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Two-factor authentication underpins the 
precision of the piRNA pathway

Madeleine Dias Mirandela1,2, Ansgar Zoch1,2,9,10, Jessica Leismann3,10, Shaun Webb2,10, 
Rebecca V. Berrens4,5, Devisree Valsakumar2,6, Yuka Kabayama1,2, Tania Auchynnikava2, 
Martina Schito1,2, Tamoghna Chowdhury1,2, David MacLeod1,2, Xinyu Xiang1,2,7, Juan Zou2, 
Juri Rappsilber2,8, Robin C. Allshire2, Philipp Voigt6, Atlanta G. Cook2, Joan Barau3 & 
Dónal O’Carroll1,2 ✉

The PIWI-interacting RNA (piRNA) pathway guides the DNA methylation of young, 
active transposons during germline development in male mice1. piRNAs tether the 
PIWI protein MIWI2 (PIWIL4) to the nascent transposon transcript, resulting in DNA 
methylation through SPOCD1 (refs. 2–5). Transposon methylation requires great 
precision: every copy needs to be methylated but off-target methylation must be 
avoided. However, the underlying mechanisms that ensure this precision remain 
unknown. Here, we show that SPOCD1 interacts directly with SPIN1 (SPINDLIN1), a 
chromatin reader that primarily binds to H3K4me3-K9me3 (ref. 6). The prevailing 
assumption is that all the molecular events required for piRNA-directed DNA 
methylation occur after the engagement of MIWI2. We find that SPIN1 expression 
precedes that of both SPOCD1 and MIWI2. Furthermore, we demonstrate that young 
LINE1 copies, but not old ones, are marked by H3K4me3, H3K9me3 and SPIN1 before 
the initiation of piRNA-directed DNA methylation. We generated a Spocd1 separation- 
of-function allele in the mouse that encodes a SPOCD1 variant that no longer interacts 
with SPIN1. We found that the interaction between SPOCD1 and SPIN1 is essential for 
spermatogenesis and piRNA-directed DNA methylation of young LINE1 elements. We 
propose that piRNA-directed LINE1 DNA methylation requires a developmentally 
timed two-factor authentication process. The first authentication is the recruitment 
of SPIN1–SPOCD1 to the young LINE1 promoter, and the second is MIWI2 engagement 
with the nascent transcript. In summary, independent authentication events 
underpin the precision of piRNA-directed LINE1 DNA methylation.

Young active transposable elements (transposons) are a fundamental 
threat to the germline. The mouse genome is currently battling LINE1 
and intracisternal A particle (IAP) elements7–9, and failure to silence 
transposons in the germline results in infertility10–12. DNA methylation is 
a key mechanism that represses transposons13. However, this presents a 
major vulnerability to the germline because DNA methylation is erased 
and reset during germ cell development14. The piRNA pathway defends 
the germline during this period of hypomethylation when transpo-
sons are expressed1 by post-transcriptionally silencing young active 
transposons and directing their DNA methylation1. piRNAs are small 
RNAs that are bound to PIWI proteins1. Through base complementarity, 
piRNAs guide the PIWI protein MILI to cleave transposon transcripts in 
the cytoplasm, neutralizing the immediate threat2,15,16. In the nucleus, 
piRNAs identify active transposons and tether MIWI2 to these nascent 
transcripts2,3. This sets in motion a series of events that culminate in 
the recruitment of the de novo methylation machinery. We previously 

defined MIWI2 interactomes from fetal gonocytes3,4 and found that 
SPOCD1 is an essential factor that connects the piRNA and de novo 
methylation machineries in vivo4,5. piRNA-directed transposon meth-
ylation requires precision. Failing to methylate every active transposon 
would be detrimental to the genomic integrity of the germline, but 
aberrant off-target methylation could result in germline-transmitted 
epimutations. piRNAs endow MIWI2 with the specificity to identify 
active transposon loci and, through tethering, trigger silencing. How-
ever, whether other mechanisms contribute to identifying active trans-
posons and the exacting precision of the pathway remains unknown.

SPOCD1 accumulates in the nucleus before the expression of MIWI2 
during male germ-cell development4. SPOCD1 expression is first 
observed in fetal gonocytes at embryonic day 14.5 (E14.5)4, whereas 
MIWI2 appears a day later and is mostly cytoplasmic until E16.5, when 
a considerable nuclear fraction is observed4,15. This pattern of succes-
sive accumulation could indicate that the recruitment of SPOCD1 to 
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transposons may occur independently of MIWI2. Treating unfixed 
fetal gonocytes with RNase A results in the loss of nuclear MIWI2  
staining3. Interestingly, the nuclear localization of SPOCD1 is insensitive 
to RNase A treatment (Fig. 1a and Extended Data Fig. 1a). Furthermore, 
MIWI2 deficiency does not affect SPOCD1 nuclear localization (Fig. 1b 
and Extended Data Fig. 1b). Together, these observations indicate that 
the recruitment of SPOCD1 to chromatin is independent of MIWI2. 
SPOCD1 does not contain any known chromatin-binding domains, so 
we examined the SPOCD1 immunoprecipitation mass spectrometry 
(IP-MS) data from E16.5 fetal testis for chromatin-binding proteins and 
found SPIN1 as a highly enriched, high-confidence associated protein4 
(Fig. 1c). SPIN1 is a chromatin reader that comprises three Tudor-like 
domains (TLD1–3). It is a high-affinity H3K4me3 reader, and TLD2 recog-
nizes this transcription-associated chromatin mark17–19. TLD1 binds 
heterochromatin-associated H3K9me3 (refs. 20,21), and this interac-
tion increases the overall affinity of SPIN1 chromatin binding6. TLD3 
does not contain an aromatic cage and mediates interactions with other 
proteins6. Miwi2 deficiency does not affect SPIN1 nuclear localization 
in E16.5 fetal gonocytes (Extended Data Fig. 1c,d). We next sought to 
identify which portion of SPOCD1 is required to associate with SPIN1. 
To this end, we co-expressed SPOCD1, or fragments of it, with SPIN1 in 

HEK cells and tested their ability to interact. Full-length SPOCD1 and the 
amino-terminal 1–409 amino acids (fragment 1) co-precipitated SPIN1 
(Fig. 1d). The interaction was further mapped to amino acids 205–409 
(fragment 1b) (Fig. 1d). By sequentially deleting segments 10–20 amino 
acids long from the interacting fragment of SPOCD1, we mapped the 
SPIN1 association region to 20 amino acids (328–347) (Fig. 1e). These 
amino acids of SPOCD1 are predicted by the AlphaFold2 model to fold 
into a β-hairpin22,23 (Fig. 1f). Furthermore, fusion of 20 amino acids 
(327–346) with GFP revealed a SPIN1 interaction (Fig. 1g). We further 
demonstrated that the SPOCD1–SPIN1 interaction can be recapitulated 
using recombinant proteins. (Fig. 1h,i). Finally, using recombinant 
nucleosomes with distinct tail modifications in pull-down assays, we 
demonstrate that the SPOCD1–SPIN1 complexed protein fragments are 
pulled down only by cis-H3K4me3-K9me3 modifications (cis indicates 
that both modifications are on the same histone tail in the nucleosome) 
but not by H3K4me3 alone or by trans-H3K4me3-H3K9me3 (modifica-
tions on different histone tails) (Fig. 1j). In summary, SPOCD1 interacts 
with SPIN1, and the complexed proteins preferentially recognize the 
cis-H3K4me3-K9me3 chromatin mark.

Using AlphaFold2 (refs. 22,23) to model the co-folding of SPOCD1 
and SPIN1 led to the prediction that the SPOCD1 β-hairpin interacts 
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showing enrichment (log2(mean label-free quantification ratio of anti-HA 
immunoprecipitates from n = 4 Spocd1HA/HA/wild-type) E16.5 fetal testes) and 
statistical confidence (−log10(P-value of two-sided Student’s t-test)) of proteins 
co-purifying with HA–SPOCD1 (data from ref. 4). d,e, Representative western 
blot analyses of n = 3 immunoprecipitations of the indicated SPOCD1 constructs 
with SPIN1 in HEK 293 T cells, for fragments (d) and specific deletions of amino 
acids (e). F, fragment. f, AlphaFold2 structure prediction of mouse SPOCD1 

(B1ASB6) with key domains indicated. g, Representative western-blot analyses 
of n = 3 immunoprecipitations of the indicated mouse SPOCD1 constructs with 
SPIN1 from HEK 293 T cells. h, Representative Coomassie gel image of n = 3 
co-precipitation experiments with the indicated recombinant proteins.  
i, Analytical size-exclusion chromatography of the SPOCD1–SPIN1 complex. 
Top, a representative chromatogram for each of the runs superposed. The 
Coomassie gels of each run are shown below. Samples from the same set of 
fractions were loaded on each gel (n = 2). Gel images to scale with chromatogram– 
elution volume corresponding to the outer lanes indicated by dashed lines.  
j, Nucleosome pull-down assays with site-specifically modified nucleosomes and 
recombinant SPIN1–SPOCD1 complex. Western blot images are representative 
of n = 3 independent pull-down experiments. For whole blot source data of 
d,e,g,j see Supplementary Fig. 1.
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with the TLD3 of SPIN1 (Fig. 2a). Crosslinking mass spectrometry con-
firmed this prediction with crosslinks found adjacent to the β-hairpin 
of SPOCD1 and the TLD3 of SPIN1 (Fig. 2b). SPIN1 is a highly conserved 
protein (Extended Data Fig. 2a) and is found throughout vertebrates 
(Fig. 2c). We could retrieve full-length SPOCD1 coding sequences for 
the coelacanth (Latimeria chalumnae), the green anole lizard (Anolis 
carolinensis) and the tropical clawed frog (Xenopus tropicalis), but not 
from a salamander (Axolotl mexicanum). SPOCD1 apparently first arose 
in vertebrates, with orthologues found in the coelacanth but not in 
ray-finned fish, and it was later lost in birds4 (Fig. 2c). The SPOCD1 ortho-
logues are predicted to have a similar overall fold to mouse SPOCD1, 
but only the lizard and the frog retain the conserved sequence and 
predicted β-hairpin structure that mediates the SPIN1 interaction in 
mice (Fig. 2d). Indeed, the sequence alignment revealed the coelacanth 
sequence to be less closely related to the other orthologues in this 
region (Fig. 2e and Extended Data Fig. 2b). Finally, we demonstrate that 
the frog and lizard SPOCD1–SPIN1 interaction can be reconstituted 
using recombinant proteins (Fig. 2f). In summary, SPOCD1 interacts 
with the chromatin reader SPIN1, and this association is conserved 
from amphibians to mammals.

We next sought to understand whether H3K4me3 and/or H3K9me3 
mark young active transposons, which are the targets of the piRNA 
pathway. We reanalysed ChIP-seq data from fetal gonocytes purified 
from several developmental time points24. At E13.5, before the expres-
sion of the piRNA pathway and de novo methylation, the genome is fully 
demethylated. The process of genome and transposon methylation is 

occurring at E17.5, whereas by E19.5 and postnatal day 2 (P2), the bulk of 
genomic methylation has been completed16,25. We examined H3K4me3 
for both young and old transposon families. We found that the young 
LINE1 families (L1Md_T, L1Md_Gf and L1Md_A), but not the old family 
L1Md_F, were enriched in H3K4me3 at E13.5, before the onset of de novo 
methylation (Fig. 3a). This enrichment was diminished but still present 
at E17.5, and was lost thereafter (Fig. 3a). H3K4me3 enrichment was 
not observed for the IAPEz and IAPEy families at E13.5 (Fig. 3a). Next, 
we analysed H3K9me3, for which the IAP families showed a high level 
of enrichment for all time points (Fig. 3b). Both young and old LINE1 
families showed a peak of H3K9me3 across the promoter region at E13.5, 
and thereafter the enrichment extended across the body of the element 
(Fig. 3b). The young transposon families contain both young active ele-
ments and older inactive copies, which can be roughly distinguished 
by their divergence from their consensus sequence. We segregated 
young and old copies in LINE1 families and analysed H3K4me3 and 
H3K9me3 enrichment. Strikingly, H3K4me3 promoter enrichment is 
observed only in young LINE1 copies at E13.5 (Extended Data Fig. 3a). 
H3K9me3 enrichment was greater in older copies than in their younger 
counterparts at E13.5, after which old and young elements showed 
similar levels of enrichment (Extended Data Fig. 3b). In summary, young 
LINE1 elements are marked by both H3K4me3 and H3K9me3 before 
piRNA-directed DNA methylation. The prevailing view is that engage-
ment of MIWI2 with the nascent transcript is the trigger for all down-
stream processes that culminate in DNA methylation. However, the 
fact that young LINE1 elements show a distinct chromatin modification 
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pattern before de novo genome methylation challenges this view. We 
proposed that H3K4me3-K9me3 recruits SPIN1 and in turn SPOCD1 to 
young LINE1 elements before the engagement of MIWI2, and that this 
event licences the element for methylation. In support of this hypoth-
esis, we found that SPIN1 is expressed in fetal gonocytes at E13.5 (the 
earliest time point analysed) and throughout the process of de novo 

genome methylation (Fig. 3c and Extended Data Fig. 4). Furthermore, 
we show that SPOCD1 associates with SPIN1 in E14.5 fetal gonads (Fig. 3d 
and Extended Data Table 1). We chose E14.5 for this experiment because 
it is the earliest time point at which SPOCD1 is expressed and is before 
the expression of MIWI2 and piRNA-directed DNA methylation4. We 
next optimized CUT&Tag26 for histone modifications and used SPIN1 
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Signal Signal

Fig. 3 | H3K4me3, H3K9me3 and SPIN1 mark young LINE1 elements before 
de novo genome methylation. a,b, Metaplot and heat map for different 
transposon families of H3K4me3 (a) and H3K9me3 (b) ChIP signal in reads per 
million (RPM) from fetal gonocytes at the indicated time points during mouse 
development. Data are merged from n = 2 biological replicates, reanalysed 
from ref. 24. c, SPIN1 (green) and DAPI (blue) staining of wild-type fetal testis 
sections from the indicated developmental time points. Images are representative 
of n = 3 biological replicates. Scale bars, 2 μm. d, Volcano plot showing enrichment 
(log2(mean label-free quantification ratio of anti-HA immunoprecipitates from 
Spocd1HA/HA/wild-type)) and statistical confidence (−log10(P-value of two-sided 
Student’s t-test)) of proteins co-purifying with HA-SPOCD1 from E14.5 fetal 
testes; n = 3. e–i, CUT&Tag data for H3K4me3, H3K9me3 and SPIN1 from E14.5 
fetal germ cells. Data are merged from two (H3K4me3, H3K9me3) and three 
(SPIN1) biological replicates. In e–g, metaplot and heatmaps of signal over 

elements of different transposon families (e) are shown as well as young and  
old copies in the L1Md_T (f) and L1Md_A (g) families. Columns adjacent to the 
heatmaps show statistically significant peaks called for SPIN1 and the indicated 
histone modifications. In e, the overlap of H3K4me3 and H3K9me3 peaks with 
SPIN1 peaks is significant for L1Md_A (P = 0.0099, Z-score = 1,052), L1Md_T 
(P = 0.0099, Z-score = 1,398) and L1Md_Gf (P = 0.0099, Z-score = 2,007) by 
one-tailed permutation tests. In f and g, enrichment of overlapping H3K4me3 
and H3K9me3 peaks with SPIN1 peaks is significantly different between young 
and old L1Md_A (adjusted P < 2.2 × 10−16) and L1Md_T (adjusted P < 2.2 × 10−16) 
copies, as observed by two-tailed Fisher’s exact test. In h and i, charts show 
overlap analysis of H3K4me3 and H3K9me3 peaks (h) and SPIN1 peaks (i) with 
the indicated genomic features. P-values and Z-scores from one-tailed permutation 
tests to assess the statistical significance of overlaps of CUT&TAG peaks with 
LINE1 elements are shown.
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from E14.5 fetal gonocytes. As we had observed at E13.5, H3K4me3 and 
H3K9me3 marked young LINE1 families and copies at this time point 
(Fig. 3e–g and Extended Data Fig. 3c,d). The CUT&Tag and ChIP-seq 
analyses cannot distinguish whether H3K4me3 and H3K9me3 mark a 
given locus in the same cell. Strikingly, SPIN1 was also found at young 
LINE1 families and copies (Fig. 3e–g and Extended Data Fig. 3c,d). The 
vast majority of sites in which H3K4me3 and H3K9me3 co-occur were 
LINE1 elements, predominantly from young families, followed by other 
repetitive elements and finally a handful of genes (Fig. 3h). SPIN1 occu-
pancy showed a similar pattern of enrichment (Fig. 3j). In summary, we 
show that young LINE1 elements are enriched for H3K4me3, H3K9me3 
and SPIN1 before the expression of MIWI2.

SPIN1 is expressed beyond the germline, involved in other cellular 
processes, and required for mouse viability27. Therefore, we decided 
to identify a SPOCD1 separation-of-function mutation that uncouples 
SPOCD1 from SPIN1 to understand the importance of this interaction. 
Mutation of eight amino acids to alanine in one strand of the predicted 
β-hairpin that mediates SPIN1 binding abrogated the ability of SPOCD1 
to co-precipitate SPIN1 when expressed in HEK cells (Fig. 4a). Further-
more, a recombinant SPOCD1 F1b fragment (Fig. 1d) with the 8 alanine 
mutation no longer interacts with recombinant SPIN1 (Fig. 4b). We 
termed this separation-of-function SPOCD1 mutant SPOCD1-ΔSPIN1. 
Importantly, like SPOCD1, the SPOCD1-ΔSPIN1 protein could asso-
ciate with DNMT3L when both proteins are expressed in HEK cells 
(Extended Data Fig. 5a). We next engineered the Spocd1ΔSPIN1 mouse 
allele (Extended Data Fig. 6a–d). As is the case with Spocd1−/− mice, 
Spocd1ΔSPIN1/ΔSPIN1 (termed Spocd1ΔSPIN1) mice are born in mendelian ratios 
from Spocd1ΔSPIN1/+ intercrosses and are indistinguishable from their 
wild-type litter mates (data not shown)4. The separation-of-function 
mutation did not affect the levels or localization of the SPOCD-ΔSPIN1 
protein in Spocd1ΔSPIN1 E16.5 foetal testes compared to wild-type controls 
(Fig. 4c and Extended Data Fig. 6e). Furthermore, both SPIN1 as well 
as MIWI2 levels and localization in Spocd1ΔSPIN1 E16.5 foetal testes were 

indistinguishable from wild-type foetal testes (Fig. 4d,e and Extended  
Data Fig. 6f,g). In summary, the Spocd1ΔSPIN1 allele encodes a stably 
expressed SPOCD1 mutant protein and does not impact on SPIN1 
or MIWI2 expression. Spocd1ΔSPIN1 male mice were infertile and have 
atrophic testes (Fig. 4f,g). Detailed histological analyses revealed a 
complex spermatogenic arrest (Fig. 4h). The vast majority of Spocd1ΔSPIN1 
seminiferous tubules show a meiotic arrest that is typical of mutations 
that affect piRNA-directed transposon methylation (Fig. 4h). How-
ever, a small number of tubules show cells that have further developed 
to the round or elongated spermatid stage (Fig. 4h). The loss of the 
SPOCD1-SPIN1 interaction also results in DNA damage and apoptosis 
(Fig. 4i,j). In summary, the interaction of SPOCD1 with SPIN1 is essential 
for normal spermatogenesis and male fertility.

The spermatogenic arrest in Spocd1ΔSPIN1 mice is indicative of defec-
tive transposon silencing and DNA methylation. In agreement with the 
selective marking of young LINE1 families with H3K4me3, H3K9me3 and 
SPIN1 before the expression of MIWI2, we found the expression of LINE1 
ORF1p, but not IAP GAG, in Spocd1ΔSPIN1 adult testis (Fig. 5a,b). Further-
more, RNA sequencing (RNA-seq) from P20 testis confirmed that the 
same LINE1 families are deregulated in Spocd1ΔSPIN1 and Spocd1−/− mice 
(Fig. 5c). This analysis also confirmed the lack of deregulated expression 
of evolutionarily young IAP families in Spocd1ΔSPIN1 mice (Fig. 5c). We next 
analysed genome methylation from purified P14 spermatogonia, a time 
point used in previous analyses3,4 because it is before the onset of sper-
matogenic arrest but after the completion of de novo genome methyla-
tion. The piRNA pathway and SPOCD1 are specifically required for the 
de novo DNA methylation of young LINE1 and IAP elements3,4,10,12,28–30. 
Accordingly, genome de novo methylation is normal in Spocd1ΔSPIN1 adult 
testis (Fig. 5d). Indeed, the loss of the SPOCD1–SPIN1 interaction did 
not affect genic, intergenic, CpG island and gene-promoter regions, 
or collective transposon DNA methylation levels (Fig. 5d). The young 
LINE1 families L1Md_A, L1Md_Gf and L1Md_T were not fully methyl-
ated in Spocd1ΔSPIN1 spermatogonia, whereas almost normal levels of 
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methylation were observed for the young IAPEz family (Fig. 5e). The 
piRNA pathway directs DNA methylation at the promoters of trans-
posons28. A metaplot analysis of methylation levels from Spocd1ΔSPIN1 
spermatogonia revealed defective de novo promoter methylation spe-
cifically in young LINE1 families such as L1Md_T, L1Md_A and L1Md_Gf 
compared with the older L1Md_F family and the IAPEz family (Fig. 5f). 
The overall reduction in promoter methylation in Spocd1ΔSPIN1 cells is 
similar to that observed in Spocd1−/− mice4 (Fig. 5f). We next looked at 
the loss of methylation at individual transposon loci as a function of 
their divergence from the consensus sequence, which is a proxy for age. 
This analysis confirmed that the SPOCD1–SPIN1 interaction is required 
for the methylation of young LINE1 elements in the respective families 
(Fig. 5g). IAPEz element methylation was unaffected in Spocd1ΔSPIN1 
spermatogonia (Fig. 5g). In summary, the SPOCD1–SPIN1 interaction 
is predominantly required for the piRNA-directed DNA methylation 
of young LINE1 elements.

Here we show that SPOCD1 interacts directly with the chromatin 
reader SPIN1 and that this interaction arose early in tetrapod evolu-
tion. H3K4me3, which is the key determinant of SPIN1 chromatin 
association17,18, specifically marks young LINE1 elements. H3K9me3, 
which biochemically augments SPIN1 chromatin binding6, is found at 
the same elements. H3K4me3 is associated with transcription19 so the 
presence of this modification at young LINE1s is due to their expression. 
However, the mechanism by which H3K9me3 is deposited remains 

undetermined. We demonstrate that SPOCD1–SPIN1 complexed pro-
tein fragments have a higher affinity for cis-H3K4me3-K9me3 than for 
trans-H3K4me3-H3K9me3 or H3K4me3-modified recombinant nucle-
osomes. We also found that the co-occurrence of both H3K4me3 and 
H3K9me3 is predominantly a transposon-related chromatin feature in 
fetal gonocytes. Accordingly, we observed that most of the SPIN1 was 
bound to LINE1s. The recruitment of SPIN1 to LINE1s and the SPOCD1–
SPIN1 interaction occur before the nuclear localization of MIWI2 and 
the process of de novo DNA methylation. We demonstrate that this 
interaction is required for spermatogenesis and piRNA-directed LINE1 
methylation. The spermatogenic phenotype in Spocd1ΔSPIN1 mice differs 
from a deficiency of Spocd1 or Miwi2, for which strict meiotic arrest is 
observed4,12. The basis of this difference could lie in the fact that only 
LINE1s are deregulated in Spocd1ΔSPIN1 mice, whereas defective LINE1 and 
IAP silencing are observed in Spocd1−/− and Miwi2−/− mice4,12,30. Interest-
ingly, in mice for which the PIWI protein MILI has lost its endonuclease 
activity, a similar spermatogenic arrest is observed and only LINE1s 
are deregulated2. How SPOCD1 is recruited to IAPs remains unknown, 
but we speculate that another SPOCD1-associated protein could medi-
ate this recruitment through the recognition of a distinct chromatin 
signature or sequence motif. The different mechanisms in LINE1 and 
IAPs reveals an unexpected complexity in the pathway. The prevailing 
notion is that all the molecular events required for piRNA-directed 
DNA methylation occur after the engagement of the piRNA–MIWI2 
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Fig. 5 | The SPOCD1–SPIN1 interaction is required for the de novo DNA 
methylation of young LINE1 elements. a,b, Representative testis sections of 
n = 3 wild-type, Spocd1ΔSPIN and Spocd1−/− mice stained red for the LINE1 ORF1p 
(a) or IAP GAG protein (b). DNA was stained with DAPI (blue). Scale bars, 100 μm. 
c, RNA-seq heat maps showing fold changes in expression relative to wild type 
for the ten most upregulated LINE1 and ERVK transposable elements in Spocd1−/− 
P20 testes (n = 3 from each genotype). ***P < 0.001 of Bonferroni-corrected 
two-sided Wald’s test assuming n-binominal distribution. Only significant 
differences (P < 0.05) are shown. d–g, Genomic CpG methylation analysis of 
P14 undifferentiated spermatogonia from wild-type (n = 6), Spocd1ΔSPIN (n = 4) 
and Spocd1−/− mice (n = 3). d,e, Percentages of CpG methylation levels of the 
indicated genomic features (with genic, promoter and CpG island (CGI) regions 
defined as those not overlapping transposable elements, and intergenic regions 
as those not overlapping transposable elements or genes) or transposable 

elements (not overlapping genes) are shown as box plots. Boxes represent 
interquartile range from the 25th to the 75th percentile, the horizontal line 
shows the median, and whiskers show the data range of the median ± twice the 
interquartile range. Significant differences (P < 0.05 of Bonferroni-corrected 
two-tailed Student’s t-tests) of Spocd1ΔSPIN (n = 4) and Spocd1−/− (n = 3) samples  
to wild-type (n = 6) are indicated. f, Metaplots of mean CpG methylation over 
the indicated transposable element. *P = 0.05–0.01, **P = 0.01–0.001 and 
***P < 0.001 for Bonferroni-corrected two-tailed Student’s t-tests comparing 
the average CpG methylation of the promoter region to wild type for Spocd1ΔSPIN1 
(red) and Spocd1−/− (blue). Only significant differences (P < 0.05) are shown.  
g, Correlation analysis of mean CpG methylation loss relative to the wild type 
for individual transposable elements of the indicated LINE1 and ERVK families 
in relation to their divergence from the consensus sequence in Spocd1ΔSPIN 
spermatogonia.
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ribonucleoprotein complex with the nascent transcript. Here, we 
demonstrate that multiple independent and developmentally cho-
reographed events are required for LINE1 piRNA-directed DNA methyla-
tion. Our revised model posits that the recruitment of SPIN1–SPOCD1 
through chromatin modification to young LINE1 elements constitutes 
a first licensing step. The engagement of MIWI2 with the nascent tran-
script is the second licensing event and triggers DNA methylation. In 
summary, we propose that a two-factor authentication system ensures 
the precision of LINE1 piRNA-directed methylation.
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Methods

Mouse strains and experimentation
The Spocd1HA and Miwi2tdTomato (Miwi2tdTom) mouse alleles have been 
described previously4,31. Miwi2tdTom is a Miwi2 null allele and is used as 
such31. Both lines were kept on a mixed B6CBAF1/Crl;C57BL/6 N;Hsd:ICR 
(CD1) genetic background. The Spocd1ΔSPIN1 allele was generated by 
CRISPR–Cas9 gene editing as previously described32,33. A single guide 
RNA (sgRNA) (GGGTCAGGAATCAGGCTTGT) together with Cas9 
mRNA and a single-stranded DNA oligonucleotide containing the 
eight-alanine mutation flanked by 85 base pairs (bp) of homology 
arm (AGATGGTAAACAGTTGAAGCCAAGGCAGGGAGGATTTCAGGCAG 
AGCCTTGCCATACTCTCTCTCAGCAGGTCTACACTGGGTCAGCTGCCGC 
AGCGGCCGCTGCCGCCGCTGCAAGTCAGCCAGGACAAATTGAACCTCT 
GGAGGAGTTGGACACCAACTCAGCCAGAAGGAAGAGAAGGCCCACAA 
CTGCTCACCCTA) was injected into the cytoplasm of fertilized single- 
cell zygotes (B6CBA F1/Crl). F0 offspring were screened by PCR and 
the Spocd1ΔSPIN1 allele was confirmed by Sanger sequencing. The allele 
was established from one founder animal and back-crossed several 
times to a C57BL/6N genetic background. The Spocd1ΔSPIN1 mice were 
thus on a mixed B6CBAF1/Crl;C57BL/6N genetic background. Animals 
were genotyped using a PCR of four primers (F, GACCCTGTATTTATTG 
AAGTCACTG; R, CCTCAGTGACATCAGGCGGA; WT-F, CACTGGGTCAGGA 
ATCAGGC; and ∆Spin-R, GTCCTGGCTGACTTGCAGC). Mice carrying the 
Oct4eGFP reporter allele34 were originally obtained from Jackson Labo-
ratories (B6;129S4-Pou5f1tm2Jae/J (Oct4-eGFP), stock number 008214).

Male fertility was assessed by mating studs to Hsd:ICR (CD1) wild-type 
females and counting the number of pups born for each plugged female. 
For each experiment, animal tissue samples were collected from one 
or more litters and allocated to groups according to genotype. No 
further randomization or blinding was applied during data acquisi-
tion and analysis.

Animals were maintained at the University of Edinburgh, UK, in 
accordance with the regulation of the UK Home Office, or at the Insti-
tute for Molecular Biology in Mainz, Germany, in accordance with 
local and European animal-welfare laws. Ethical approval for the UK 
mouse experimentation has been given by the University of Edin-
burgh’s Animal Welfare and Ethical Review Body and the work done 
under licence from the UK Home Office. Animal experiments done 
in Germany were approved by the ethical committees on animal care 
and use of the federal states of Rheinland-Pfalz, Germany, covered by 
LUA licence G 23-5-049.

Immunofluorescence
Immunofluorescence experiments were done as previously described35. 
The following primary antibodies were used in this study: anti-HA 
(Cell Signaling Technologies) 1:200; anti-LINE1-ORF1p (ref. 36) 1:500; 
anti-IAP-GAG (a gift from B. Cullen, Duke University) 1:500; anti-γH2AX 
(Bethyl Laboratories) 1:500; anti-MIWI2 (a gift from R. Pillai, Université 
de Genève) 1:500; anti-SPOCD1 rabbit serum rb175 1:500 (O’Carroll 
laboratory antibody); anti-SPIN1 (Cell Signaling Technologies) 1:500 (of 
a custom preparation of 1.1 μg μl−1 in PBS). Images were taken on a Zeiss 
Observer or Zeiss LSM880 with an Airyscan module. Images acquired 
using the Airyscan module were deconvoluted with the Zeiss Zen soft-
ware ‘Airyscan processing’ with settings 3D and a strength of 6. ImageJ 
and Zeiss Zen software were used to process and analyse the images.

Cell culture, transfection, immunoprecipitation and western 
blotting
HEK293T cells (O’Carroll laboratory stock, not further authenticated, 
tested for mycoplasma contamination) were cultured and transfected 
as previously described4 with a minor modification, and 3 μl Jetprime 
reagent was used. On day 2 after transfection, cells were washed twice 
with PBS and resuspended in 1 ml lysis buffer (IP buffer: 150 mM KCl, 
2.5 mM MgCl2, 0.5% Triton X-100, 50 mM Tris-HCl, pH 8, supplemented 

with 1× protease inhibitors (cOmplete ULTRA EDTA-free, Roche) with 
37 units per ml benzonase (Millipore)) and lysed for 30 min, rotat-
ing at 4 °C. The lysate was cleared by centrifugation for 10 min at 
21,000g. Cleared lysate (800 μl) was incubated with 20 μl of anti-HA 
beads (Pierce) that had been calibrated in lysis buffer and incubated 
for 1 h at 4 °C on a rotating wheel. The beads were washed four times 
with lysis buffer. Immunoprecipitates were eluted at 50 °C for 10 min 
in 20 μl 0.1% sodium dodecyl sulphate (SDS), 50 mM Tris-HCl, pH 8. 
Lysates and eluates were run on a 4–12% bis–tris acrylamide gel (Inv-
itrogen) and blotted onto a nitrocellulose membrane (Amersham 
Protran 0.45 NC) according to standard laboratory procedures. The 
membrane was blocked with blocking buffer (4% (w/v) skimmed milk 
powder (Sigma-Aldrich) in PBS-T (phosphate buffered saline, 0.1% 
Tween-20)) and subsequently incubated for 1 h with primary anti bodies 
(anti-HA (C29F4s, Cell Signaling Technologies), 1:1,000; anti-FLAG (M2, 
Sigma-Aldrich) 1:1,000, anti-SPOCD1 rabbit serum rb175 (O’Carroll 
laboratory antibody) 1:500 or anti-α-Tubulin (T9026, Sigma-Aldrich) 
1:1,000) in blocking buffer. The anti-α-tubulin staining was used as load-
ing control on the same blot as the experimental staining. After three 
PBS-T washes for 10 min, the membrane was incubated with secondary 
antibodies (IRDye 680RD donkey anti-rabbit or IRDye 800CW donkey 
anti-mouse, LI-COR, 1:10,000) in blocking buffer for 1 h. It was washed 
three times for 10 min in PBS-T and imaged on a LI-COR Odyssey CLx 
system. Exposure of the entire images was optimized in Image Studio 
Lite (LI-COR), and areas of interest were cropped for presentation.

Protein alignments and structure prediction
The mouse SPOCD1 AlphaFold2 protein structure prediction model22,23 
was downloaded from the AlphaFold Protein Structure Database 
(https://www.alphafold.ebi.ac.uk/). Models for the SPOCD1–SPIN1 
interaction, as well as the single SPOCD1 proteins from Anolis, Xeno-
pus and Latimeria, were generated with AlphaFold2 (refs. 22,23) on  
ColabFold37. The model was visualized using PyMol38. Multiple sequence 
alignments of SPOCD1 and SPIN1 were generated with ClustalW39 and 
edited in Jalview40. For SPOCD1, alignments were edited based on 
secondary-structure elements of the AlphaFold2 model (B1ASB6) 
using Jalview40.

Protein purification
GST-tagged mouse SPOCD1 fragments (amino acids 203–409), 
Anolis SPOCD1 fragments (XP_008116112.1, amino acids 457–748), 
Xenopus SPOCD1 fragments (XP_031752218.1, amino acids 1–229),  
Latimeria SPOCD1 fragments (XP_014348336.1, amino acids 510–1009) 
and His-tagged SPIN1 (amino acids 49–262) were cloned in a pET-based 
backbone. Proteins were expressed in Escherichia coli BL21 (DE3). Bac-
teria were grown in 2xTY media at 37 °C until an optical density of 0.8 
was reached. Then, the temperature was reduced to 18 °C, the bacteria 
were induced with 1 mM IPTG and grown for another 14–16 h. Cells 
were collected and pellets were stored at −80 °C until purification. The 
pellets were resuspended in 50 ml lysis buffer (20 mM Tris-HCl, pH 7.5, 
200 mM NaCl, 2.5 mM imidazole, 0.5 mM β-mercaptoethanol, Roche 
cOmplete EDTA-free Protease Inhibitor Cocktail, 0.01 mg ml−1 DNaseI 
(Sigma) and 2 mM AEBSF (Pefabloc) for SPIN1, or 20 mM Tris-HCl, pH 7.5, 
200 mM NaCl, 1 mM DTT, Roche cOmplete EDTA-free Protease Inhibi-
tor Cocktail, 0.01 mg ml−1 DNaseI (Sigma) and 2 mM AEBSF (Pefabloc) 
for SPOCD1) and cells were lysed with the Constant systems 1.1 kW 
TS cell disruptor at 25 kPSI. The cleared lysate was used to load on a 
cOmplete His-Tag Purification Column (Roche) for SPIN1 or incubated 
with 7 ml glutathione sepharose high-performance beads (Cytiva) 
for SPOCD1 calibrated in the respective buffer. Elution from column/
beads with increasing (2.5–500 mM) imidazole gradient for SPIN1 or 
GST elution buffer containing 20 mM reduced glutathione for SPOCD1. 
The fractions of interest were pooled and dialysed overnight in 20 mM 
Tris-HCl, pH 7.5, 100–150 mM NaCl, 1 mM DTT. The SPIN1 construct was 
cleaved with GST–3C protease (made in our lab) overnight. The SPOCD1 
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constructs were concentrated and stored at −80 °C until used. SPIN1 
was further purified by ion exchange with a gradient of 100–1,000 mM 
NaCl (Resource Q, Cytiva) and size-exclusion chromatography (HiLoad 
16/600 Superdex 200 pg, Cytiva). Finally, the protein was concentrated 
and stored at −80 °C until used.

Nucleosome pull-downs with recombinant SPIN1-SPOCD1 
proteins
Histone H3 site-specifically modified with H3K4me3 and/or H3K9me3 
was generated by native chemical ligation (NCL) and assembled into 
nucleosomes as described previously41,42. In brief, Xenopus H3 and H4 
and human H2A and H2B were expressed in E. coli and purified from 
inclusion bodies. For NCL, a tail-less histone H3 lacking residues 1–31 
and containing a threonine-to-cysteine substitution at position 32 and 
a cysteine-to-alanine substitution at position 110 of Xenopus H3 (H3Δ1–
31T32C C110A) was expressed in E. coli and purified in the same way. 
NCL reactions were carried out with synthetic carboxy-terminal benzyl 
thioester peptides spanning residues 1–31 of histone H3.1 and carrying 
the desired modifications at K4 and K9 (Peptide Protein Research) in 
6 M guanidine HCl, 250 mM sodium phosphate buffer, pH 7.2, 150 mM 
4-mercaptophenylacetic acid (MPAA, Sigma) and 50 mM TCEP for 72 h 
at room temperature. Ligated full-length modified histone H3 was puri-
fied through cation-exchange chromatography on a HiTrap SP column 
(Cytiva). Histone octamers were reconstituted by dialysis and purified 
by gel filtration on an S200 size-exclusion column (Cytiva). For the 
generation of trans-histone octamers carrying H3K4me3 and H3K9me3 
on separate copies of histone H3, the H3X–H3Y system was used43, 
starting from H3Δ1–31T32C C110A constructs that also contained the 
required H3X and H3Y mutations. H3X was used for H3K4me3 and H3Y 
for H3K9me3. A biotinylated 209-bp DNA fragment containing the 601 
nucleosome positioning sequence was generated by PCR and purified 
by ion-exchange chromatography on a HiTrap Q column followed by 
ethanol precipitation. Mononucleosomes were then assembled from 
histone octamers and 601 DNA by gradient dialysis. Nucleosome assem-
bly was verified by native gel electrophoresis on 6% acrylamide gels in 
0.5× TGE buffer (12.5 mM Tris, pH 8.0, 95 mM glycine and 0.5 mM EDTA).

Nucleosome pull-down assays were done essentially as described 
previously44. All incubations and washes were performed at 4 °C with 
end-over-end rotation, and all centrifugation steps were done at 1,500g 
for 2 min at 4 °C. Then, 23 pmol (3 μg) of recombinant, site-specifically 
modified nucleosomes were bound to streptavidin sepharose 
high-performance beads (Cytiva) by overnight incubation in pull-down 
buffer (20 mM HEPES, pH 7.9, 175 mM NaCl, 10% glycerol, 1 mM EDTA, 
1 mM DTT, 0.1% NP-40, 0.1 mg ml−1 BSA). Before incubation, beads were 
blocked with 1 mg ml−1 BSA in pull-down buffer. Nucleosome-bound 
beads were washed three times with pull-down buffer before incuba-
tion with recombinant SPIN1 and SPOCD1 proteins for 2 h. His-tagged 
SPIN1 (49–262) and His-tagged SPOCD1 fragment 1b were expressed 
and purified as above. SPIN1–SPOCD1 fragment 1b complexes were 
purified by size-exclusion chromatography on an S200 increase col-
umn (Cytiva) as above. For the experiment shown in Fig. 1j, 23 pmol of 
protein was used. After incubation with recombinant proteins, beads 
were washed three times with high-salt pull-down buffer (as above but 
with 350 mM NaCl) for 5 min. Nucleosomes and bound proteins were 
eluted by boiling in 1.5× SDS sample buffer (95 mM Tris HCl, pH 6.8, 15% 
glycerol, 3% SDS, 75 mM DTT, 0.15% bromophenol blue). Binding was 
analysed by western blotting with antibodies against His tag (Sigma 
H1029, lot 033m4785) 1:1,000. Antibodies against histone H3 (Abcam 
ab176842, lot GR1494741-36) 1:2,500, H3K4me3 (Cell Signaling) 1:2,000 
and H3K9me3 (Abcam ab176916) 1:1,000 were used to verify nucleo-
some loading and modification state.

Analytical size-exclusion chromatography
For analytical size-exclusion chromatography, 125 μg SPIN1 and/or 
500 μg mouse GST–SPOCD1-F1b were used for each run. Proteins were 

diluted in 250 μl size-exclusion chromatography buffer (20 mM HEPES, 
pH 7.5, 150 mM NaCl, 1 mM DTT) and injected on a Superdex 200 10/300 
GL column. Peak fractions were collected, loaded on an SDS–PAGE gel 
and visualized by Coomassie staining.

Crosslinking mass-spectrometry analysis
Recombinant fragments (25 μg) of SPOCD1 (GST–F1b) and SPIN1 
were incubated in 20 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT and 
crosslinked with BS3 (bis(sulfosuccinimidyl)suberate) (Thermo Fisher 
Scientific) at BS3:protein ratios of 1:1, 2:1 and 4:1 (w/w) for 2 h on ice. The 
crosslinking reaction was stopped by adding 2 μl ammonium bicarbo-
nate (2.0 M). Crosslinking products were run on 4–12% bis-Tris NuPAGE 
(Invitrogen) for 15 min and briefly stained using Instant Blue (Expe-
deon). Bands at more than 150 kD were excised and the proteins were 
reduced with 10 mM DTT for 30 min at room temperature, alkylated with 
55 mM iodoacetamide for 20 min at room temperature and digested 
using 13 ng μl−1 trypsin (Promega) overnight at 37 °C37. The digested 
peptides were loaded onto C18-Stage-tips38 for liquid chromatography 
with tandem mass spectrometry (LC-MS/MS) analysis. The LC-MS/
MS analysis was performed using Orbitrap Fusion Lumos (Thermo 
Fisher Scientific) with a ‘high/high’ acquisition stra tegy. The peptide 
separation was done on an EASY-Spray column (50 cm × 75 μm internal 
diameter, PepMap C18, 2-μm particles, 100 Å pore size; Thermo Fisher 
Scientific). Mobile phase A consisted of water and 0.1% (v/v) formic acid. 
Mobile phase B consisted of 80% (v/v) acetonitrile and 0.1% (v/v) formic 
acid. Peptides were loaded at a flow rate of 0.3 μl min−1 and eluted at 
0.25 μl min−1 using a linear gradient going from 2% mobile phase B to 40% 
mobile phase B over 102 or 132 min (each sample was run twice with dif-
ferent gradients), followed by a linear increase from 40% to 95% mobile 
phase B in 11 min. The eluted peptides were introduced directly into 
the mass spectrometer. MS data were acquired in the data-dependent 
mode with a 3 s acquisition cycle. Precursor spectra were recorded in 
the Orbitrap with a resolution of 120,000 and a mass-to-charge ratio 
(m/z) range of 350–1,700. Ions with a precursor charge state between 
3+ and 8+ were isolated with a window size of m/z = 1.6 and fragmented 
using high-energy collision dissociation with a collision energy of 30. 
The fragmentation spectra were recorded in the Orbitrap with a resolu-
tion of 15,000. Dynamic exclusion was enabled with single repeat count 
and 60 s exclusion duration. The mass-spectrometric raw files were 
processed into peak lists using ProteoWizard (v.3.0)39 and crosslinked 
peptides were matched to spectra using Xi software (v.1.7.6.4)40 with 
in-search assignment of mono-isotopic peaks41. Search parameters 
were: MS accuracy, 3 ppm; MS/MS accuracy, 5 ppm; enzyme, trypsin; 
crosslinker, BS3; maximum missed cleavages, 4; fixed modification, 
carbamidomethylation on cysteine; variable modifications, oxida-
tion on methionine; fragments b and y ions with loss of H2O, NH3 and 
CH3SOH. The linkage specificity for BS3 was assumed to be at lysine, 
serine, threonine, tyrosine and protein N termini. Identified candi-
dates of crosslinked peptides were validated by Xi software40, and only 
auto-validated crosslinked peptides were used. Identified crosslinks 
underlying Fig. 2b are shown in Supplementary Table 1.

ChIP sequencing analysis
Raw fastq.gz sequencing files for ChIP-seq of H3K4me3 and H4K9me3 
were downloaded from the Sequence Read Archive record SRP165187 
(ref. 24). Paired-end reads were preprocessed to remove adapter 
sequences and trim low-quality bases using Trimmomatic v.0.35  
(ref. 45). Tru-seq adapter sequences were used in the case of ChIP-seq 
samples. Trimmed reads were aligned to the mouse mm10 genome with 
bwa mem v.0.7.16 (ref. 46) using the -M parameter. Alignments were 
filtered to remove duplicate reads with Picard MarkDuplicates v.2.24.0 
(http://broadinstitute.github.io/picard/) and improper alignments with 
Samtools view v.1.11 -F 260 -f 3 (ref. 47). In the case of multi-mapping 
reads, a single alignment (marked as primary by bwa) was selected for 
downstream analysis. BAM files were converted to normalized bigWig 
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files for visualization and plotting using deepTools48 bamCoverage 
v.3.5.0 with the following parameters: -bs 1 --normalizeUsing BPM.

ChIP heatmaps and average profile plots
Genomic annotations for repetitive elements L1Md_A, L1Md_T, L1Md_F 
(combining elements classified as L1MD_F, L1Md_F2, L1Md_F3), L1Md_
Gf, IAPEy and MMERVK_10C were extracted from Repeat Masker using 
the UCSC table browser. Normalized read coverage was computed 
across these elements using deepTools v.3.5.0 computeMatrix. The 
central regions were length-normalized to 5 kb with flanking regions 
±2 kb from the start and end positions. Heatmaps were drawn using 
deepTools v.3.5.0 plotHeatmap, separating each repetitive element 
and sorting rows in descending order of total signal. LINE1 elements 
(L1Md_A, L1Md_F and L1Md_T) were further separated into young LINE1 
elements based on a divergence of 38 bases per kb or less from a con-
sensus sequence4 or the presence of an intact functional promoter 
denoted by the presence of specific monomer annotations49. Mono-
mers associated with inert promoters (subtypes 6 and 2) were removed 
from the analysis. Average profiles were generated for each experiment 
and each category of repetitive element by calculating the mean signal 
between replicate samples. Computations were performed in R, with 
the seqplots package50, using bins of 50 bases, flanking regions of 2 kb 
and a central-region length normalized to 5 kb. Final plots were drawn 
and formatted using the tidyverse packages51.

IP-MS
IP-MS of SPOCD1–HA from Spocd1HA/+ E14.5 fetal testis using 50 μl of 
anti-HA beads (Pierce, 88837) was done as previously described4, with 
a reduced number of 25 testes per replicate. Wild-type fetal testes were 
used as controls.

Fluorescence-activated cell sorting (FACS)
To purify foetal germ cells for CUT&Tag analysis, E14.5 testes were 
dissected from embryos carrying the Oct4eGFP allele34. A single cell sus-
pension was obtained by sequential treatment with 100 μl collagenase 
solution at 37 °C for 8 min (10 units of collagenase A (Sigma-Aldrich 
10103578001); 2× NEAAs (Gibco); 2× Na-pyruvate (Gibco); 25 mM 
HEPES–KOH, pH 7.5) and 200 μl TryPLE Express (Gibco) at 37 °C for 
5 min with gentle flicking and pipetting of the solution to aid disso-
ciation. Digestion was neutralized by 70 μl prewarmed FBS and cells 
were collected by spinning at 600g for 4 min at room temperature 
followed by two washes in FACS buffer (1× PBS; 2 mM EDTA, 25 mM 
HEPES-KOH, pH 7.5, 1.5% BSA, 10% FBS; 2 μg ml−1 DAPI) and filtering 
(Corning, 352235) just before sorting. Cell sorting was done on an Inv-
itrogen Bigfoot using a 100 μm nozzle and gating for DAPI-negative 
(live), OCT4–eGFP-positive (germ cells) populations into collection 
tubes containing 100 μl 1× PBS.

For EM-seq, CD9+ spermatogonia were sorted from P14 testes as 
described previously52 using Fc block (eBioscience, 14-0161-86, clone 
93, lot 2297433) 1:50; biotin-conjugated anti-CD45 (eBioscience, 
13-0451-85, clone 30-F11, lot 2349865) 1:400, and biotin-conjugated 
anti-CD51 (Biolegend, 104104, clone RMV-7, lot B308465) 1:100 
anti-CD9APC (eBioscience, 17-0091-82, clone eBioKMC8, lot 2450733) 
1:200, anti-cKitPE-Cy7 (eBioscience, 25-1171-82, clone 2B8, lot 2191977) 
1:1,600, streptavidinV450 (BD bioscience, 560797, lot 1354158) 1:400 
and 1 μg ml−1 DAPI. Cells were sorted into DMEM media on a BD Aria II 
sorter, pelleted for 5 min at 500g and snap frozen in liquid nitrogen.

For gating strategies, see Supplemental Fig. 2.

CUT&Tag assays
CUT&Tag was done on FACS-isolated fetal germ cells as previously 
described26, with some minor modifications. First, 10,000 to 20,000 
germ cells were bound to 10 μl concanavalin A-coated beads (Poly-
sciences, 86057-10). After binding to beads, cells were fixed with 0.2% 
formaldehyde for 2 min followed by quenching with glycine (125 mM) 

and washed with Dig-Wash buffer while separated on the magnet. The 
remaining steps were as previously described26, using pA–Tn5 at a 1:400 
dilution (Diagenode, C01070001) and 15 PCR cycles of library amplifi-
cation. Libraries were cleaned up by magnetic bead-based solid-phase 
separation and assessed on a Tapestation (Agilent). Antibodies and 
dilutions used for CUT&Tag were rabbit IgG control (Abcam, ab37415, 
lot GR3219601-1) at 1:50, rabbit anti-SPIN1 (Cell Signaling, 89139S, lot 2)  
at 1:50, rabbit anti-H3K4me3 (Merck-Milipore, 07-473, lot 403371) at 
1:50, rabbit anti-H3K9me3 (Abcam, ab8898, lot GR27111-1) at 1:50, and 
guinea pig anti-rabbit IgG (Antibodies Online, ABIN101961, lot NE-200-
032309) at 1:100. Pooled libraries were sequenced using paired-end 
150 bp on a NextSeq 2000 instrument (Illumina).

CUT&Tag analysis
First, 150b and 155b paired-end CUT&Tag sequencing reads were pro-
cessed and aligned to the mouse-genome assembly (version GRCm38) 
using the NF-core (https://doi.org/10.5281/zenodo.7715959) CUT&RUN 
Nextflow pipeline version 3.1 (ref. 53). The pipeline performed adapter 
trimming with Trim Galore (https://doi.org/10.5281/zenodo.5127898) 
and reference-genome alignment with Bowtie2 (ref. 54). Multimap reads 
were included using the parameter --minimum_alignment_q_score 0. 
The pipeline performed further filtering of reads to report only properly 
paired primary alignments and remove alignments to GRCm38 black-
listed regions. The default for the pipeline is to remove only duplicate 
reads (alignments that share common start and end points) from IgG 
controls. However, after further assessment of the sequence duplication 
rates in all samples, we decided to perform read deduplication on the 
SPIN1 replicate samples. Deduplication of SPIN1 samples was performed 
using Picard MarkDuplicates v.2.24.0 (http://broadinstitute.github.io/
picard/) with the parameter --REMOVE_DUPLICATES. Individual repli-
cates from each sample were then merged into a single BAM file using 
Samtools merge v.1.11 (ref. 47) for downstream analysis. Normalized big-
Wig files of read coverage were generated with deepTools bamCoverage 
v.3.50 (ref. 48), using the following parameters: -bs 1 --normalizeUsing 
CPM —exactScaling --ignoreForNormalization MT. Log2 enrichment 
profiles of CUT&Tag samples over IgG controls were generated 
with deepTools bamCompare using the following parameters: -bs 1 
--normalizeUsing CPM --exactScaling --ignoreForNormalization MT 
--scaleFactorsMethod None.

Log2 enrichment profiles of CUT&Tag versus IgG control over vari-
ous classes of repetitive elements (L1Md_A, L1Md_F, L1Md_Gf, L1Md_T, 
IAPEy-int and IAPEz-int) were plotted as heatmaps and average profiles, 
using computeMatrix from the deepTools48 package and the profile-
Plyr55 R package to include annotations of peak overlaps. Positions 
of repetitive elements were extracted from a table of mouse mm10 
repeatMasker annotations downloaded from the UCSC table browser 
and filtered for elements greater than 5 kb in length. LINE1 elements 
(L1Md_A, L1Md_F, L1Md_T) were further separated into young LINE1 ele-
ments based on a divergence of 38 bases per kb or less from a consensus 
sequence4 or the presence of an intact functional promoter denoted by 
the presence of specific monomer annotations49. Monomers associated 
with inert promoters (subtypes 6 and 2) were removed from the analy-
sis. The central regions of repetitive elements were length-normalized 
to 5 kb with flanking regions ±2 kb from the start and end positions. 
Heatmaps and profile plots show data in consecutive 10b bins with 
regions subdivided by elements and arranged in descending order of 
total enrichment across all samples.

Peak calling was done using MACS2 callpeak56 on individual replicates 
as well as all replicates together, with IgG samples set as a control. The 
parameter --keep-dup all was used to include duplicate reads, when 
present, in the peak calling model. To attain a set of high-confidence 
peaks, we selected peaks with a minimum coverage of 20 reads in the 
CUT&Tag sample and a peak score greater than the mean peak score. 
Peaks of co-localized H3K4me3 and H3K9me3 binding were attained 
by finding the intersection of both peak sets using the GenomicRanges 
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R package57. Peak sets were overlapped with annotations to provide a 
breakdown of their intersection with specific genomic features, with 
each peak assigned to a single classification in the following hierarchy: 
LINEs, other repetitive elements, genes and intergenic. LINEs included 
all repeatMasker annotations included in the LINE class. Other repeti-
tive elements included repeatMasker annotations in the classes LTR, 
Simple_repeat, Satellite, ERVK and Retrotransposon. Genes were 
defined as any coding or non-coding transcriptional unit plus 500 
bases upstream, based on the ENSEMBL gene annotations GRCm38 
v.79. Overlaps of peaks with genomic features was performed using 
the GenomicRanges R package57.

Downstream data analysis and plotting was predominantly per-
formed using the R programming language (R Core Team, 2021, https://
www.R-project.org/) and the Tidyverse libraries51. Genome snapshots 
and data tracks were prepared using pyGenomeTracks58.

Histology of mouse samples
Histology experiments on mouse samples were done as previously 
described4.

TUNEL assay
TUNEL assay experiments were done as previously described4.

RNA sequencing and analysis
RNA sequencing experiments and analysis were done as previously 
described4 with data for Spocd1−/− downloaded from GSE131377 (ref. 4).

Whole-genome methylation sequencing and analysis
Whole-genome methylation sequencing of DNA derived from 
Spocd1ΔSPIN1 and wild-type P14 spermatogonia was performed using 
the NEBNext Enzymatic Methyl-seq (EM-seq, New England Biolabs) 
as described4. Analysis of DNA methylation was done as described 
previously4. Data for Spocd1−/− and corresponding wild-type P14 sper-
matogonia were retrieved from E-MTAB-7997 (ref. 4).

Statistical information
Data were plotted in R (v.2022.07.01 and 554 running R v.4.0.3 (2020-
10-10)) using the dplyr, ggplot2, tidyr, cowplot, reshape2, ggrepel, 
ggpubr, scales and RColorBrewer packages (versions dplyr_1.0.4, 
ggplot2_3.3.3, tidyr_1.1.2, cowplot_1.1.1, scales_1.1.1, reshape2_1.4.4, 
ggrepel_0.9.1, ggpubr_0.4.0, scales_1.1.1, RColorBrewer_1.1-2) or Micro-
soft Excel for Mac (v.16). Statistical testing was done with R (v.4.0.3 
(2020-10-10)) using R Studio software or with Perseus59 (v.1.6.5.0) for 
the mass-spectrometry data and DEseq2 (ref. 60) for the RNA-seq data. 
We used the regioneR package55 in R to perform permutation tests 
to assess the statistical significance of overlaps of CUT&Tag peaks 
with LINE1 elements. Unpaired, two-tailed Student’s t-tests were used 
to compare the differences between groups and adjusted for multi-
ple testing using Bonferroni correction where indicated, except for 
RNA-seq data analysis, where Wald’s tests were used. Averaged data are 
presented as mean ± s.e.m., unless otherwise indicated. No statistical 
methods were used to predetermine the sample size. The experiments 
were not randomized and the investigators were not blinded to alloca-
tion during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The EM-seq data generated in this study have been deposited on Array-
Express under accession number E-MTAB-12713. The RNA-seq data 
generated in this study have been deposited at the Gene Expression 
Omnibus under GSE228294 and the CUT&Tag data generated here are 

at GSE269344. The data for the IP-MS experiment have been deposited 
at ProteomeXchange under the accession number PXD041214 and the 
crosslink MS data are under PXD041135. The publicly available datasets 
used in this study are the ChIP-seq of H3K4me3 and H4K9me3, down-
loaded from the Sequence Read Archive record SRP165187; the RNA-seq 
data for Spocd1−/−, downloaded from GSE131377; and the EM-seq data for 
Spocd1−/− and corresponding wild-type P14 spermatogonia, retrieved 
from E-MTAB-7997 (https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-7997).

Code availability
The scripts used for the EM-seq and RNA-seq analysis are available from 
github at https://github.com/rberrens/SPOCD1-piRNA_directed_DNA_
met, and the scripts used for ChIP and CUT&Tag analysis are available 
from github at https://github.com/swebb1/heep-et-al_2024.
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Extended Data Fig. 1 | SPOCD1’s recruitment to chromatin is independent 
of MIWI2. a, MIWI2 (green), HA (red) and DAPI (blue) staining of E16.5 foetal 
testis sections from Spocd1HA/+ mice treated with PBS or RNase A prior to 
fixation. b, HA (red) and DAPI (blue) staining of E16.5 foetal testis sections from 
E16.5 Miwi2−/−;Spocd1HA/+ and Miwi2+/−;Spocd1HA/+ mice. c, d, SPIN1 (green) and 

DAPI (blue) staining of E16.5 Miwi2+/− and Miwi2−/− E16.5 foetal testis sections. 
(c) shows a zoom-in of the cell highlighted with a dashed rectangle in (d). 
Images of (a-d) are representative of n = 3 biological replicates. Scale bars are  
5 μm (a), 10 μm (b, d) and 2 μm (c).
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Extended Data Fig. 2 | Multiple Sequence alignment of SPIN1 and the 
SPOCD1 ß-hairpin region. a, Multiple sequences alignment of SPIN1 from 
representative vertebrates. The domain structure of mouse SPIN1 (Q61142) is 
indicated underneath the alignment in grey. b, Multiple sequence alignment of 
the SPOCD1 ß-hairpin region with representative vertebrate SPOCD1 sequences. 

Secondary structure elements from the AlphaFold2 model of mouse SPOCD1 
(B1ASB6) are shown below with grey arrows representing a ß-strand.  
a-b, sequences are coloured according to sequence identity. Numbering above 
according to mouse sequence.

https://www.uniprot.org/uniprot/Q61142
https://www.uniprot.org/uniprot/B1ASB6


Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | H3K4me3, H3K9me3 and SPIN1 mark young LINE1 
elements prior to de novo genome methylation. Metaplot and heat maps of 
H3K4me3 (a) and H3K9me3 (b) ChIP from foetal gonocytes at the indicated 
timepoints during mouse development. Data is merged from two biological 
replicates, reanalysed from24. a-b, Panels show H3K4me3 (a) and H3K9me3 (b) 
ChIP-seq signal in reads per million (RPM) over young and old elements within 
the indicated LINE1 family. c, Metaplot and heat maps of indicated CUT&Tag 
signal of H3K4me3, H3K9me3 and SPIN1 over young and old L1MD_F elements. 
Columns adjacent to the heatmaps show peaks called for SPIN1 and the indicated 

histone modifications. Data is merged from two (H3K4me3, H3K9me3) and 
three (SPIN1) biological replicates. a-c, Data depicts element plus adjacent 2 kb 
for each of the transposon families indicated. d, Genome snapshots showing 
datatracks of CUT&Tag signal of H3K4me3, H3K9me3 and SPIN1 over selected 
genome regions containing a young L1Md_A, young L1Md_T, old L1Md_F or 
IAPEz element. Data is merged from two (H3K4me3, H3K9me3) and three (SPIN1) 
biological replicates. Enrichment of overlapping H3K4me3 and H3K9me3 
peaks with SPIN1 peaks is not significantly different between young and old 
L1Md_F copies, as observed by a two-tailed Fisher’s exact test.



Extended Data Fig. 4 | SPIN1 expression and localization in the developing mouse germline. a, b, Representative images of sections from n = 3 wild-type foetal 
testis stained for SPIN1 (green) and DAPI (blue) from indicated timepoints. Cell shown in (a) is highlighted with a white box in (b). Scale bars are 2 μm (a) and 10 μm (b).
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Extended Data Fig. 5 | The SPOCD1-ΔSPIN1 separation-of-function protein 
associates with DNMT3L. a, Representative western blot analyses of n = 3 
anti-HA immunoprecipitations of the HA epitope-tagged mouse wild-type, 
SPOCD1 8 alanine mutated proteins or GFP control with FLAG-tagged DNMT3L 
in HEK 293 T cells. For whole blot source data, see Supplementary Fig. 1.



Extended Data Fig. 6 | Generation of the Spocd1ΔSPIN1 mouse allele. a, Schematic 
representations of the mouse Spocd1 locus and encoded 1015 amino acid 
protein are shown. sgRNA used for generation of the Spocd1ΔSPIN1 allele and 
adjacent PAM site are indicated. b, Schematic of CRISPR targeting strategy 
showing the location of single-stranded oligo DNA donor (ssODN) and homology 
arms (HA) used. c, Schematic representation, and sequencing trace of the part 

of Spocd1ΔSPIN1 exon 4 harbouring the mutation sites, a 30 bp sequence creating 
the 8 alanine mutation is highlighted in red. Sequencing was performed on n = 3 
animals. d, Representative image of genotyping result for n = 3 Spocd1+/+, 
Spocd1+/ΔSPIN1 and Spocd1ΔSPIN1 mice. e-g, Representative images of E16.5 gonocytes 
from n = 3 Spocd1ΔSPIN1 and wild-type control mice stained for SPOCD1 (e), SPIN1 
(f) or MIWI2 (g,) in green. DNA was stained with DAPI (blue). Scale bars are 5 μm.
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Extended Data Table 1 | Proteins identified as SPOCD1 interactors in E14.5 foetal testes

Table listing all statistically significant (P < 0.05, two-sided Student’s t-test, n = 3) proteins that are at least 4-fold enriched in the SPOCD1-HA immuno-precipitation.
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