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Encoding of female mating dynamics by a 
hypothalamic line attractor

Mengyu Liu1,2,3,6, Aditya Nair1,2,3,6, Nestor Coria1,2,3, Scott W. Linderman4,5 & 
David J. Anderson1,2,3 ✉

Females exhibit complex, dynamic behaviours during mating with variable sexual 
receptivity depending on hormonal status1–4. However, how their brains encode the 
dynamics of mating and receptivity remains largely unknown. The ventromedial 
hypothalamus, ventrolateral subdivision contains oestrogen receptor type 1-positive 
neurons that control mating receptivity in female mice5,6. Here, unsupervised 
dynamical system analysis of calcium imaging data from these neurons during mating 
uncovered a dimension with slow ramping activity, generating a line attractor in neural 
state space. Neural perturbations in behaving females demonstrated relaxation  
of population activity back into the attractor. During mating, population activity 
integrated male cues to ramp up along this attractor, peaking just before ejaculation. 
Activity in the attractor dimension was positively correlated with the degree of 
receptivity. Longitudinal imaging revealed that attractor dynamics appear and 
disappear across the oestrus cycle and are hormone dependent. These observations 
suggest that a hypothalamic line attractor encodes a persistent, escalating state of 
female sexual arousal or drive during mating. They also demonstrate that attractors 
can be reversibly modulated by hormonal status, on a timescale of days.

Mating is a complex social interaction whose success is essential to 
the survival of a species. In rodents, female mating receptivity has 
been considered as a binary behaviour defined by lordosis7–10, a reflex-
ive acceptance posture. In fact, however, female receptivity is highly 
dynamic, exhibiting variability both within a mating interaction and 
across different physiological states2. Nevertheless, the important 
contribution of a female to the dynamics of successful mating has been 
underappreciated and understudied, relative to the male.

Recent progress has identified circuits that control female receptiv-
ity1,3,4,11. The ventrolateral subdivision of the ventromedial hypotha-
lamic nucleus (VMHvl) contains a subset of Esr1+ neurons that controls 
mating behaviours in female mice5,6,12–15. Recent findings have revealed 
hormone-dependent changes in the anatomy and physiology of these 
neurons. The axonal arborizations of VMHvl progesterone receptor 
(Pgr)-expressing neurons in the anteroventral periventricular nucleus 
(AVPV) increase in receptive females, in an oestrogen-dependent man-
ner16. In addition, a small subset of Esr1+ neurons, defined by expres-
sion of the cholecystokinin A receptor (Cckar)6,17, has been shown to 
be necessary and sufficient for female receptivity and to exhibit oes-
trus cycle-dependent changes in excitability ex vivo and in response 
dynamics during the investigation phase of mating interactions in vivo6. 
Although these studies have identified important circuit-level changes 
associated with the state of receptivity, how the dynamics of female 
behaviour during mating are encoded in the brain is largely unknown.

To address this issue, we have characterized neural population 
representations in female VMHvl during interactions with males 

across the oestrus cycle, using longitudinal miniscope imaging of 
calcium activity18. We imaged a subpopulation of Esr1+ neurons that 
are Npy2r− that we called ‘α-cells’, which causally control sexual recep-
tivity5; these cells overlap with the aforementioned Cckar+ cells6,7. 
Unsupervised modelling of VMHvl α-cell activity using a dynamical 
systems approach19 revealed an approximate line attractor in neu-
ral state space, which disappeared during non-receptive phases of 
the oestrus cycle and was hormone dependent. Analysis of female 
mating behaviour and line-attractor dynamics suggest that the 
attractor integrates male contact cues and may represent a persis-
tent, escalating internal state of female sexual arousal or receptivity  
during mating.

Dynamics of female behaviours in mating
Female mating behaviour has been studied more extensively in rats 
than in mice4,20. To detail mouse female mating behaviour under our 
standard conditions, we manually annotated video recordings of sexu-
ally receptive females interacting with a male (Fig. 1a). We identified ten 
female motor behaviours and classified them as appetitive (approach-
ing and sniffing the male), accepting (lordosis and wiggling) or resisting 
(darting, top up, kicking and turning), based on the apparent intent of 
the behaviour6. The behaviours were dynamic, with the probability of 
accepting behaviours gradually increasing, whereas resistance behav-
iours initially increased and then slowly decreased (Fig. 1b and Extended 
Data Fig. 1a). Thus, receptivity is not binary but graded and dynamic.
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We categorized mating behaviours as ‘self-initiated’ (appetitive and 
check genital area) or ‘male-responsive’ (accepting, resistance and stay-
ing in response to male attempts). Females spent six times longer dis-
playing male-responsive (83.9%) versus self-initiated behaviours (16.1%; 
Fig. 1c). Owing to this asymmetry, we also quantified male-initiated 
behaviours (sniffing, mounting and intromission). Male spent 11.3 
times more time displaying self-initiated mating behaviours than 
females (Fig. 1d), indicating that males largely drive mating interac-
tion. The number and duration of male copulation bouts and inter-
bout intervals (IBIs) varied across interactions (Fig. 1e and Extended  
Data Fig. 1b).

Next, we compared female behaviours during male copulation 
bouts versus IBIs (Fig. 1f). Behaviours were classified as ‘social’ (accept-
ing, resisting and appetitive) or ‘disengaged’ (rearing, digging and 

chewing). During copulation bouts, females primarily exhibited 
social behaviours (62% of the duration for each bout) and rarely dis-
engaged behaviours (Fig. 1g, left). During IBIs, when females were 
separated from the males, they continued social behaviours initi-
ated during the preceding bout (Fig. 1g, right; 23% of IBI duration).  
A behaviour probability plot aligned to copulation offset showed that 
females continued accepting or resisting behaviours and performed 
appetitive approaches and sniffing during IBIs (Fig. 1h and Extended  
Data Fig. 1c).

These results demonstrate that female behaviours during mating 
are dynamic and primarily driven by male-initiated behaviours. The 
persistence of female social behaviours observed during pauses in 
copulation (Fig. 1h) suggests a corresponding persistent internal 
state of mating receptivity or engagement. The ramping dynamics 
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Fig. 1 | Dynamics of female behaviours during mating interaction. a, Raster 
plot of ten female mating behaviours during one interaction with a male. b, The 
probability of mating behaviours during every 20 s (n = 74 trials, n = 28 mice). 
Behaviours were grouped as accept (comprising lordose and wiggle), appetitive 
(comprising approach and sniff) and resistance (comprising dart, top up, kick 
and turn); data are presented as mean ± s.e.m. c, Distribution of the percentage 
of time females displayed responsive versus self-initiated mating behaviours 
over the total mating behaviour time in each trial (n = 74 trials). Female self- 
initiated mating behaviours comprised appetitive behaviours and check 
genital area. Female-responsive mating behaviours comprised accept and 
resistance behaviours and staying. d, Percentage of time female or male mice 
displayed self-initiated mating behaviours in each trial (left). The box boundaries 
range from minimum to maximum, with a line at the median. Male self-initiated 

mating time over female in each trial (right; n = 74 trials). Data are presented  
as mean ± s.e.m. Male self-initiated mating behaviours included male sniffing, 
mounting and intromission. e, Distribution of the durations of male copulation 
bouts (left; n = 1,685) and IBIs (right; n = 1,611). Male copulation included 
mounting and intromission. f, Raster plot of female behaviours during 
copulation bouts and IBIs. Social behaviours comprised accepting, resistance 
and appetitive behaviours; and non-social disengaged behaviours comprised 
rearing, digging and chewing. g, Percentage of time females displayed social 
behaviours in each male copulation bout or IBI. ‘Others’ indicates all behaviours 
other than the defined social behaviours or non-social disengaged behaviours 
during interaction. h, Female behaviour probability aligned to male copulation 
offsets.
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of ‘accepting’ behaviours (Fig. 1b) further suggests that escalation 
may be a property of this internal state. Persistence and escalation (or 
‘scalability’) are features of internal states underlying other dynamic 
social behaviours, such as male aggression21. We next investigated 
how these state properties are instantiated by neural activity and  
dynamics.

Tuning of female VMHvl neurons in mating
To uncover how the dynamics of female mating behaviour are encoded 
in neural activity, we imaged VMHvlEsr1+,Npy2r− (α) cells5 in freely moving 
sexually receptive females interacting with males, using a miniature 
head-mounted microscope18 (Fig. 2a). Initially, we analysed responses 
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i, Cumulative distribution of ACHW for all units (top), and distribution of the 
number of neurons with ACHW > 25 s (bottom; n = 4 mice).
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observed in the first minute of exposure to either a male or female 
conspecific and observed distinct subsets tuned to intruder sex, 
with male-preferring cells approximately four times more abundant, 
contributing to clear separation of sex in principle component space 
(Extended Data Fig. 1e,f,h). Correspondingly, the averaged population 
response to a male was approximately four times higher than that to a 
female (Extended Data Fig. 1g), consistent with previous bulk calcium 
imaging studies5.

We next analysed imaging data from females acquired during free 
mating interactions with a male, over 5–10-min observation periods 
(Fig. 2b; 16–207 units per mouse, mean of 89 ± 12 units per mouse; n = 15 
mice). Choice probability22 indicated that a relatively small percentage 
of VMHvl α-cells (approximately 2–13%) were ‘tuned’ to specific mating 
behaviours (Fig. 2c and Extended Data Fig. 2a,b), whereas the major-
ity exhibited ‘mixed selectivity’ (Fig. 2c and Extended Data Fig. 2a,b, 
grey bars), indicating relatively weak behaviour-specific tuning at the 
single-neuron level.

To further investigate the relationship between mating behaviours 
and neural activity, we fit generalized linear models (GLMs) to each neu-
ron using female mating behaviours (Fig. 2d), male mating behaviours 
(Extended Data Fig. 2c), or both female and male behaviours (Extended 
Data Fig. 2d). Across all animals, only approximately 8% of the variance 
in neural activity was explained by female mating behaviours (Fig. 2e; 
mean cross-validated R2 (cvR2) = 0.08; n = 15 mice); approximately 14% 
by male mating behaviours (Extended Data Fig. 2c; mean cvR2 = 0.14) 
and approximately 15% of the variance were explained by combined 
female and male behaviours (Extended Data Fig. 2d; mean cvR2 = 0.15).

Together, these single-cell analyses indicated that a large fraction of 
the variance in VMHvl α-cell neural activity during female mating could 
not be explained by behaviour using a GLM. Nevertheless, a trained 
support vector machine linear decoder could distinguish mating behav-
iours with an accuracy higher than chance (Extended Data Fig. 2f–i), 
suggesting some relationship between neural activity or dynamics 
and behaviour. To examine whether local interactions between neu-
rons could improve the fit of our GLMs, we included coupling filters23,24 
in addition to the behavioural variables (Fig. 2f). The introduction of 
neuronal coupling dramatically increased variance explained by the 
GLM, suggesting that local circuit interactions contribute more than 
behaviour to neuronal variance in VMHvl α-cell activity (Fig. 2f,g; mean 
cvR2 = 0.46; n = 15 mice). Because GLMs fit using low-dimensional cou-
pling matrices (as obtained here) can reflect slowly evolving neural 
dynamics, we were then motivated to analyse the dynamics of VMHvl 
α-cell activity.

Neural dynamics in female VMHvl
We first examined the dynamics of single-neuron activity by measur-
ing the half-width of the autocorrelation (ACHW) function22 of each 
neuron, which is an approximation of the time constant of the neu-
ron25,26 (Fig. 2h). This analysis identified individual cells that exhibited 
apparent persistent activity across the mating interaction. Of cells, 
30% displayed ACHWs longer than 25 s (mean ACHW of 20 s; Fig. 2i), 
a duration longer than the mean copulation IBI (13.7 s; Fig. 1e, right). 
Of note, the ACHW of the same female cells was significantly lower 
when the male was confined in a perforated enclosure (pencil cup) 
than during free mating interaction (mean ACHW for pencil cup of 
14.3 ± 0.42 s, mean ACHW for free interaction of 19.64 ± 0.58 s; Extended 
Data Fig. 3a–c), suggesting that the latter cannot be fully explained by  
persistent male odours.

Given that the single-cell analysis revealed evidence of persistent 
neural activity, we considered whether a systems-level approach could 
capture low-dimensional features of population neural dynamics. To 
this end, we fit an unsupervised dynamical systems model (recurrent 
switching linear dynamical systems (rSLDS))19,21 directly to neural 
data during individual trials (Fig. 3a,d,e; n = 15 mice; mean variance 

explained (calculated as cvR2 between observed and predicted neural 
trajectories) of 64.08 ± 6.8%).

Applying rSLDS analysis to VMHvl α-cell activity revealed an ‘inte-
gration dimension’ in state S2 with a relatively long time constant, 
compared with the other dimensions (110.7 ± 13.6 s; Fig. 3b, red dot, 
and 3c; n = 15 mice). Examining the log2 ratio of the two longest time 
constants to calculate a ‘line-attractor score’21 revealed that the fit 
dynamical system contains a line attractor (Fig. 3e), which is aligned in 
neural state space to the integration dimension. The integration dimen-
sion could also be uncovered using supervised targeted dimensionality 
reduction (Extended Data Fig. 3d,e), confirming that slow integration 
dynamics is indeed a property of a subset of VMHvl neurons and not 
dependent on the method used.

Projecting neural activity into the integration dimension revealed 
ramping activity that began to increase at the onset of sniffing, mount-
ing or intromission (depending on the trial) and that continued to 
increase across multiple mating bouts and IBIs (Fig. 3d and Extended 
Data Fig. 3f–q). The continuous ‘ramping up’ in the integration dimen-
sion observed over a long timescale during mating is unexpected; it 
contrasts with studies of bulk calcium activity in female VMHvlCckar 
neurons, which have shown a unidirectional decrease from the start 
of mounting until ejaculation6.

To quantitatively reveal the variable integrated by the integration 
dimension, we modelled the dimension as a neural integrator using 
a single-state linear dynamical system, allowing the model to flexibly 
use male behaviours (male-sniff, mount and intromission) to move 
activity along the integrator (Extended Data Fig. 3r). We found that the 
model fits with high accuracy (cvR2 of 0.88 ± 0.02) and possess a large 
intrinsic time constant (more than 200 s), revealing that it does indeed 
function as an integrator (Extended Data Fig. 3s). To dissect how the 
different inputs contribute to the model, we obtained the transformed 
input from the model (Extended Data Fig. 3s) and found that it peaks 
following every male contact (Extended Data Fig. 3t, bottom). Thus, 
male-contact-driven input, in combination with sustained input during 
male-engagement behaviours such as intromission, is used to integrate 
activity over time (Extended Data Fig. 3t, bottom, and 3u).

Analysis of the traces of individual neurons contributing to the 
integration dimension indicated that some single cells exhibited 
ramping-like activity (Extended Data Fig. 4a,b; 56% of neurons r2 > 0.5), 
but that different cells peaked at different times during the mating 
interaction (Extended Data Fig. 4c,d, orange arrowheads). This sug-
gests that the robust ramping activity seen in the integration dimension 
(Extended Data Fig. 4c, top) is a property of the population and not 
solely a collective property of all single neurons.

To visualize the flow field of the rSLDS-fit dynamical system, we 
projected it into a 2D state space using principal component analy-
sis (Fig. 3e). This projection revealed a stable region (white area) 
comprising a linear array of ‘slow points’ that approximated a line 
attractor, which is primarily contributed by the integration dimen-
sion of the model (Fig. 3d–g). Mapping annotated behaviours onto 
the neural trajectory in this state space indicated that the population 
vector entered the line attractor following initial close contact with 
the male and progressed along it during successive male intromis-
sion bouts (Fig. 3f,g). This progression reflects the ramping seen 
in the integration dimension discovered by the rSLDS (Fig. 3d and 
Extended Data Fig. 3f–q). The pattern of fixed points discovered by 
the rSLDS could also be uncovered by independently fitting recur-
rent neural networks to neural data using FORCE27,28, revealing that 
the putative line attractor is a feature of neural data and not an 
artefact of the rSLDS method (Extended Data Fig. 5a,b). Of note, in 
some animals, the neural vector exhibited brief, loop-like excur-
sions orthogonal to the attractor dimension during IBIs (Fig. 3g and 
Extended Data Fig. 3i,m,q), suggesting ‘attractiveness’ of the observed 
fixed points against either natural perturbations orthogonal to the  
attractor or noise.
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(left), and variance explained by a rSLDS model fit without an input term 
(Methods) for all mice (right; n = 15 mice, mean = 64.08%). The variance 
explained by the two outliers can be increased by incorporating an input  
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e, Flow field of VMHvl α-cell dynamical system. PC1 principal component 1.  
f, Flow field of VMHvl α-cell dynamical system showing neural trajectories  
in state space. t0, time 0 s. g, Neural state space of VMHvl α-cell dynamical 
system and behaviours, highlighting regions where fixed points are present 

(dashed line). h, Time constants of latent factors from the rSLDS model (left), 
and projection of rSLDS latent factor activity from the rSLDS model trained on 
neural data from unperturbed periods (right; that is, excluding LED stimulation 
and 20-s post-stimulation interval). i, Flow field and neural trajectories from 
the rSLDS model coloured by time (left), and neural trajectory coloured by 
stimulation periods (right). j, Flow field and neural trajectories for each of the 
three stimulation periods for mouse 1. Note that trajectories are pushed away 
from the attractor during stimulation and then return to the line attractor 
following stimulation offset, as predicted by the flow field. This approach also 
tests the validity of the extrapolated regions of the flow field uncovered by the 
rSLDS. k, Stimulus-triggered average of response in integration dimension (x1) 
and orthogonal dimension (x2) upon optogenetic stimulation. n = 3 mice. The 
dotted vertical line indicates the onset of the stimulus, and the shaded area 
represents the duration of the stimulus. The horizontal line indicates the 
pre-stimulus baseline of normalized activity.
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Perturbations of the female line attractor
Definite evidence for the attractive nature of the fixed points discovered 
by the rSLDS requires performing neural perturbations orthogonal 
to the line attractor. Such perturbations for line attractors have yet to 
be performed for freely behaving animals29. To achieve this, we per-
formed optogenetic inhibition of the VMHvl network while concur-
rently imaging VMHvlEsr1 α-cell neurons (Extended Data Fig. 5c,d). We 
found that transient optogenetic inhibition creates consistent transient 
off-manifold responses in neural state space during the period of pho-
tostimulation, with the neural trajectory returning to the nearest fixed 
point along the line attractor post-inhibition (Fig. 3h–k and Extended 
Data Fig. 5e–j). Using forward simulations of the model fit to data from 
the unperturbed period (excluding data during and 20 s after stimu-
lation), we found that the dynamical system model is able to predict 
neural trajectories in the held-out post-stimulus period, revealing the 
predictive nature of the flow field (Extended Data Fig. 5f–h). Moreo-
ver, by providing this inhibition at different positions along the line 
attractor, we showed that different fixed points along the line attrac-
tor revealed by the rSLDS are indeed attractive (Fig. 3i,j and Extended 
Data Fig. 5i,j).

The presence of a line attractor suggested a mechanism to stably 
maintain population activity in a particular state during interruptions 
or pauses in male mating behaviour. To test this hypothesis, we first 
examined activity during copulation IBIs, when the male is physically 
separated from the female. Of note, we found that the average value of 
the integration dimension during copulation IBIs was relatively high, 
similar to and statistically indistinguishable from that measured during 
the preceding copulation bout (Fig. 4a). Accordingly, it was not pos-
sible, using activity in this dimension, to train a decoder to distinguish 

videoframes containing copulation bouts versus IBIs with accuracy 
greater than chance (Fig. 4b).

To further probe the stability of the identified line attractor in female 
VMHvl, we next carried out behavioural perturbation experiments to 
non-invasively and transiently interrupt male mating (Fig. 4c). After 
several successful intromission bouts had been performed, we remotely 
abrogated copulation by optogenetic activation of Sf1+ cells from the 
ventromedial hypothalamus in males, which abruptly promoted a 
defensive state30,31. During the laser-on period, males stopped all mat-
ing behaviours, including singing, and displayed no active approach 
to the female. The induced mating pauses lasted for several minutes 
(1–5 min), which were much longer than the natural mating pauses 
(Fig. 1f; average IBI = 13.7 s). Nevertheless, activity in the integration 
dimension in the female brain remained elevated for minutes while 
the male was prevented from resuming mating (Fig. 4d), consistent 
with the persistent activity that we observed during the natural male 
copulation pauses (Fig. 4a).

Together, these data indicated that VMHvl α-cell activity displays 
line-attractor dynamics during mating, and that although male contact 
is integrated along the line attractor (Extended Data Fig. 3r–u), the 
stability of the system in the integration dimension does not require 
continuous male contact-dependent sensory input. In further support 
of this conclusion, in a cohort of naturally cycling females exhibiting 
variable receptivity (see below), we obtained some trials with high 
male intromission rates but low female receptivity behaviour (Fig. 4e, 
coloured dots, and Supplementary Videos 1 and 2). Of note, analysis of 
those trials revealed relatively little if any ramping in the integration 
dimension (Fig. 4f). These data suggest that ramping does not sim-
ply reflect accumulated mechanosensory inputs derived from male 
intromission.
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Fig. 4 | A line attractor encodes a persistent and ramping state during 
mating. a, Behaviour-triggered average of the normalized activity of the 
integration dimension aligned to the offset of male copulation. Dashed line 
represents offset of copulation events. Data are presented as mean ± s.e.m.  
b, Videoframe behavioural decoder performance trained on neural data  
from copulation bouts versus IBIs (n = 4 mice, P = 0.2, Mann–Whitney U-test, 
mean value of data of 0.52 ± 0.007, shuffle of 0.49 ± 0.03). c, Dynamics of  
the integration dimension in an example female combined with optogenetic 
inhibition of mating behaviours in the interacting male. d, Behaviour-triggered 
average of the normalized activity of the integration dimension aligned to  
first male contact (left), optogenetic mating inhibition onset (middle) and 

inhibition offset (right; n = 4 mice). Data are presented as mean ± s.e.m.  
e, Scatter plots of time spent by males performing intromission and time  
spent by females performing acceptance behaviours to identify trials with  
high intromission and low receptivity (coloured dots). Data are presented as 
mean ± s.e.m. P = 7.09 × 10−12. f, Example traces of the integration dimension for 
trials with intromission but low receptivity (identified from panel e). g, Dynamics 
of the integration dimension, aligned to male mating behaviours in an example 
trial with ejaculation. h, Behaviour-triggered average of the normalized activity 
of the integration dimension aligned to the ejaculation onset and offset (n = 4 
mice). Data are presented as mean ± s.e.m. Dashed line indicates the onset or 
offset of ejaculation.
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Finally, we sought to identify a correlate of the ramping activity 
revealed by line-attractor dynamics in VMHvl (Fig. 4g). Males displayed 
sequential mating behaviours with escalating intensity from sniffing to 
mounting, intromission and finally ejaculation, reflecting an escalating 
internal state of sexual arousal. We examined activity in the integration 
dimension during ejaculation and observed that it peaked just before 
ejaculation, and immediately dropped thereafter (Fig. 4g,h); however, 
this drop is also characteristic of bulk calcium activity6.

Attractor encodes level of receptivity
We considered whether the line attractor observed during mating 
reflects or encodes the level of female receptivity by altering recep-
tivity in two different paradigms. First, we performed longitudinal 
imaging in multiple females (n = 4 mice) across their 4–5-day oestrus 
cycle, during which receptivity changes (Extended Data Fig. 6a). In each 
animal, we were able to obtain data from 1 sexually receptive day and 
2 unreceptive days and to align neurons from those recordings across 
days (Fig. 5a). Consistent with previous studies5,6,16, no change in aver-
age VMHvl α-cell population activity (triggered on a male mounting 
attempt) was apparent on receptive versus unreceptive days (Extended 
Data Fig. 6b). However, raster plots revealed obvious differences in the 
pattern of single-unit activity on receptive versus unreceptive days 
(Fig. 5a, right).

To determine whether there were also differences in VMHvl α-cell 
dynamics across the oestrus cycle, we fit rSLDS models to data obtained 
on both receptive and unreceptive days, for each individual. Models 
fit to data from unreceptive days failed to identify a single dimension 
with a very long time constant, indicating the absence of a line attrac-
tor (Fig. 5b,c). Accordingly, the first two principal components of the 
rSLDS state space did not exhibit integration-like activity, but rather 
relatively fast dynamics time-locked to male sniffing and mounting (PC2 
in Fig. 5d). In 2D flow-field projections, neural state space contained a 
single point attractor, reflecting stable baseline activity before inter-
action with the male, from which the population vector made rapid 
excursions during sniffing and mounting, returning to the same point 
attractor after interaction (Fig. 5e,f).

To compare neural dynamics on non-receptive versus receptive days 
more directly, we projected neural activity from unreceptive days into 
the rSLDS model fit to data from the receptive day using the same neu-
rons aligned across days (Fig. 5g). The projected neural data failed 
to show ramping behaviour in the first rSLDS dimension (Fig. 5h and 
Extended Data Fig. 6c). Accordingly, in 2D projections of the flow field, 
the neural population activity vector remained at one end of the line 
attractor (Extended Data Fig. 6d). Although male mounting occurred 
on unreceptive days (Fig. 5h, purple rasters), activity in the first rSLDS 
dimension was low during this behaviour (Extended Data Fig. 6e), 
indicating that it is not sufficient to explain the ramping observed on 
receptive days.

These results suggested that a change in neural dynamics occurred 
between receptive and unreceptive days. This inference was supported 
by the lower ACHW of cells weighted on the first rSLDS dimension on 
unreceptive versus receptive days (Extended Data Fig. 7a,b; distribu-
tion mean for ACHW on unreceptive days 16.1 ± 0.8 s, and on recep-
tive days 25.2 ± 1.5 s; P < 0.001). This difference in mean ACHW was 
observed regardless of the order in which receptive and unreceptive 
days occurred in different mice (Extended Data Fig. 7c,f). Neurons 
that did not contribute to the first rSLDS dimension did not exhibit a 
change in ACHW (Extended Data Fig. 7d,g). Finally, we compared the 
ACHWs of each individual unit on receptive versus non-receptive days. 
A scatter plot of these data revealed a subpopulation (39 ± 5%) of line 
attractor-weighted neurons whose ACHW was higher on receptive 
than on unreceptive days (Extended Data Fig. 7e,h, red data points). 
Indeed, incorporating these differences in the ACHW into a mecha-
nistic spiking network model can recapitulate our empirical results, 

exhibiting a loss of line-attractor dynamics during unreceptive states 
(Extended Data Fig. 8d).

As a second independent test of the hypothesis that the line attractor 
encodes receptivity, we subjected a cohort of females to ovariectomy 
(OVX) to render them unreceptive, and performed longitudinal imag-
ing in the OVX animals before versus after hormone priming to restore 
receptivity (daily injection of oestrogen or progesterone in oil; controls 
were injected with oil only; see Methods). The results indicated that 
attractor dynamics disappeared following OVX and were reinstated 
following hormone priming (Extended Data Fig. 9j). The female mice 
used in this cohort had also been imaged during their natural cycle 
and fit with rSLDS models. In some individuals, the model possessed a 
poor fit on receptive days (Extended Data Fig. 9k, ‘forward simulation 
accuracy’). In one such animal, the fit of the rSLDS model was mark-
edly improved following OVX and hormone priming, compared with 
the fit obtained on her naturally receptive day (Extended Data Fig. 9k 
versus 9l–n). Together, these data confirm a strong prediction of the 
hypothesis that the line attractor observed during mating encodes 
some aspect of mating receptivity.

The foregoing data left open the important question of whether 
the continuous low-dimensional variable instantiated by the line 
attractor reflects or encodes continuous variation in the degree of 
female receptivity. In males, differences in the time constant of the 
integration dimension are strongly correlated with differences in 
aggressiveness, across individual animals19. We therefore sought to 
examine line attractor parameters within a cohort of females exhibiting 
individual differences in receptivity across trials and days. To generate 
this cohort, we injected naturally cycling female mice with oestrogen 
(but not progesterone) daily beginning 2 days before imaging and 
continued the injections during 3–7 days of repeated imaging of the 
same animals during daily mating tests (n = 6 mice). These injections 
increased the number of days on which females exhibited receptivity, 
while still allowing variation in the level of receptivity (as measured 
by the amount of accepting behaviours displayed in a given trial) in 
response to changing levels of endogenous sex hormones across the 
oestrus cycle (Fig. 5i,j and Extended Data Fig. 10a). This design afforded 
the opportunity to correlate quantitative variation in receptivity with 
variation in line-attractor parameters.

We fit rSLDS models to imaging data from each animal and mating 
trial and plotted the average activity of the integration dimension over 
time (refer to Fig. 5h). The area under the curve was strongly and posi-
tively correlated with the percentage of time that females performed 
acceptance behaviours during each mating interaction (Fig. 5k,l; 
r2 = 0.62; P < 0.0001; n = 50 trials). By contrast, other behaviours such 
as resistance and appetitive behaviours were not correlated with this 
measure (Extended Data Fig. 10b). Finally, the population mean of 
neural activity did not show any correlation with the percentage of 
time that females performed acceptance behaviours, highlighting 
the value of rSLDS to identify physiologically distinct subpopulations 
whose activity is quantitatively correlated with receptivity during male 
mating (Extended Data Fig. 10c,d). Thus, these data indicate that vari-
ation in movement along the line attractor reflects variation in levels 
of sexual receptivity, across individuals and trials.

Discussion
Using unsupervised analysis of neural data, we discovered an approxi-
mate line attractor in a genetically defined subset of VMHvlEsr1 neurons 
that causally controls female mating receptivity. Activity in the attrac-
tor scales with individual differences in receptivity and is oestrus cycle 
dependent. To our knowledge, no previous example of a line attractor 
that appears and disappears with periodic changes in behavioural/
hormonal state on a timescale of days exists.

Line-attractor dynamics can afford internal states two important 
features: stability (persistence) and ramping (scalability). The stability 



908  |  Nature  |  Vol 634  |  24 October 2024

Article

of the line attractor across intromission bouts may function to maintain 
the female in a persistently aroused state during intermittent male 
copulatory behaviour, facilitating its re-initiation following pauses. 
This interpretation is supported by our observation that female social 

behaviour persists following natural interruptions in copulation 
(Fig. 1f–h). The ramping activity seen during copulation may repre-
sent a continuous, scalable variable in the female brain. A reasonable 
interpretation is that this variable encodes the level of escalating female 
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sexual arousal. We emphasize that this ramp-up was not visible in the 
bulk α-cell calcium signal, but only in the integration dimension.  
This may explain why it was not reported in a study of mating-related 
VMHvlCckar neuronal activity using fibre photometry6.

The idea that the line attractor encodes mating receptivity is sup-
ported by its presence or absence during receptive versus unreceptive 
oestrus cycle days or in ovariectomized females with versus without 
hormone priming, respectively (Fig. 5c). However, it is not just a binary 
correlate of receptivity: the degree of movement along the attractor 
was highly correlated (r2 = 0.62) with the level of receptivity as meas-
ured by the frequency of accepting behaviours (Fig. 5k). By contrast, 
the integration dimension was not well correlated with other female 
behaviours (Extended Data Fig. 10b).

Our previous work has shown that transcriptionally distinct subsets 
of VMHvlEsr1 neurons, called α-cells and β-cells, control female sexual 
receptivity and maternal aggression, respectively5. Here we show that 
the α-cell population exhibits further heterogeneity at the physiologi-
cal level, including subsets that contribute to the line attractor or to 
orthogonal dimensions. Whether these subpopulations are transcrip-
tomically distinct is not yet clear6,17. Yin et al.6 previously reported that 
VMHvlCckar neurons (a subset of α-cells) displayed receptivity-associated 
changes in their spontaneous activity, and responsivity to males during 
investigation. These cells may contribute to the integration dimension 
neurons identified here.

Together, our data suggest that neural population dynamics repre-
sent the dynamics of female mating receptivity and can be reversibly 
sculpted by physiological state. They also generalize the concept that 
line attractors with slow dynamics encode internal states underlying 
innate social behaviours21. Because the molecular, cellular and connec-
tional features of VMHvl are well described5,14,15,32–34, this system may be 
advantageous for understanding how hormones, genes, cell types and 
local circuitry contribute to emergent neural population dynamics.
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Methods

Mice
All experimental procedures involving the use of live mice or their tis-
sues were carried out in accordance with NIH guidelines and approved 
by the Institute Animal Care and Use Committee (IACUC) and the Insti-
tute Biosafety Committee (IBC) at the California Institute of Technology 
(Caltech). All mice in this study, including wild-type and transgenic 
mice, were bred at Caltech or purchased from Charles River Labora-
tory. Group-housed C57BL/6N female or singly housed male mice  
(2–5 months) were used as experimental mice. Npy2rcre mice ( Jackson 
Laboratory stock no. 029285; n = 1), Esr1cre mice, Esr1flp mice (n > 10) and 
Sf1cre mice ( Jackson Laboratory stock no. 012462) were backcrossed 
into the C57BL/6N background and bred at Caltech. Heterozygous 
Npy2rcre, Esr1cre or double heterozygote Esr1flp/+Npy2rcre/+ mice were used 
for cell-specific targeting experiments and were genotyped by PCR 
analysis using genomic DNA from tail tissue. All mice were housed in 
ventilated microisolator cages in a temperature-controlled environ-
ment (median temperature of 23 °C, humidity of 60%), under a reversed 
11-h dark–13-h light cycle, with ad libitum access to food and water. 
Mouse cages were changed weekly.

Surgeries
Surgeries were performed on female Esr1flp/+Npy2rcre/+ mice 2 months 
of age. Virus injection and implantation were performed as previously 
described35,36. In brief, mice were anaesthetized with isoflurane (5% for 
induction and 1.5% for maintenance) and placed on a stereotaxic frame 
(David Kopf Instruments). Virus was injected into the target area using a 
pulled-glass capillary (World Precision Instruments) and a pressure injec-
tor (Micro4 controller, World Precision Instruments), at a flow rate of 
20 nl min–1. The glass capillary was left in place for 10 min following injec-
tion before withdrawal. Lenses were slowly lowered into the brain and 
fixed to the skull with dental cement (Metabond, Parkell). Females were 
co-housed with a vasectomized male mouse after virus injection and lens 
implantation. Four weeks after lens implantation, mice were head-fixed 
on a running wheel and a miniaturized micro-endoscope (nVista, nVoke, 
Inscopix) was lowered over the implanted lens until GcaMP-expressing 
fluorescent neurons were in focus. Once GcaMP-expressing neurons 
were detected, a permanent baseplate was attached to the skull with 
dental cement. The co-housed vasectomized males were removed.

Virus injection and GRIN lens implantation
The following adeno-associated viruses (AAVs) were used in this 
study, with injection titres as indicated. Viruses with a high original 
titre were diluted with clean PBS on the day of use. AAV-DJ-EF1a-Coff/
Fon-GcaMP6m (4.5 × 1012, Addgene plasmid) was packaged at the HHMI 
Janelia Research Campus virus facility. ‘Coff/Fon’ indicates Cre-OFF/
FLP-ON virus. Stereotaxic injection coordinates were based on the 
Paxinos and Franklin atlas. Virus injection: VMHvl, anteroposterior 
−1.6, mediolateral ±0.78, dorsoventral −5.7; GRIN lens implantation: 
VMHvl: anteroposterior −1.6, mediolateral −0.76, dorsoventral −5.55 
(∅0.6 × 7.3 mm GRIN lens).

Vaginal cytology
To determine the oestrus phases of tested females, vaginal smear cytol-
ogy was applied on the same day as the behavioural test. A vaginal smear 
was collected immediately after the behavioural test and stained with 
0.1% crystal violet solution for 1 min. Cell types in the stained vaginal 
smear were checked microscopically. In this study, the pro-oestrus 
phase was characterized by many nucleated epithelial, some cornified 
epithelial and no leukocytes.

Hormone priming
Female mice were ovariectomized and oestrus was induced by hor-
mone priming. Oestradiol benzoate (E2) and progesterone powder 

were dissolved in sesame oil. For primed females, 50 µl 200 µg ml−1 
oestradiol benzoate was delivered subcutaneously on days -2 and -1 at 
15:00. Then, 10 mg ml−1 progesterone was delivered subcutaneously 
on the day of test at 10:00. The behavioural test was performed 4–6 h 
after progesterone injection. For unprimed female mice, sesame oil 
was injected at the same timepoints as hormone injections. Vaginal 
smear cytology was applied on the same day as the behavioural test 
to make sure that the females were completely primed or unprimed. 
For oestrogen-injected females used in Figs. 4 and 5, 50 µl 200 µg ml−1 
oestradiol benzoate was delivered subcutaneously every day at 10:00. 
The behavioural tests were conducted after the first 2 days of injection.

Sex representation assay
All behavioural tests were performed under red light. Group-housed 
C57BL/6N male and female mice (2–4 months) were used for the test. 
The tested female was acclimated in her home cage under the record-
ing setup37 for 10 min. A toy, a female or a male was introduced to the 
tested female with a 90-s interval. Each interaction lasted for 1 min 
before transitioning into the consummatory phase. The sequential 
representations were repeated three times.

Mating assay
Singly housed sexually experienced C57BL/6N male mice were used for 
the mating assay. Male mice used for the test were initially co-housed 
with a female mouse for at least 1 week and singly housed at least 1 week 
before the test. On the day of the test, a male mouse was acclimated in 
his home cage under the recording setup. A random female mouse was 
placed into male cage until three male mounting bouts were observed. 
The tested female mice were acclimated in a new cage for 10 min before 
being introduced into the male cage. The male contact mating interac-
tion lasted for 5–15 min. At the end of the free interaction, a pencil cup 
was introduced to restrain the male. Then, imaging and behavioural 
recording during the non-contact period continued for 3–5 min.

Wireless optogenetic male mating inhibition assay
Singly housed sexually experienced Sf1cre+/− males were used in this test. 
All hardware and wireless devices for optogenetic stimulation were 
sourced from NeuroLux. Specifically, AAV2-EF1a-DIO-hChR2(H134R)- 
EYFP-WPRE-pA (4.2 × 1012, UNC vector core) was unilaterally injected 
into ventromedial hypothalamus of the male mice at coordinates: anter-
oposterior −1.5, mediolateral +0.4, dorsoventral −5.6. Simultaneously, 
wireless optogenetic devices were implanted (NeuroLux). A recovery 
period of 3 weeks followed the surgical procedures to allow for optimal 
viral vector expression and to ensure the wellbeing of the mice. Subse-
quently, a mating assay was performed, and when multiple successful 
copulations were observed, male mice were exposed to a wirelessly 
powered blue-light photostimulation (473 nm for 1–5 min at 20 Hz and 
10 W). During the stimulation, male mice promptly discontinued all 
mating-related behaviours, including vocalization, sniffing, mounting 
or intromission, and instead exhibiting exploratory behaviours within 
the home cage and distancing themselves from the female mouse. Fol-
lowing the cessation of photostimulation, male mice typically resumed 
mating-related behaviours, either immediately or with a delay.

Behavioural annotations
Behavioural videos were manually annotated using a custom MATLAB- 
based behavioural annotation interface. A ‘baseline’ period of 2 min 
when the animal was alone in its cage was recorded at the start of every 
recording session.

During female–male interaction, we manually annotated the fol-
lowing male mating behaviours: male sniff, mount, intromission and 
ejaculation.

For the same video, we annotated the following female mating behav-
iours: approach, sniff, lordose, wiggle, stay, dart, top up, kick, turn 
and check genital. For ‘approach’, the female faced male and walked 



to it without pausing. For ‘sniff’, the female actively sniffed the male. 
For ‘lordose’, the female abdomen was on the ground and motionless 
or showing an arched back posture responding to male mounting or 
intromission. For ‘wiggle’, the female continuously moved her head 
or body responding to male mounting or intromission. For ‘stay’, the 
female quietly stayed in place, but the abdomen was not clearly on 
the ground, responding to male mounting or intromission. For ‘dart’, 
the female quickly ran away from male, responding to male mating 
behaviours. For ‘top up’, the female stood up to conceal the anogenital 
area, responding to male mating behaviours. For ‘kick’, the female 
kicked the male, responding to male mating behaviours. For ‘turn’, the 
female turned away from the male, responding to mating mounting or 
intromission. For ‘check genital’, the female examined her genital area, 
usually after male mounting or intromission.

Lordose, wiggle, stay, dart, top up, kick and turn were grouped as 
responsive mating behaviours. Approach, sniff and check genital were 
grouped as female self-initiated mating behaviours.

Female approach and sniff were grouped as appetitive mating 
behaviours. Lordose and wiggle were grouped as accepting mating 
behaviours. Dart, top up, kick and turn were grouped as resistance 
mating behaviours.

All appetitive, accepting and resistance behaviours were grouped 
as social behaviours.

For the same video, we also annotated the following female non- 
social disengaged behaviours: rear, dig and chew. For rear, the female 
extended her body upright and attempted to explore outside the test-
ing chamber. For dig, the female dug beddings. For chew, the female 
stood up and chewed with her mouth.

Fibre photometry
The fibre photometry setup was as previously described in earlier 
research with minor modifications. We used 470-nm LEDs (M470F3, 
Thorlabs, filtered with 470–10-nm bandpass filters FB470-10, Thorlabs) 
for fluorophore excitation, and 405-nm LEDs for isosbestic excitation 
(M405FP1, Thorlabs, filtered with 410–10-nm bandpass filters FB410-10,  
Thorlabs). LEDs were modulated at 208 Hz (470 nm) and 333 Hz 
(405 nm) and controlled by a real-time processor (RZ5P, Tucker David 
Technologies) via an LED driver (DC4104, Thorlabs). The emission sig-
nal from the 470-nm excitation was normalized to the emission signal 
from the isosbestic excitation (405 nm), to control for motion artefacts, 
photobleaching and levels of GcaMP6m expression. LEDs were coupled 
to a 425-nm longpass dichroic mirror (DMLP425R, Thorlabs) via fibre 
optic patch cables (diameter of 400 mm, NA of 0.48; Doric lenses). 
Emitted light was collected via the patch cable, coupled to a 490-nm 
longpass dichroic mirror (DMLP490R, Thorlabs), filtered (FF01-542/27-
25, Sem-rock), collimated through a focusing lens (F671SMA-405, 
Thorlabs) and detected by the photodetectors (Model 2151, Newport). 
Recordings were acquired using Synapse software (Tucker Davis Tech-
nologies). On the test day, after at least 5 min of acclimation under the 
recording setup, the female was first recorded for 5 min to establish a 
baseline. Then, behavioural assays were proceeded and fluorescence 
was recorded for the indicated period of time, as described in the main 
text. All data analyses were performed in Python. Behavioural video 
files and fibre photometry data were time-locked. Fn was calculated 
using normalized (405 nm) fluorescence signals from 470-nm excita-
tion. Fn(t) = 100 × [F470(t) – F405fit(t)]/F405fit(t). For the peri-event 
time histogram, the baseline value F0 and standard deviation s.d.0 were 
calculated using a −5-s to −3-s window. Overlapping behavioural bouts 
within this time window were excluded from the analysis. Then, the 
peri-event time histogram was calculated by [(Fn(t) – F0]/s.d.0.

Microendoscopic imaging data acquisition
Imaging data were acquired by nVista 3.0 (Inscopix) at 30 Hz with two 
times spatial downsampling; LED power (0.2–0.5) and gain (6–8×) 
were adjusted depending on the brightness of GcaMP expression as 

determined by the image histogram according to the user manual.  
A transistor–transistor logic pulse from the Sync port of the data acqui-
sition box (DAQ, Inscopix) was used for synchronous triggering of 
StreamPix7 (Norpix) for video recording.

For perturbation-imaging experiments, AAV5-hSyn-eNpHR3- 
mCherry (Addgene) was expressed together with GcaMP in the VMHvl. 
Imaging data were acquired by nVoke 2.0 (Inscopix). One to three bouts 
of inhibitory LED stimulation (5 mW continuous for 10 s) were per-
formed during receptive mating trials.

Microendoscopic data extraction and preprocessing
Miniscope data were acquired at 30 Hz using the Inscopix Data Acquisi-
tion Software as two times downsampled .isxd files. Preprocessing and 
motion correction were performed using Inscopix Data Processing 
Software. In brief, raw imaging data from the same animal from multiple 
recording dates were concatenated, two times spatially downsam-
pled, motion corrected and temporally downsampled to 10 Hz further 
and exported as a .tiff image stack. A spatial bandpass filter was then 
applied to remove out-of-focus background. After preprocessing, 
calcium traces were extracted and deconvolved using the CNMF-E large 
data pipeline with the following parameters: patch_dims = [32, 32],  
gSig = 3, gSiz = 13, ring_radius = 19, min_corr = 0.75 and min_pnr = 8. 
The spatial and temporal components of every extracted unit were 
carefully inspected manually (signal-to-noise ratio, peak-to-noise ratio, 
size, motion artefacts, decay kinetics and so on) and outliers (obvious 
deviations from the normal distribution) were discarded. The extracted 
traces were then z-scored before analysis.

Longitudinal imaging data extraction and preprocessing
The females performed the mating assay and were imaged for con-
secutive 3–7 days. ‘Receptive day’ was defined as the female displaying 
accepting behaviours on the testing day, whereas ‘unreceptive day’ 
was defined as the female not displaying accepting behaviours on the 
testing day. Miniscope data from one receptive day and two unrecep-
tive days were selected and concatenated to one .isxd file. Data were 
preprocessed and the traces were extracted as described in the previous 
section. The 3-day concatenated traces were z-scored and then split to 
multiple traces for individual days.

Choice probability
Choice probability is a metric that estimates how well either of two 
different behaviours can be predicted or distinguished, based on the 
activity of any given neuron during these two behaviours. Choice prob-
ability of single neurons was computed using previously described 
methods36. To compute the choice probability of a single neuron for 
any behaviour pair, 1-s binned neuronal responses occurring during 
each of the two behaviours were used to generate a receiver operating 
characteristic curve. Choice probability is defined as the area under 
the curve bounded between 0 and 1. A choice probability of 0.5 indi-
cates that the activity of the neuron cannot distinguish between the 
two alternative behaviours. We defined a neuron as being capable of 
distinguishing between two behaviours if the choice probability of that 
neuron was more than 0.7 or less than 0.3 and was more than 2 s.d. or 
2 s.d. or less of the choice probability computed using shuffled data 
(repeated 1,000 times).

GLM
To predict neural activity from behaviour, we trained GLMs to predict 
the activity of each neurons k, as a weighted linear combination of three 
male behaviours: male sniffing, mounting and intromission:

⇀ ⎯⇀
y t x t β φ( ) = ( ) +k

Here y t( )k  is the calcium activity of neuron k at time t, ⇀x t( ) is a feature 
vector of three binary male behaviours at time lags ranging from  
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t-D to t where D = 10 s. 

⎯⇀
β  is a behaviour filter, which describes how  

a neuron integrates stimulus over a 10-s period (example filters are  
shown in Extended Data Fig. 2d,e). φ is an error term. The model was 
fit using tenfold cross-validation with ridge regularization, and the 
model performance is reported as cvR2. To account for cell–cell inter-
actions within the network, we also used the activity of simultaneously 
imaged neurons as regressors in addition to behaviour as previously 
performed23,24.

Dynamical system modelling
rSLDS models19,38 are fit to neural data as previously described21. In brief, 
the rSLDS is a generative state-space model that decomposes non-linear 
time series data into a set of linear dynamical systems, also called states. 
The model describes three sets of variables: a set of discrete states (z), 
a set of latent factors (x) that captures the low-dimensional nature of 
neural activity and the activity of recorded neurons (y). Although the 
model can also allow for the incorporation of external inputs based 
on behavioural features, such external inputs were not included in 
our first analysis.

The model is formulated as follows: at each timepoint, there is a 
discrete state z K∈ {1, …, }t  that depends recurrently on the continuous 
latent factors (x):

p z z k x R x r( = , ) = softmax{ + } (1)t t t k t k+1∣

where RR ∈k
K K×  and r ∈k

KR  parameterize a map from the previous 
discrete state and continuous state to a distribution over the next dis-
crete states using a softmax link function. The discrete state zt deter-
mines the linear dynamical system used to generate the latent factors 
at any time t:

x A x b ϵ= + + (2)t z t z t−1t t

where RA ∈k
d d×  is a dynamics matrix and Rb ∈k

D  is a bias vector,  
where D is the dimensionality of the latent space and ϵ N Q~ (0, )t zt

 is  
a Gaussian-distributed noise (aka innovation) term.

Finally, we can recover the activity of recorded neurons by modelling 
activity as a linear noisy Gaussian observation Ry ∈t

N  where N is the 
number of recorded neurons:

y Cx d δ= + + (3)t t t

For RC ∈ N D×  and δ N S~ (0, )t , a Gaussian noise term. Overall, the sys-
tem parameters that rSLDS needs to learn consists of the state-transition 
dynamics, library of linear dynamical system matrices and neuron- 
specific emission parameters:

θ A b Q R r C d S= {{ , , , } , , , } (4)k k k k k k

K

=1

We evaluated model performance using both the evidence lower 
bound and the forwards simulation accuracy (Fig. 3a) described in Nair 
et al.21, as well as by calculating the variance explained by the model 
on data. In brief, given observed neural activity in the reduced neural 
state space at time t, we predicted the trajectory of population activ-
ity over an ensuing small time interval Δt using the fit rSLDS model, 
then computed the mean squared error (MSE) between that trajectory 
and the observed data at time t + Δt. This MSE was computed across 
all dimensions of the reduced latent space and repeated for all times t 
across cross-validation folds. This error metric is normalized to a 0–1 
range in each animal across the whole recording to obtain a bounded 
measure of model performance. The forwards simulation accuracy 
can provide an intuition of where model performance drops during 
the recording. In addition to MSE, we also calculated the Pearson’s 
correlation coefficient (R2) between the predicted and observed data 
for each dimension following the forwards simulation. By taking the 

average correlation coefficient across dimensions, we obtained a quan-
titative estimate of variance explained by the rSLDS on observed data.

The number of states and dimensions used for the model are deter-
mined using fivefold cross-validation. Visualization of the dynamical 
system using principal component analysis is performed as previously 
described21.

For neural perturbation experiments, the rSLDS model was trained 
on data from unstimulated periods of time (that is, excluding data 
during and 20 s immediately after stimulation) and then tested on 
data from stimulated periods along with a 20-s post-stimulus period 
(Extended Data Fig. 5e,f).

The code used to fit the rSLDS on neural data is available in the SSM 
package: (https://github.com/lindermanlab/ssm).

Estimation of time constants
We estimated the time constant of each dimension of linear dynamical 
systems using eigenvalues λa of the dynamics matrix of that system, 
as previously derived39:

τ
λ

=
1

log(| |)
(5)a

a

Decoding of behaviour using support vector machines
We trained frame-wise decoders to discriminate various pairs of behav-
iours as shown in Extended Data Fig. 4, from the population activity of 
all neurons during a mating interaction. We first created ‘trials’ from 
bouts of each behaviour by merging all bouts that were separated by 
less than 5 s and balanced data to ensure chance performance of the 
model to be 50%. We then trained a linear support vector machine 
to identify a decoding threshold that maximally separates the two 
behaviours and tested the accuracy of the trained decoder on held-out 
frames. ‘Shuffled’ decoder data were generated by setting the decod-
ing threshold on the same trial, but with the behavioural annotations 
randomly assigned to each behavioural bout. We repeated shuffling 
20 times. We report performances of actual and shuffled decoders as 
the average F1 score of the fit decoder, on data from all other trials for 
each mouse. For significance testing, the mean accuracy of the decoder 
trained on shuffled data was computed across mice, with shuffling 
repeated 1,000 times for each mouse.

Dynamical system modelling using FORCE learning
We trained a recurrent neural network (RNN) to reproduce activity of 
individual neurons during mating interactions using FORCE as previ-
ously described28,40. The dynamics of each unit in the RNN is governed 
by the following equation:

∑τ
x
t

x t g J r x t H t
d
d

= − ( ) + ( ( )) + ( )i
i

j

N

ij j
=1











Here, τ is the time constant of the system (0.5 s as used previously40), 
H is the total external input to neurons (consisting of a weighted com-
bination of male sniff, mounting and intromission), J is a heterogeneous 
matrix of recurrent connections whose strength is determined by the 
parameter g. For chaotic networks, we used g = 1.5 as used previ-
ously28,40. The elements of the matrix J are modified through recursive 
least squares as previously described28,41, by reducing an error term 
e t z t f t( ) = ( ) − ( )i i i . Here f t( )i  is the experimental calcium trace and 
z t J r t( ) = ∑ ( )i j ij j . The network contains the same number of units as in 
the experimental data (between 100 and 200 neurons), and dynamics 
were solved using Euler’s method (dt = 0.05 s).

To estimate the fixed points of the RNN, we reverse engineered the 
trained RNN with fixed point analysis42 using gradient-based optimi-
zation. The estimated slow points of the dynamical system were then 
projected into the same neural state space as determined by the rSLDS 

https://github.com/lindermanlab/ssm


to determine the similarity in attractor landscapes discovered by the 
two methods (Extended Data Fig. 5a,b).

Modelling of integration dynamics to reveal inputs to the line 
attractor
To reveal the input received by the integration dimension (Extended 
Data Fig. 3r–u), we modelled activity of this dimension using a single- 
state linear dynamical system model as:

x A x b ϵ Wu= + + +t z t z t t−1 t

here x refers to weighted activity of the integration dimension and W 
is a matrix used to linearly combine behavioural inputs (male sniff, 
mounting and intromission) to the integration dimension. The model 
was fit as described above for the rSLDS, and model performance was 
evaluated using variance explained with cross-validation.

Mechanistic modelling of spiking neural networks
We constructed a model population of n = 1,000 standard current-based 
leaky integrate-and-fire neurons as previously performed43. We mod-
elled an excitatory spiking network with feedback inhibition designed 
to account for finite size effects and runaway excitation. In this network, 
each neuron has membrane potential xi characterized by dynamics:













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x t g Wp t g I t w s t
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i
j

N

i i
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inh inh

where τm = 20 ms is the membrane time constant, W is the synaptic 
weight matrix, s is an input term representing external inputs and p 
represents recurrent inputs. To model spiking, we set a threshold 
(θ = 0.1), such that when the membrane potential x t θ( ) >i , x t( )i  is set 
to zero and the instantaneous spiking rate r t( )i  is set to 1.

Inhibition was modelled as recurrent inhibition from a single-graded 
input Iinh representing an inhibitory population that receives equal input 
from and provides equal input to all excitatory units. The dynamics of 
Iinh evolves as:

∑τ
I

t
I t

N
r t

d
d

= − ( ) +
1
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n

N

N
inh

inh
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where τI = 50 ms is the decay time constant for inhibitory currents.
We designed the synaptic connectivity matrix to include a subnet-

work of 200 neurons (20% of the network), designated the integration 
subnetwork as suggested by empirical measurements, with a connec-
tivity density of 12% as opposed to 1% in the remaining network. Weights 
of the overall network were sampled from a uniform distribution 
W U N~ (0,1/ )ij , whereas weights of the subnetwork were sampled as 
W U N~ (0,1/ )ij p , where Np = 200.

External input was provided to the network as a step function consist-
ing of 20 pulses at 10 interstimulus intervals (ISI). This stimulus drove 
a random 25% of neurons in each subnetwork.

Spiking-evoked input was modelled as a synaptic current with  
dynamics:

τ
p

t
p t r t

d

d
= − ( ) + ( ) , (8)s

i
i i

where τs is the synaptic conductance time constant, set to 20 s for neu-
rons in the integration subnetwork and 100 ms for remaining neurons 
in the network.

Model dynamics were simulated in discrete time using Euler’s method 
with a time step of 1 ms and a small Gaussian noise term η N~ (0,1)/5i  
were added at each time step. We used g = 2.5 and varied ginh = 4.25 as 
suggested by measurements of inhibitory input to the VMHvl44 and 

used previously43. To simulate hypothesis 1 in Extended Data Fig. 8, we 
set the synaptic time constant for integration neurons to 100 ms. To 
simulate hypothesis 2, we changed the gain associated with input to 
each subnetwork, decreasing this quantity for the integration subnet-
work by 50% and increasing the same for the remaining neurons by 
50%.

Calculation of ACHW
We computed ACHWs by calculating the autocorrelation function 
for each neuronal time series data ( yt) for a set of lags as previously 
described22. In brief, for a time series ( yt), the autocorrelation for lag k is:

r
c
c

=k
k

0

where ck is defined as:

∑c
T

y y y y=
1

( − )( − )k
t

T k

t t k
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−

+

and c0 is the sample variance of the data. The half-width is found for 
each neuron as the point where the autocorrelation function reaches 
a value of 0.5.

Partial least-squares regression to identify integration 
dynamics
To identify the integration dimension using an independent method, 
we also used partial least-squares regression. Towards this, all traces 
were concatenated and regressed against a 1 × T vector designed such 
that the vector shows ramping activity upon entry of the male intruder 
(Extended Data Fig. 3d,e).

Statistics and reproducibility
All experiments were conducted using 2–4 cohorts of animals. The 
results were reproducible across cohorts and combined for the final 
analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data pertaining to this Article have been deposited in the DANDI reposi-
tory with the accession code 001097.

Code availability
The code to analyse the rSLDS models is available at GitHub (https://
github.com/lindermanlab/ssm). The rSLDS model weights and param-
eters have also been deposited in the DANDI with the accession code 
001097.
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Extended Data Fig. 1 | Behavior dynamics and neural responses to 
conspecific sex. a, The probability of female behaviors every 20 s (n = 74 trials, 
N = 28 mice). b, Distribution of the percentage of time males displayed mating 
behaviors in each trial (n = 74 trials). c, The probability of female behaviors 
aligned to male copulation offsets and d, copulation onsets. (e-h), Neural 
responses to conspecific sex. e, Left, diagram of sex representation test. Each 
intruder was presented for 1 min. Right, concatenated average responses to toy, 

female, or male (N = 8 mice). Color scale indicates z-scored activity.  
Units were sorted by temporal correlation. f, Percentages of male- or female- 
preferring cells (calculated by Choice Probability). g, Mean responses of  
female VMHvlEsr1 α cells to male, female and toy (N = 8 mice). Data presented as 
mean ± SEM. h, PCA of neuronal responses to male, female and toy from one 
example female.
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Extended Data Fig. 2 | Neural tuning to conspecific sex and behavior.  
a, Choice Probability (CP) histograms and percentages of tuned cells for female 
behaviors. cutoff: CP > 0.7 or <0.3 and >2σ. N = 15 mice. b, Same as a, but for 
male behavior. c, Schematic showing generalized linear model (GLM) used to 
predict neural activity from male behaviors and distribution of cvR2 across all 
mice, or d, both male and female behaviors and distribution of cvR2 across all 
mice (N = 15 mice). e, Example generalized linear model fits and behavior filters 
for poorly and well fit neurons. (f-i), Decoder analysis. f, schematic showing 
linear support vector machine (SVM) decoder trained on frames of male mating 
behaviors. g, performance of the decoder trained to separate female behavior. 
Left, performance of decoder trained to separate frames of lordosis versus all 
remaining frames (***p < 0.001, N = 15 mice, mean decoder performance data: 

0.85 ± 0.03, shuffle: 0.49 ± 0.003). Right, performance of decoder trained to 
separate frames of lordosis versus resistance behaviors (***p < 0.001, N = 15 mice, 
mean decoder performance data: 0.80 ± 0.03, shuffle: 0.48 ± 0.01). h, Same as f, 
but showing the decoder hyperplane for separating male behaviors (mount 
versus intromission) on right. (***p < 0.001). (N = 15 mice). i, performance  
of decoders trained to separate intromission versus mount (mean decoder 
performance data: 0.89 ± 0.02, shuffle: 0.49 ± 0.003), intromission versus 
male sniffing (mean decoder performance data: 0.90 ± 0.02, shuffle: 
0.49 ± 0.003), mount versus male sniffing (mean decoder performance data: 
0.83 ± 0.02, shuffle: 0.50 ± 0.006) and intromission versus remaining frames 
male sniffing (***p < 0.001, N = 15 mice, mean decoder performance data: 
0.88 ± 0.03, shuffle: 0.48 ± 0.003).



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Additional example trials with rSLDS model fit, 
additional information for Fig. 3. a, Dynamics of persistently active neurons 
identified during receptive interaction with pencil-cup assay. b, Cumulative 
distribution & bar plot of ACHW for same neurons during free interaction vs 
pencil cup assay ****p < 0.0001, Mann-Whitney U test, p value: 1.25e-11,  
N = 470 neurons from 5 mice. mean ACHW during pencil cup: 14.3 ± 0.42,  
free interaction: 19.6 ± 0.58. c, Pie chart indicating fraction of neurons with 
ACHW > 25 s in free interaction and in pencil cup assay. d, Schematic illustrating 
partial least squares regression to extract integration dynamics in VMHvl.  
e, Comparison of rSLDS integration dimension and PLS dimension for two 
example mice showing a high correlation. (f-q), Additional example trials with 
rSLDS model fit. f, Recurrent switching linear dynamical systems (rSLDS) 
model fit forward simulation accuracy aligned to male behaviors in example 
trial 2. g, Dynamics of the integration dimension in trial 2. h, Flow field of 
VMHvl α dynamical system showing neural trajectories in state space, 
annotated by time from male encounter (t0) for trial 2. i, Neural state space  

of VMHvl α dynamical system highlighting behaviors and the region containing 
the line attractor for trial 2. j-m, the same as g-i for example trial 3. n-q, the same 
as j-i for example trial 4. r, Integration model used to dissect the contribution  
of intrinsic decay and external inputs (male behaviors; male-sniff, mount, and 
intromission). A single state LDS model is used to fit external inputs to predict 
activity in the integration dimension. s, Top: External inputs to integration 
model, middle: learned input filter showing weights that are multiplied with 
the external inputs. Bottom: transformed input obtained by multiplying 
external inputs with input filter. t, Top: Data and model prediction from LDS  
to predict activity in the integration dimension. The learned model has a large 
intrinsic time constant (right). Bottom: Transformed input (weighted input 
from three male behaviors) and model prediction overlayed with behaviors.  
u, Behavior triggered average of transformed input and integration dimension 
aligned to male contact. Male contact is present for the duration of the shaded 
region. Data presented as mean ± SEM.



Extended Data Fig. 4 | Dynamics of single cell activity. a, Correlation of 
example unit activity with an ideal ramp. b, Distribution of correlation of 
individual neuron activity with ideal ramp. c, Upper, relationship of male behavior 
to weighted average of all units contributing to integration dimension  
as a function of time. Data from the same example trial as shown in Fig. 3d. 

Lower, normalized activity (z-score) of individual units times rSLDS weight for 
each unit exhibiting a significant weight in the integration dimension, sorted 
by time to peak. d, Traces of example units from c, lower. Yellow arrow indicates 
peak of activity for each unit.
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Extended Data Fig. 5 | Independent verification and neural perturbations 
of line attractor dynamics. a, Cartoon illustrating approach of fitting RNNs  
to neural data using FORCE. b, Slow points and attractor manifold uncovered 
by FORCE, overlaid with line attractor uncovered by rSLDS. c, Paradigm for 
simultaneous neural perturbation & imaging during a mating interaction  
in females. GcaMP was expressed in VMHvl-α cells while halorhodopsin 
(eNpHR3.0) was expressed in all VMHvl neuron using a pan-neuronal driver.  
d, Neural data obtained from a female showing annotated male behaviors and 
optogenetic inhibition (LED). e, Left: Latent factors from two-dimensional 
rSLDS model fit to neural data. Reproduced for explanatory purposes from 
Fig. 3h. Right: Time constants of the two longest-lived dimensions from rSLDS 
model fit to data from unperturbed periods (excluding stimulation period plus 
a 20 s post-stimulus period). f, Left: Performance of model on held out data 
from 20 s immediate post-stimulus period (taken from highlighted blue 
portions of graphs in e). g, Cartoon depicting quantification of flow field 

prediction following optogenetic perturbation. The flow field fit from 
unperturbed periods of time is used to predict the neural trajectory following 
perturbation (t-pred end, purple line). This trajectory is then compared to data 
(t-data end, black line). Scenario 1 illustrates when the model agrees with data, 
resulting in a low difference in activity along the line attractor (top). Scenario 2 
illustrates when the model diverges from data resulting in a large deviation in 
final position along the line attractor (bottom). h, Quantification of flow field 
prediction following perturbation as the difference in activity level at the end 
of the 20 s post-stimulus period between data and model in both x1 and x2 
dimensions across mice (activity difference for x1: 0.05 ± 0.03, for x2: 
0.03 ± 0.01, n = 3 mice). i, Latent factors from rSLDS of mouse 2 during neural 
perturbation. j, Flow field and neural trajectories for mouse 2. Note that 
trajectories are pushed away from the attractor during stimulation and then 
return to line attractor following stimulation offset, as predicted by the flow 
field.



Extended Data Fig. 6 | Line attractor dynamics across the estrus cycle.  
a, Correlation between female estrus states and the presence of sexual 
receptivity, measured by whether female displayed accepting behaviors during 
interaction with male. b, Photometry recording in female VMHvl α cells during 
receptive and unreceptive mating interactions. Data presented as mean ± SEM. 
c, Low dimensional principal components of VMHvl α dynamical system in 
receptive day with neural data projected from unreceptive day. d, Flow field of 
VMHvl α dynamical system in receptive day with neural trajectories projected 

from unreceptive for t = 0 to t = 200 s (left) and t = 200 s to t = 400 s (right).  
e, Quantification of normalized value of integration dimension during male- 
mounting in unreceptive and receptive days (*p < 0.05, N = 4 mice, mean value 
during unreceptive day: 0.09 ± 0.04, receptive day: 0.69 ± 0.05. Mann-Whitney 
U test, p value: 0.02). f, Dynamics of integration dimension in two more example 
mice discovered during receptive day compared to activity of the same 
dimension on unreceptive days.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Single cell persistence at receptive and unreceptive 
days. a, Example units active during both receptive (red traces, left) and 
unreceptive (blue traces, right), showing persistence on receptive day and fast 
dynamics on the unreceptive days. b, Comparison of cumulative distribution of 
ACHWs to that of same neurons on unreceptive days. Data from example mouse 1.  
***p < 0.001, KS-test. c, Cumulative distribution of ACHWs for units with 
significant weights on integration dimension across receptive and unreceptive 
day, ***p < 0.001, KS-test. Data from example mouse 1. d, Cumulative 
distribution of ACHWs for example mouse 1, for units that do not contribute  
to the integration dimension on the receptive day, compared on receptive vs 
unreceptive days. e, Scatter plot of ACHWs for units with significant weights on 

integration dimension for receptive day vs unreceptive day. Data from example 
mouse 1. (f-h) Same as c-e for example mouse 2. i, Cumulative distribution of 
ACHWs for units with significant weights on integration dimension across 
hormone primed (day 3) and non-primed days (days 2, 1). ***p < 0.001, KS-test. 
Data from example OVX mouse 1. ***p < 0.001, KS-test. j, Cumulative 
distribution of AHWs for example OVX mouse 1, for units that do not contribute 
to the integration dimension across hormone primed (day 3) and non-primed 
days (days 2, 1). k, Scatter plot of ACHWs for units with significant weights on 
integration dimension for hormone-primed day vs non-primed day. Data from 
example OVX mouse 1 (l-n) Same as i-k. for example OVX mouse 2.
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Extended Data Fig. 8 | Mechanistic model for loss of line attractor dynamics 
in unreceptive states. a, Schematic illustrating the construction of a spiking 
recurrent neural network (RNN) with a line attractor. The line attractor is 
created by allowing a subset of neurons to possess a larger intrinsic time 
constant (20 s vs 100 ms), and by denser connectivity within the subnetwork 
(12% versus 1% in remaining network). b, Model simulation during the proestrus 
phase with pulse like input delivered at 10 s ISI. Right, activity of integration 
subnetwork (green) and other neurons (red). c, Schematic for hypothesis 1: we 

hypothesize that during non-proestrus, there is a reduction in the intrinsic 
constant of the integration subnetwork (from 20 s to 100 ms). d, Same as b but 
for hypothesis 1 during non-proestrus. e, Schematic for hypothesis 2: we test 
whether changes in the firing rate of different neuronal subsets can lead to the 
loss of attractor dynamics. To investigate this, we provide the integration 
subnetwork with 50% reduced input strength, while increasing the same for the 
remaining neurons. f, Same as b but for hypothesis 2 during non-proestrus.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Population dynamics before and after OVX in the 
same female. (a, b,) Neural raster and behaviors and rSLDS model performance 
(measured as forward simulation error, see Methods) for one example mouse in 
receptive day of natural estrus cycle a, and same mouse on hormone primed 
day after OVX (day3, oil + E | P) b. (c, d), Integration dimension identified by 
rSLDS on natural cycle receptive day c, and during hormone primed day after 
OVX d. (e, f), Flow field e, and neural trajectories of dynamical system f, with 
line attractor highlighted of model fit during the receptive state of the estrus 
cycle. (g, h), Same as e, f, for model fit during hormone primed day after OVX.  
i, Dynamics of integration dimension discovered during natural cycle receptive 

day compared to activity of the same dimension on unreceptive days. j, Dynamics 
of integration dimension in the same mouse discovered during hormone primed 
day (day 3) compared to the activity of the same dimension during non-primed 
days. (k, l), Neural raster and behaviors and rSLDS model performance for 
mouse in proestrus day of natural estrus cycle k, and same mouse on hormone 
primed day after OVX (day3, oil + E | P) l. m, Principal components of mouse 
dynamic system fit during hormone primed day. (n, o), Flow field n, and neural 
trajectories of dynamical system. o, with line attractor highlighted of model fit 
during the hormone primed day after OVX in mouse.



Extended Data Fig. 10 | Longitudinal mating assay and correlation with 
attractor dynamics. a, Behaviors displayed in mating interactions across days 
from all the recorded females. b, The scatter plots of the integration dimension 
values and the amount of female resistance behaviors (linear regression, 
R2 = 0.008), appetitive behaviors (R2 = 0.01), staying (R2 = 0.01), checking 
genital (R2 = 0.02) and male intromission (R2 = 0.25). Data presented as 

mean ± SEM. c, correlation of area under the curve (auc) of the population mean 
of all neurons with the percentage of time spent performing accepting 
behaviors. Data presented as mean ± SEM. d: activity of population mean from 
trials with varying degrees of receptivity defined in a). Data presented as 
mean ± SEM, Mann-Whitney U test.
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