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Abstract

This study retrospectively reviewed the microbiological and clinical characteristics of

patients diagnosed with bacteremia. Results from the first positive blood cultures were con-

secutively collected from July 2022 to June 2023 at a public secondary hospital, a univer-

sity-affiliated tertiary hospital, and a university-affiliated secondary hospital in the Seoul

metropolitan area. Antibiotic spectrum coverage (ASC) scores were calculated on the day

the blood culture was performed (B0) and on two days after the blood culture results were

reported (R+2). A total of 3,397 isolates were collected from 3,094 patients. Among these,

949 isolates obtained from 893 patients were classified as multidrug-resistant organisms

(MDRO), including 170 imipenem-resistant gram-negative bacteria, 714 methicillin-resistant

staphylococci, and 65 vancomycin-resistant enterococci. Interestingly, 13 and 42 gram-pos-

itive isolates were resistant to linezolid and quinupristin/dalfopristin, respectively. Moreover,

44 and 181 gram-negative isolates were resistant to amikacin and tigecycline, respectively.

The proportion of ASC scores corresponding to broad or extremely broad-spectrum cover-

age was not significantly different between MDRO and non-MDRO groups at B0 (p =

0.0925). However, it increased in the MDRO group at R+2 (p <0.001). This study found that

resistance to last-resort antimicrobials is emerging. Therefore, developing and incorporating

molecular diagnostics using a wide range of resistance targets may facilitate rapid, tailored

antimicrobial treatments.

Introduction

Bloodstream infections (BSI) are associated with a high global disease burden. The magnitude

of the burden varies depending on the BSI type (e.g., community-acquired vs. hospital-

acquired), involved pathogens, and geographic regions. A previous review reported an
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estimated incidence of 43 to 101 per 100,000 population, with case fatality ranging from 13 to

17% [1]. BSI caused by bacteria harboring antimicrobial resistance (AMR) is particularly con-

cerning due to greater disease burden and poorer outcomes compared to those caused by

wild-type pathogens, with one study estimating that approximately 1.5 million deaths were

directly attributable to BSI with AMR [2]. Bacteria harboring resistance to several classes of

antimicrobial agents are called multidrug-resistant organisms (MDRO). In 2017, the World

Health Organization (WHO) listed several MDRO as “priority pathogens” requiring novel

therapeutic agents, including vancomycin-resistant enterococci (VRE), methicillin-resistant

Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii, carbapenem-

resistant Pseudomonas aeruginosa, and carbapenem-resistant/extended beta-lactamase

(ESBL)-producing Enterobacterales [3]. The increasing incidence of MDRO infections has

prompted several guidelines on various infectious diseases to recommend empirical use of

broad-spectrum antibiotics [4,5], resulting in the selection of pathogens that are resistant to

these antibiotics. Conventional antimicrobial susceptibility testing is constrained by bacterial

growth time, and a more rapid test that can direct appropriate antibiotic therapy is required to

provide adequate antimicrobial coverage against MDRO infections and to discontinue the

unnecessary administration of broad-spectrum antimicrobials as soon as possible.

Molecular diagnostics are employed more frequently to diagnose and manage BSI. Specific

techniques include polymerase chain reaction (PCR), next-generation sequencing (NGS), and

less commonly, fluorescence in situ hybridization. Notably, the impact of the BioFire blood

culture identification (BCID; bioMérieux, Marcy l’Etoile, France) assay on the detection and

management of AMR has been investigated in several studies because of its availability, ease of

use, and relatively low cost compared with NGS. Overall, the use of BCID appears to be associ-

ated with a shorter time to optimal antibiotic therapy for BSI by 6.25 to 64 hours compared to

traditional blood culture-based decisions [6–11] and optimization of antibiotic regimen in

31.8–45.1% of patients with BSI [12,13]. However, some studies have also reported no signifi-

cant reduction in the time to appropriate antibiotic de-escalation or mortality rate associated

with the use of BCID in patients with BSI [7,14]. In addition, the AMR genes detected by cur-

rent BCID are limited to those associated with ESBL, carbapenemase production, and resis-

tance to methicillin, vancomycin, and colistin. Recently, T2resistance (T2Biosystems,

Lexington, MA, USA) has become available for research use, and one study reported an 84.6%

detection rate of carbapenem resistance genes in blood culture-confirmed gram-negative BSI

within 3 to 5 hours [15]. However, this method does not provide information regarding AMR

to antibiotic class other than beta-lactam, carbapenem, and glycopeptide.

Such limitations of commercially available molecular AMR panels for BSI raise questions

about whether they are sufficient in their breadth and accurately address “real-world” BSI

landscapes. Although a large-scale analysis of antimicrobial susceptibility patterns and clinical

results of BSI would be useful in answering these questions, few such studies have been

reported. Therefore, this study retrospectively reviewed the microbiological and clinical char-

acteristics of patients diagnosed with BSI at three hospitals in the metropolitan area of Seoul,

Korea, to investigate the current landscape of the susceptibility profiles of BSI pathogens.

Methods

Study design and procedures

This retrospective observational study was conducted using the medical records and blood cul-

ture results of patients admitted to three distinct hospitals from July 2022 to June 2023: a pub-

lic secondary hospital (S), university-affiliated tertiary hospital (A), and university-affiliated

secondary hospital (P). All hospitalized patients with positive blood culture during the study
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period were enrolled. Data were collected only for the first organism isolated from the positive

blood culture of each patient’s duration of admission. However, all were included if two or

more organisms were simultaneously identified on the first blood culture. At the three institu-

tions, organisms isolated from blood cultures were subjected to bacterial identification using

MALDI-TOF mass spectrometry (MALDI Biotyper, Bruker Daltonics, GmbH, or Vitek MS

system, bioMérieux) and Vitek2 systems (bioMérieux). Antimicrobial susceptibility testing

(AST) was performed using the Vitek2 system. Bacterial identification and AST were per-

formed in the laboratory of the patient’s admitting hospital. The laboratories of all three partic-

ipating hospitals were accredited for internal and external quality assurance programs by the

Laboratory Medicine Foundation of Korea and Korean Association of External Quality Assess-

ment Service during the study period. We also compiled data on the antibiotics administered

during hospitalization, underlying disease of human immunodeficiency virus (HIV) infections

and malignancies, history of transplantation, and in-hospital mortality rates. Underlying dis-

eases such as HIV infection and malignancies, as well as transplantation history were searched

against the main diagnosis codes registered in the electronic medical records.

Classification of antibiotic resistance

The percent susceptibility to each antimicrobial agent was calculated for all gram-positive bac-

teria, VRE, methicillin-resistant staphylococci (MRS), all gram-negative bacteria, and imipe-

nem-resistant gram-negative bacteria (IRGN). Based on their susceptibility profiles, VRE,

MRS, and IRGN were classified as MDRO [16]. Antibiotics prescribed to each patient on the

day of the first blood culture (B0) and on the second day after reporting the blood culture

results (R+2) were recorded to evaluate the pattern of antibiotic use for empirical treatment

and tailored treatment after the culture results were reported, respectively. The antibiotic pre-

scription was analyzed only for patients who stayed in the admitted hospital on R+2 to exclude

patients who died or were transferred to other hospitals before R+2. Antibiotic spectrum cov-

erage (ASC) score, which quantifies the breadth of antimicrobial coverage provided by the pre-

scribed antibiotics [17], was calculated for B0 and R+2. Subsequently, we assigned each

patient’s ASC score to specific categories based on the breadth of therapy: 0–4 for narrow-

spectrum, 5–9 for narrow-to-moderate, 10–14 for moderate, 15–19 for broad, and� 20 for

very broad-spectrum therapy, adapted from previous literature that categorizes antibiotic cov-

erage in five-point increments [18].

Statistical analysis

Descriptive statistics were used to summarize the frequency, distribution, and characteristics

of the isolated organisms at the three hospitals, focusing on the prevalence of MDRO. Compar-

ative analyses of nominal variables were conducted using Pearson’s chi-squared test and Fish-

er’s exact test, and continuous variables were analyzed using the Kruskal-Wallis test. A p-

value < 0.05 was considered statistically significant. IBM SPSS Statistics (version 27.0; IBM

Corp., Armonk, NY, USA) was used to perform all calculations and statistical analyses.

Ethical approval

This study was approved by the institutional review board of the three hospitals (approval No.

Seoul Medical Center, 2023-08-001; Ajou University Hospital, AJOUIRB-DB-2023-498; Sang-

gye Paik Hospital, 2023-08-016). As this was a retrospective study using medical records, no

additional information was obtained from the patients, and the need for documentation of

informed consent was waived. Patient data were accessed for research purpose on October

18th, 2023: the informatics department of each hospital processed the primary data and
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distributed to the authors anonymized data with patient numbers, which could be used for

patient identification either during or after data collection when necessary.

Results

A total of 3,064 patients, comprising 860, 1,855, and 349 patients from hospital S, hospital A,

and hospital P, respectively, were enrolled in this study. The median age of the patients was 72

years (IQR: 61–82 years), 45.9% were female, and they significantly differed in age (p<0.001)

and gender (p<0.001) between the institutions. Among the three institutions, the frequency of

malignancy as an underlying disease showed significant differences (p<0.001) between the

three institutions, with hospital A being the highest (20.3%), followed by hospital P (19.5%)

and hospital S (3.7%). More than two bacterial species were isolated in 8% of cases. However,

in the remaining 8%, multiple bacterial species were concurrently detected. Medical records

revealed that 26.7% of the patients received antibiotics before blood culture collection, and

hospital P exhibited a particularly high incidence of pre-sampling antibiotic administration at

71.3% with statistical significance (p<0.001) (Table 1).

A total of 3,397 bacterial isolates were identified from the 3,064 individuals: 905, 2,070, and

422 from hospital S, hospital A, and hospital P, respectively. Among the isolates, Escherichia
coli was the most frequently identified bacterium in hospitals S and A, whereas Staphylococcus
epidermidis was the most frequently detected bacterium in hospital P (S1 Table).

Among the 1,551 gram-positive and 1,527 gram-negative species isolated from blood cul-

tures, MDRO was found in 893 patients, with the isolates comprised of 170 IRGN, 714 MRS,

and 65 VRE. MRS constituted the majority of the MDRO in each hospital. Hospital P exhibited

the highest proportion of MDRO across all categories (Fig 1).

Notably, 66% of all gram-positive organisms were methicillin-resistant, and approximately

40% were gentamicin-resistant. Resistance to teicoplanin and linezolid was reported in 7% and

1%, respectively (Table 2).

In gram-negative bacteria, resistance to piperacillin-tazobactam, imipenem, amikacin, and

tigecycline was reported in 20%, 12%, 3%, and 12%, respectively (Table 3). Strains that were

Table 1. Demographic and clinical characteristics of the multicenter study population.

Characteristic Hospital S

(n = 860)

Hospital A

(n = 1,855)

Hospital P

(n = 349)

Total

(n = 3,064)

P-value

Female, number (%) 473 (55.0%) 800 (43.1%) 148 (42.4%) 1,421 (45.9%) p < 0.001a

Age, median [IQR] 78 [68–85] 69 [58–80] 74 [65–82] 72 [61–82] p < 0.001

Underlying disease, number (%)

• Malignancy 32 (3.7%) 376 (20.3%) 68 (19.5%) 476 (15.4%) p < 0.001a

• HIV 0 (0.0%) 2 (0.1%) 0 (0.0%) 2 (0.1%) p = 1.000b

• Organ transplantation 0 (0.0%) 35 (1.9%) 0 (0.0%) 35 (1.1%) p < 0.001b

Number of isolated species from blood culture (BC), number (%)

• 1 Species 816 (94.9%) 1,672 (90.1%) 332 (95.1%) 2,820 (92%) p < 0.001b

• 2 Species 43 (5.0%) 157 (8.5%) 16 (4.6%) 216 (7%)

• 3 Species 1 (0.1%) 21 (1.1%) 1 (0.3%) 23 (0.8%)

• 4 Species 0 4 (0.2%) 0 (0%) 4 (0.1%)

• 5 Species 0 1 (0.1%) 0 (0%) 1 (0%)

Antibiotic administration before blood culture sampling, number (%) 213 (24.8%) 356 (19.2%) 249 (71.3%) 818 (26.7%) p < 0.001a

a Pearson’s chi-squared test was performed to determine statistical significance.
b Fisher’s exact test was performed due to the low expected frequencies.

https://doi.org/10.1371/journal.pone.0309969.t001
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not susceptible to imipenem yet were susceptible to ertapenem constituted 4.3% (55/1,293) of

all Enterobacterales isolates. Most of these strains were identified as Proteus species, with

77.1% (37/48) of all Proteus species isolates demonstrating resistance to imipenem and

Fig 1. Proportions of multidrug-resistant organisms (MDROs) within blood culture isolates from the three

hospitals (S, A, and P). The bar graph shows the prevalence of imipenem-resistant gram-negative bacteria (IRGN),

methicillin-resistant Staphylococcus spp. (MRS), and vancomycin-resistant enterococci (VRE) across the hospitals.

MRS (light gray) is the predominant MDRO, followed by IRGN (dark gray) and VRE (medium gray). Notably,

Hospital P demonstrated the highest incidence of each MDRO type, whereas Hospitals S and A showed similar MDRO

profiles.

https://doi.org/10.1371/journal.pone.0309969.g001

Table 2. Antimicrobial susceptibility profiles of gram-positive organisms isolated from blood cultures.

Antimicrobial Overall susceptibility Susceptibility in MRSa Susceptibility in VREb

Ampicillin 59.8% (257/430) 7.7% (5/65)

Ampicillin/Sulbactam 47.8% (130/272) 7.7% (5/65)

Cefotaxime 94.9% (150/158)

Ceftriaxone 78.2% (158/202)

Ciprofloxacin 50.9% (604/1186) 33.3% (238/714) 0.0% (0/23)

Clindamycin 57.3% (762/1331) 46.0% (328/713) 0.0% (0/23)

Erythromycin 42.3% (641/1515) 32.1% (229/714) 4.6% (3/65)

Gentamicin 58.4% (627/1074) 46.0% (329/715)

Linezolid 99.1% (1484/1497) 99.4% (711/715) 93.8% (61/65)

Oxacillin 33.3% (359/1077) 0.0% (0/717)

Quinupristin/Dalfopristin 94.0% (657/699) 100.0% (325/325) 86.2% (50/58)

Rifampicin 92.3% (1000/1083) 88.9% (635/714)

Teicoplanin 92.3% (1246/1350) 92.9% (666/717) 33.8% (22/65)

Tetracycline 79.7% (1061/1331) 78.7% (562/714) 100.0% (23/23)

Trimethoprim/Sulfamethoxazole 75.5% (903/1196) 74.2% (532/717) 0.0% (0/23)

Vancomycin 95.6% (1483/1551) 100.0% (717/717) 0.0% (0/65)

a Methicillin-resistant Staphylococcus spp.
b Vancomycin-resistant enterococci.

https://doi.org/10.1371/journal.pone.0309969.t002
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susceptibility to ertapenem. In particular, 13 and 42 gram-positive isolates were resistant to

linezolid and quinupristin/dalfopristin, respectively, whereas 44 and 181 gram-negative iso-

lates were resistant to amikacin and tigecycline, respectively. The in-hospital mortality rate

among patients with MDRO bacteremia (MDRO group) was 27.3% (244/893), which was sig-

nificantly higher compared to 17.5% (379/2,171) mortality rate observed in patients with bac-

teremia caused by organisms other than MDRO (non-MDRO group), with statistical

significance (p<0.001).

For the ASC score analysis, medical records pertaining to antimicrobial prescriptions were

utilized for 2,400 patients, following the exclusion of individuals lost to follow-up on day R+2.

Interestingly, the proportion of ASC scores� 15, indicating broad- or extremely broad-spec-

trum antibiotic coverage, was not significantly different between the MDRO and non-MDRO

groups at B0 yet significantly decreased in the non-MDRO group at R+2 (p<0.001, Table 4).

Table 3. Antimicrobial susceptibility profiles of gram-negative organisms isolated from blood cultures.

Antimicrobial Overall susceptibility Susceptibility in IRGNa

Amikacin 97.0% (1406/1450) 76.4% (107/140)

Amoxicillin/Clavulanic Acid 68.9% (902/1310) 21.7% (20/92)

Ampicillin 20.7% (275/1331) 11.5% (10/87)

Cefepime 69.7% (1036/1486) 32.2% (55/171)

Cefotaxime 60.9% (919/1509) 20.6% (35/170)

Ceftazidime 66.6% (1011/1519) 27.5% (47/171)

Ciprofloxacin 59.7% (903/1513) 26.9% (46/171)

Colistin 93.5% (157/168) 94.9% (74/78)

Ertapenem 97.4% (1259/1293) 64.0% (55/86)

Gentamicin 77.4% (1150/1485) 40.6% (69/170)

Imipenem 88.5% (1314/1485) 0.0% (0/171)

Minocycline 66.1% (119/180) 87.3% (69/79)

Piperacillin/Tazobactam 79.4% (565/712) 21.8% (24/110)

Tigecycline 87.8% (1298/1479) 53.5% (91/170)

Trimethoprim/Sulfamethoxazole 66.7% (1018/1527) 36.5% (62/170)

aImipenem-resistant gram-negative bacteria.

https://doi.org/10.1371/journal.pone.0309969.t003

Table 4. Distribution of patients according to the antibiotic spectrum coverage (ASC) score grade.

Empirical treatment (B0) Tailored treatment (R+2)

Antibiotic spectrum ASC grade (score) Non-MDRO MDRO Non-MDRO MDRO

Narrow Grade 1 (0~4) 27.2% (460) 27.9% (198) 45% (761) 42.6% (302)

Narrow-to-moderate Grade 2 (5~9) 32.3% (546) 21.9% (155) *** 26.5% (448) 20.5% (145) **
Moderate Grade 3 (10~14) 22.2% (375) 28.9% (205) *** 19.2% (324) 17.1% (121)

Broad Grade 4 (15~19) 9.1% (154) 10.4% (74) 6.4% (109) 13.7% (97) ***
Very broad Grade 5 (�20) 9.2% (156) 10.9% (77) 2.9% (49) 6.2% (44) ***

Total 100% (1691) 100% (709) 100% (1691) 100% (709)

Pearson’s chi-squared test was performed for each ASC grade, and statistically significant differences in MDRO values compared to non-MDRO are indicated as *
(p<0.05)

** (p<0.01), and

*** (p<0.001).
aB0, the day when blood culture was performed.
bR+2, the second day after the blood culture results were obtained.

https://doi.org/10.1371/journal.pone.0309969.t004
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Discussion

This retrospective study demonstrated the significant mortality burden of bacteremia and the

emergence of MDRO as major pathogens associated with bacteremia. According to the Global

Antimicrobial Resistance and Use Surveillance Program in Korea (Kor-GLASS), which collects

and annually reports AMR data across nine tertiary hospitals across Korea [19], a high preva-

lence of multidrug resistance were observed among blood-isolated organisms in large-scale

hospitals in Korea. In 2022, the susceptibility rate of Staphylococcus aureus to cefoxitin was

54.3%, and Enterococcus faecium to vancomycin was 64.9%. Carbepenem susceptibility among

blood-isolated Enterobacterales has also steadily declined since 2019 (imipenem-susceptible

Escherichia coli and Klebsiella pneumoniae- 99.2% in 2019 to 94.0% in 2022) [20]. These data

corroborate the substantial prevalence of MDRO among BSI in Korea. Interestingly, the sus-

ceptibility to imipenem was lower than that of ertapenem among the gram-negative isolates in

this study, mainly for two reasons. First, susceptibility to ertapenem was not tested in non-fer-

menting gram-negative species, leading to the potential exclusion of carbapenem-resistant

organisms in this group. Second, most IRGNs that demonstrated susceptibility to ertapenem

were identified as Proteus and Morganella species, which are known to have elevated minimal

inhibitory concentration to imipenem by mechanisms other than by the production of carba-

penemases. Adverse clinical outcomes associated with MDRO infections compared with non-

MDRO infections have been widely reported. Previous studies have reported that the propor-

tion of MDRO in overall bacteremia ranges from 28–31%, with an overall mortality of 25–40%

[21,22]. A recent Southern European cohort study reported 23.8% mortality for infections

caused by carbapenem-resistant Enterobacterales

(CRE) compared to 10.6% for non-CRE infections, with a similar trend being observed in a

subgroup analysis of bloodstream infections caused by CRE [23]. Other studies and meta-anal-

yses have reported worse outcomes for infections caused by CRE [24,25], MRSA [26], and

VRE [27,28] than their susceptible counterparts. Therefore, the lack of optimal therapeutic

agents against MDRO warrants concern for these organisms.

The proportion of patients with underlying malignancy- at greater risk of BSI- was lower in

hospital S. Hospital P reported a higher proportion of MRS and IRGN than the other two insti-

tutions. The proportions of E. coli and K. pneumoniae were also significantly lower at hospital

P. Differences in the proportion of MDRO in bacteremia between institutions have also been

previously reported, with MDRO being more common in long-term care facility-acquired sep-

sis. This phenomenon may have been influenced by the relatively poor compliance with disin-

fection in long-term care facilities and by the infection type [29]. Differences between

institutions emphasize the effect of local epidemiology on the antimicrobial susceptibility pro-

file pattern of a medical institution, which should be considered when designing empiric anti-

biotic regimens and antibiotic policies.

Although molecular markers associated with AMR have been extensively investigated and

are examined in some clinical microbiology laboratories, current available commercial molec-

ular panels may not provide sufficient information to direct appropriate antimicrobial choice

for bacteremia. For example, most PCR-based molecular-based panels target only genes with

established association to specific AMR, such as mecA/C in Staphylococcus aureus, vanA/B in

Enterococcus species, and beta-lactamase genes [30,31]. The proportion of resistance against

other antibiotic classes such as aminoglycoside, glycylcycline, and oxazolidinone, among com-

monly encountered pathogens was relatively low in this study. Nevertheless, it is present and

may contribute to additional mortality due to ineffective empiric antimicrobial therapy or the

virulence of the organisms themselves, as demonstrated by the previously mentioned analyses

of CRE, MRSA, and VRE infections. Rapid detection of such antimicrobial resistance is
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necessary to better prepare physicians for these infections. At least one United States Food and

Drug Administration (FDA)-approved PCR-based panel with AMR gene detection extending

to aminoglycoside, fluoroquinolone, trimethoprim-sulfamethoxazole, and polymyxin is avail-

able and has reported> 94% positive percent agreement and negative percent agreement com-

pared with the composite reference standard [32]. However, most panels with such extended

capabilities appear limited to research use only [33], likely because of a lack of clinical data,

high equipment costs, or other issues. Furthermore, the correlation between the presence of

AMR genes and phenotypic resistance to antibiotics has not yet been adequately established in

many cases, and further studies are required to accurately predict of phenotypic resistance

associated with AMR genes. However, some resistance determinants, such as optrA for linezo-

lid and tetA for tigecycline, are known to be associated with phenotypic resistance [34,35].

While treatment options for MDRO are extremely limited, earlier detection of these resistance

mechanisms would prevent physicians from empirically prescribing non-susceptible antibiot-

ics and would help them determine the prognosis of bacteremia.

The proportion of patients receiving broad or extremely broad-spectrum antibiotics was

not significantly different between the non-MDRO and MDRO groups at the empirical treat-

ment stage yet significantly decreased in the non-MDRO group at the post-culture reporting

stage. This implies that physicians appropriately adjust antibiotic regimens according to the

susceptibility pattern of the organisms and that a more rapid report on the presence of antibi-

otic resistance may lead to earlier antibiotic de-escalation. Several studies have reported that

the adoption of rapid molecular rapid diagnostic tests is associated with decreased time to

effective therapy [8,36], suggesting that physicians react to microbiological reports on a timely

basis. One study examined the impact of a real-time PCR assay detecting methicillin-resistant

and methicillin-susceptible S. aureus in tissue specimens from skin and soft tissue infections

on antibiotic prescription and found 48 cases where antibiotic modification was recom-

mended based on the results of molecular diagnostics and two-thirds of the cases accepted the

recommendations. The findings of this study suggest a possible role for rapid molecular tests

in antimicrobial stewardship [37]. A recent survey also found that intensivists were willing to

incorporate molecular diagnostics results when deciding on antibiotic regimens for pneumo-

nia [38]. Although the potential suboptimal interpretation of molecular diagnostics reports is a

concern [39], faster confirmation of antibiotic resistance through molecular diagnostics in

bacteremia may encourage more rapid antibiotic de-escalation.

This study has several limitations. First, this study was conducted retrospectively and was

therefore susceptible to selection bias. Second, the susceptibility profile in this study was

obtained from commercialized breakpoint panels and was not confirmed by broth microdilu-

tion methods. However, this method allowed analysis of susceptibility profiles for a wide range

of antimicrobial agents. Third, the three participating hospitals in this study were geographi-

cally clustered, and a single hospital accounted for nearly 60% of the positive blood cultures

included in this study, which may also have been a source of selection bias. Nonetheless, the

study cohort is comprised of patients from three hospitals with distinct capabilities and patient

populations, and the results may more accurately reflect the overall picture of bacteremia

among large-scale hospitals located in Seoul and the surrounding metropolitan areas. Finally,

this study may have underestimated underlying diseases and comorbid conditions because

these data were extracted only from the main diagnosis codes assigned to the patients. How-

ever, the proportion of underlying diseases was described by simply comparing the patient

profiles across the three institutions, and we did not aim to analyze the data associated with

BSI in this specific patient group.

In conclusion, this study found that resistance to last-resort antimicrobials, such as linezo-

lid, tigecycline, and aminoglycoside, is emerging in Korea and that higher mortality is
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observed in patients with MDRO bacteremia. In addition, antibiotic prescribers escalate or de-

escalate antibiotic regimens according to the reported antimicrobial susceptibility profile on a

timely basis. Therefore, developing and incorporating molecular diagnostics that detect a

wider range of antimicrobial resistance than what is currently available may facilitate rapidly

tailored antimicrobial treatment.
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