-
v er, r educed GAP-43 expression hinders neurotr ansmit -
er release, leading to disease [ 86 ]. Wang et al. [ 89 ]
stablished an optic nerve injury model in rats and found
that inhibition of GAP-43 could promote retinal cell apop-
t osis, promot e the expression of GAP-43, and increase
the number of axons in the optic nerve . A dditionally,
Cheng et al. [ 90 ] provided optogenetic stimulation to
stroke mice and found that the upregulation of nerve
g rowth fact or and brain-deriv ed neur otr ophic factor
(BDNF) was ac c ompanied by an increase in GAP-43 levels.
The activ a tion of nerve g rowth fact or and BDNF sig naling
pr omotes neur opr otection, synaptogenesis, and neural
regeneration, making GAP-43 an important effector
driven by BDNF. 

4.5. Soluble N-ethylmaleimide-SNARE 

SNARE c omplex prot eins are the c ore c omponents c on-
necting vesicles to the plasma membrane and are mainly
c omposed of synapt osomal-associat ed prot ein 25 (SNAP-
25), VAMP/Synaptobrevin, and syntaxin [ 91 , 92 ]. SNAP-
25 was discov er ed by Oyler et al. [ 93 ] in 1989 in the
mouse brain, with a molecular weight of 25KDa, and
is expressed in the presynaptic membrane of neurons.
VA MP w as ex trac ted fr om synaptic v esicles in r at br ains
by Baumert et al. [ 94 ] in 1989, with a molecular weight of
18KDa, and it consists of a SNARE structural domain and
a C-terminal tr ansmembr ane structur al domain. Syntaxin,
which is the largest family of proteins in the SNARE com-
plex, was discov er ed in 1992 by Bennett et al . [ 95 ] using
monoclonal an tibody -immunoprecipita tion techniques
and is located in the presynaptic membrane. It consists of
one SNARE domain, a C-terminal tr ansmembr ane region,
and an N-terminal regulatory domain. SNAP-25 has two
SNARE motifs, and VAMP and Syn taxin each con tain
one SNARE motif, which assembles sequentially from
the N-terminus to the C-terminus to form a four-helix
bundle SNARE complex that releases energy for inducing
membrane fusion [ 91 ] ( Figure 4 ). 

The SNARE complex is a core protein for membrane
fusion during neur otransmitter r elease. Upon activ a tion
of SYT by Ca 2 + , it interacts with t-SNARE on the cell
membrane, leading to the fusion of the cell membrane
and plasma membrane for cytosolic and transmitter
r elease [ 92 ]. How ev er, the loss of pr oteins in the SNARE
complex results in reduced synaptic vesicular exocytosis
and decreased neurotransmitter release [ 96 ]. SNARE
complex is critical for the growth and development
of organisms [ 91 ]. They ar e inv olv ed in major mem-
brane fusion events during mouse fertilization, such as
acr osomal v esicle cell division and female and male
gamete fusion. Syntaxin deletion causes physiological
abnormalities and survival difficulties in embryonic mice.
In nervous sy st em developmen t, SNAP-25, VA MP-2 and
Syntaxin-1A ar e inv olv ed in the spr outing and gr owth
of axons in nerve cells [ 91 , 96 ]. The SNARE complex is
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Figure 4. SNARE c omplex forma tion and neur otransmitter r elease. (A) The r elease of neur otransmitters r equir es the inv olv ement of the 
SNARE complex as well as the regulatory protein SYT (red). Components of the SNARE complex include SNAP-25 (green), Syntaxin 
(yellow), and VAMP (purple). (B) Assembly of SNARE complexes. Syntaxin and VAMP bind to the SNARE domain of SNAP-25, 
r espectiv ely, to form a parallel four-helix bundle. (C) When calcium flows in, through Ca 2 + binding to SYT, the vesicular membrane and 
plasma membrane fuse and open the fusion pore, allowing neurotransmitter release. 
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ssential for c og nitive function and long-term memory
onsolidation. Vanguilder et al. [ 97 ] observed that the
r otein expr ession lev els of the hippocampal r egion in

a ts of differen t ages showed a significan t decrease in
r oteins r elated to neur otransmitter r elease, including
NAP -25, VAMP -2, Syntaxin-1, SYT1 and SYP as age

ncr eased . In summary, the SNARE complex is well known
or its role in neurotransmitter release, but it is also
r esent thr oughout the life stages of an organism, and

he functions of the SNARE complex inv olv ed in this stage
r e y et t o be disc ov er ed . 

.6. Postsynaptic density protein-95 (PSD-95) 

he postsynaptic density (PSD) is a complex of post-
ynaptic membrane signaling molecules, and PSD-95 is
he most abundant and important scaffolding protein in
he PSD [ 98 ]. In 1981 Sampedro et al. [ 99 ] found PSD-
5 in the PSD through immunohistochemical study in
he brains of mice and rats. It has also been known as
ynapse-associat ed prot ein 90, with a molecular weight
f 95 KDa, and is a member of the related guanylate kinase

amily (MAGUK). PSD-95 comprises three PSD-95/Discs
arge/Zonula occludens-1 (PDZ) structural domains at the
-terminal end (PDZ1, PDZ2 and PDZ3), a Src homology
 (SH3) structural domain in the middle, and a guano-
ine kinase (GUK) structural domain at the C-terminal
nd, in which the three structural domains, PDZ3, SH3
nd GUK, are tigh tly associa t ed t o form a c onserved
upermodule PSG [ 100 ]. Hamilton et al. [ 101 ] combined
iscrete molecular dynamics and single-molecule forster

esonance energy transfer to characterize PSG super-
modules r ev ealed that domains in PSG supermodules
can interact with each other as well as rec og nize and
bind key synaptic ligands. Meanwhile, the PDZ structural
domain regulates function by binding to specific protein
sequences, the SH3 structural domain interacts with pro-
t eins t o regulat e sig naling and the GUK structural domain
has protein kinase activity [ 98 , 100 ]. Thus, the different
structural domains in PSD-95 bind to relev an t protein
rec ept ors and sig naling molecules and ar e inv olv ed in
synapse forma tion, regula tion of in trac ellular sig naling,
and maint enanc e of synaptic plasticity. 

PSD-95 is a key protein involved in synapse develop-
ment and maturation. Husseini et al. [ 102 ] discovered that
ov er expr ession of PSD-95 in hippocampal neurons drove
synapse ma tura tion and increased the number of den-
dritic spines . C onversely, in PSD-95 knockout mice, synap-
tic aggrega tion w as disrupt ed, ac c ompanied by abnormal
dendritic spine development and transmitter delivery.
Furthermore, PSD-95 heavily influences the localization
of postsynaptic AMPA-type glutamat e rec ept or (AMPAR)
and NMDA-type glutamate r eceptor, which ar e crucial
scaffolding proteins f or c ell sig naling molecules. This
enables rapid and efficient synaptic transmission by
precisely juxtaposing AMPAR with presynaptic release
sites. PSD-95 also binds directly to subunits of NMDA-
type glutamate receptor and stabilizes its expression
on the synaptic surface. Downregulation of PSD-95
leads to the loss of A MPAR-con taining synapses, thus
affecting the normal signaling function [ 98 ]. Additionally,
Zhang et al. [ 103 ] found that PSD-95 is associated with
synaptic plasticity. Inhibiting PSD-95 expression disrupts
synaptic plasticity and hinders the cAMP-r esponsiv e
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lemen t-binding protein/BDNF pa thw ay, resulting in cog-
itive dysfunction in mice. Conversely, elev a ting PSD-
5 expression enhances cognitive function in mice.
evertheless, the applicability of these findings may be

imit ed by differenc es between animal models and the
uman nervous sy st em. 

. Ma tur e neur onal markers & neur ological 
disorders 

eur ological diseases ar e characteriz ed b y complex
athophy siolog ical mechanisms. Our understanding of

he pathogenesis, diagnosis and treatment of neurolog-
cal diseases still has significant gaps. Studies have found
hat abnormalities in biomarker levels are associated with
eurological diseases and change with disease onset and
r ogr ession [ 16 , 104 , 105 ]. Additionally, biomarkers serve

o predict and diagnose diseases and provide directions
or exploring the mechanisms of diseases and their
otential therapeutic options [ 106 , 107 ]. 

.1. Stroke 

troke is a major cause of disability and neurological
isorders globally. Markers are now being used to diag-
ose, assess and predict stroke severity due to limitations

n neuroimaging techniques. Onatsu et al. [ 108 ] found
hat serum NSE and Tau lev els w er e positiv ely corr elated
ith infarct size in stroke pa tien ts, indica ting poten tial as
redictors of severe clinical manifestations. Bi et al. [ 109 ]
iscov er ed that Tau promotes neuronal damage after
troke, while Tau-deficient mice are prot ect ed from brain
amage and neurological deficits. Pekny et al. [ 110 ] found

hat high levels of NFL in the blood were associated with
oor clinical prognosis after stroke. Sandelius et al. [ 111 ]
bserved a transient increase in cerebrospinal fluid GAP-
3 in ischemic stroke pa tien ts, which w as correla ted
ith str oke sev erity, cer ebral whit e matt er lesions, and
egr ee of atr oph y. Haif eng Lu et al. [ 112 ] f ound that SYT3
 as upregula t ed in ischemic stroke mic e, and its knock-
own pr ev ented ischemic injury and pr omoted r ecov ery.
ow ev er, the association between the above stroke
iomarkers and the pathological mechanisms inv olv ed

s not clear. The association between stroke biomarkers
nd clinical manifestations needs to be further analyzed
nd applied in clinical trials, which is expected to be an
ffective tool for stroke prevention and diagnosis. 

.2. Parkinson’s disease 

arkinson’s disease (PD) is a neur odegenerativ e disor der
ssociated with abnormal accumulation of associated
roteins. The disease is typically identified at an advanced
tage of c omplet e neuronal degeneration and lacks
imely and effective trea tmen t. Therefore, markers are
essential to detect the disease in its early stages for
pr ev ention [ 22 , 113 ]. Resear ch has shown tha t PD pa tho-
genesis inv olv es NSE, UCH-L1, Tau and SNARE complex.
Papu ́c et al. [ 15 ] found elev a ted levels of NSE in the
cer ebr ospinal fluid of pa tien ts with PD pa tien ts, which is
considered an important marker of axonal degeneration
in PD. UCH-L1 has been linked to the formation of
Lewy bodies, a key pa thological fea ture of PD [ 104 ].
Reduced levels of UCH-L1 in the fluid are associated
with c og nitive dy sfunction in PD and can serve as a
potential marker for diagnosing cognitive dysfunction in
PD pa tien ts [ 104 , 114 ]. Meanwhile, α-synuclein is inv olv ed
in the pathogenesis of PD, and Tau promotes the
aggregation and proliferation of α-synuclein [ 115 , 116 ].
Knocking out the Tau protein in PD mice resulted in
reduc ed sympt oms [ 116 ]. Additionally, the agg regation
of α-synuclein and its binding to the SNARE complex
lead to synaptic dysfunction and could serve as new
easily ac c essible markers [ 10 ]. Further studies on the link
between biomarkers and clinical manifestations of PD
are needed to determine the specificity and accuracy
between them. Meanwhile, the expression of PD biomark-
ers can be synthesized and more PD biomarkers can be
explor ed to pr ovide a basis for early in terven tion and
trea tmen t of PD in the future. 

5.3. Alzheimer’s disease 

Alzheimer’s disease (AD) is a neur odegenerativ e disease,
and the pathological deposition of Tau is a hallmark
of AD. Currently, the detection of phosphorylated Tau
in plasma and cer ebr ospinal fluid can be used as a
cr iter ion for the diagnosis of AD. Anti-Tau regimens have
become a focus for the trea tmen t of AD in the clinic,
and related Tau marker technology has been widely
used in clinical trials and practice [ 9 ]. In addition to Tau
protein deposition, synaptic dysfunction is also a key
feature of AD. Lanxia Meng et al. [ 117 ] found that the
ov er expr ession of SYN in the hippocampus resulted in
synaptic dysfunction and cognitive impairment in AD
mice . Meanwhile , Jia et al. [ 106 ] concluded that exosomes
GAP -43, SNAP -25 and SYT can be used as effective
biomarkers for predicting AD 5–7 years prior to cognitive
impairment, which provides new evidence for clinical
AD screening. Sandelius et al. [ 118 ] found that GAP-43
w as significan tly expressed in AD pa tien ts and correla ted
with the degree of neuro progenitor fiber tangles and
β-amyloid in the hippocampus, amygdala and c ort ex.
Recently Kivisäkk et al. [ 105 ] observed elev a ted levels of
PSD-95 and SNAP-25 proteins in the cer ebr ospinal fluid
of AD pa tien ts and used them as markers associa ted with
synaptic pathology in AD. In summary, AD biomarkers are
closely related to the pathomechanisms and symptoms
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f the disease. Monitoring the specificity between AD
nd these markers can impr ov e the diagnostic rate of AD.
urren tly, the combina tion of AD biomarkers and animal
odel studies is insufficient. Ther efor e, ther e is a need

o widely apply biomarkers to animal experiments and
evelop therapeutic programs based on the pathological
r ocesses inv olv ed . 

.4. Spinal cord injury 

CI is a complex and serious neur ological disor der for
hich no effective trea tmen t has been found. The use of
arkers to pr ev ent and monitor the occurrence of SCI is

urrently of interest to scholars . McC oy et al. [ 119 ] showed
hat SCI leads to upregulation of NSE, and NSE inhibitors
 ttenua te the activ a tion of rela t ed kinases and promot e
unctional r ecov ery after SCI. Ther efor e, inhibition of NSE
ould be a potential therapeutic strategy to pr ev ent neu-
odegeneration and promote nerve cell regeneration and
epair after SCI. NSE and NF w er e found to be significantly
lev a ted in the blood of pa tien ts with acute SCI, and they
 er e used as markers of acute SCI [ 23 , 59 ]. In addition,

CI is associated with hyperphosphorylation of Tau, and
t was found that cer ebr ospinal fluid and serum Tau phos-
horylation lev els w er e significan tly elev a ted in SCI rats,
nd there was a positive correlation between Tau protein

ev els and SCI sev er ity [ 120 ]. R ecently, Stukas et al. [ 16 ]
ound that cer ebr ospinal fluid and serum lev els of UCH-
1 w er e significan tly elev a ted in pa tien ts with acute
CI, ranging from 10 to 100-times higher than normal.
ft er the c ondition of SCI pa tien ts impr ov ed , UCH-L1

ev els decr eased significan tly. This suggests tha t UCH-L1
an be used as a marker to reflect the severity of SCI

njury and prog nosis. U sing the expression characteristics
f these biomarkers in SCI for clinical observ a tion is
 promising avenue for future research. Constructing
CI animal models to observe the relationship between
iomarkers and pathology will provide new targets and
irections for future SCI trea tmen t and in terven tion. 

.5. Multiple sclerosis 

ultiple sclerosis (MS) is a chronic inflammatory disease
f the central nervous sy st em caused by autoimmunity,
hich leads to tissue damage and disability. Neuroaxonal
amage is a critical factor in the development of perma-
ent disability in MS, resulting in abnormal expression of
arkers [ 121 ]. Ac c ording t o Disant o et al . [ 122 ] observ ed

hat NFL levels were significantly higher in MS patients
han in normal subjects, and the correlation between
erum NFL levels, disease activity and severity can be
sed t o monit or tissue damage and trea tmen t out c omes.
lso, abnormal Tau levels have been associated with
chronic axonal damage. Virgilio et al. [ 107 ] concluded that
cer ebr ospinal fluid Tau levels in MS pa tien ts predicted the
accumulation of early disability in MS pa tien ts predicted
the accumulation of early disability and may have predic-
tive value in diagnosing MS, leading to early trea tmen t.
Furthermore, disability in MS is primarily caused by axonal
loss, and Petrova et al. [ 123 ] found a notable decrease
in spinal synapses in the spinal cord of MS pa tien ts
post-mort em, using immunohist ochemistry with SYP and
SYN. Although some pr ogr ess has been made in the
r esear ch of MS biomarkers, the specific mechanism of MS
biomarkers is still unclear. Ther efor e, w e need to conduct
animal experiments and clinical diag nostic analy ses of
MS pa tien ts and explore more MS-related biomarkers
to provide a more reliable basis for the prevention and
trea tmen t of MS pa tien ts. 

6. Conclusion 

Matur e neur onal biomarkers ar e valuable tools in neuro-
science r esear ch as they aid in understanding neuronal
dev elopment. In nerv e r egeneration r esear ch, biomarkers
are commonly used to identify cells and observe cell
gr owth status. Differ ent biomarkers are differentially
expressed at different stages of neuronal differen tia tion.
For example, in the early stages of neuronal devel-
opment, NeuN can be used for labeling; how ev er, as
neur onal dev elopmen t ma tur es, mor e options ar e avail-
able for labeling with NSE and MAP-2. In addition, neu-
ronal cytoskeletal and synaptic markers are also widely
used for neuronal iden tifica tion labeling and functional
assessment. TUBB3 and MAP-2 and Tau maintain the
nor mal mor phology of neurons and promote axonal
and dendritic extension and branching formation.NF
stabilizes axonal and dendritic growth and localization,
enabling efficient message transmission. Synaptic vesi-
cle biomarkers (SYP, SYN, SYT) are involved in vesicle
transport and cycling to ensure normal neurotransmitter
r elease. Pr esynaptic membrane biomarkers (GAP-43) are
inv olv ed in the regulation of vesicle out g rowth and
work in synergy with vesicle biomarkers to promote
neur otransmitter r elease. SNARE complex acts as a bridge
between the vesicle and plasma membrane, initiating
membrane fusion and the release of neurotransmitters
fr om the v esicle into the synaptic gap. The postsynap-
tic membrane biomarker (PSD-95) r eceiv es pr esynaptic
release sig nals, int eg rat es r eleased neur otransmitters and
maintains synaptic plasticity. 

Recent studies have implicated markers such as
pr esynaptic pr ot eins (Bassoon and Pic c olo), neurot oxins
(Neurexin) and postsynaptic proteins (SHANK, Homer
and SAPAP) in the regulation of neuronal growth, devel-



FUTURE SCIENCE OA 13 

o  

a  

t  

r  

a  

t  

P  

o  

b  

m  

u

7

A  

b  

i  

s  

i  

i  

t  

O  

b  

d  

t  

b  

i  

b  

f  

o  

n  

n  

C  

a  

b  

w  

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pment and function [ 124–126 ]. Bassoon and Pic c olo
re components of the presynaptic region that main-
ain synaptic int eg rity and regulat e synaptic vesicle
 elease. Neur exin is central to transsynaptic cell adhesion
nd signaling during synapse specification and main-
 enanc e, and Shank, Homer and SAPAP establish the
SD of glutamat erg ic synapses thr ough a dense netw ork
f molecular interactions. How ev er, few studies hav e
een c onduct ed on these biomarkers, and their specific
echanisms of action and functional relationships are

nclear. 

. Future p ersp ective 

 s neuroscienc e r esear ch continues, it is believ ed that
iomarkers of matur e neur ons will play an even more

mportant role in future research. Researchers should
earch for new neuronal biomarkers to support the
den tifica tion and classification of neurons. In addition,
n neur ological diseases, nerv e cells ar e damaged and
he associated biomarkers ar e r eleased into body fluids.
bserv a tion of biomarkers from cerebrospinal fluid and
lood have become a diagnostic cr iter ion for related
iseases as an easy way to screen for diseases and is in

he stage of clinical application. How ev er, the r esear ch
etween biomarkers and neurological diseases is still

n the stage of animal experiments, and in the future,
iomarkers can be t est ed with human tissues and then

urther applied to clinical pa tien ts. In addition, the devel-
pmental and functional regulatory mechanisms of the
ervous sy st em ar e v ery complex, and mor e biomarkers
eed to be combined to observ e neur onal dev elopment.
urrently, single-c ell t echnology is developing rapidly,
nd utilizing this t echnology t o det ect the expression of
iomarkers in neuronal cells and explore their association
ith neurological diseases will bring broader therapeutic
rospects. 

Article highlights 

• Matur e neur on-specific in tracellular mark ers: focuses on the most 
neuron-specific biomarkers so that researchers can better apply 
them to their e xperimen ts. 

• Cytosk eletal mark ers of matur e neur ons: discussion of biomarkers 
that maintain neuronal morphology and structure and analysis of 
their function. 

• Synaptic markers of mature neurons: understanding the 
development of neuronal synapses, analyzing the expression of 
synapse-related biomarkers and deepening the understanding of 
neuronal function. 

• Matur e neur onal markers and neur ological disor ders: the use of 
neuronal biomarkers in neurological disorders and how they 
predict and diagnose disease. 

• Conclusions and future perspectives: summarizing the neuronal 
biomarkers discussed, discovering more novel and relevant 
neuronal biomarkers and looking forward to their future clinical 
applications. 
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