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The genetic architecture of protein stability
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There are more ways to synthesize a100-amino acid (aa) protein (20'°°) than there
are atoms inthe universe. Only a very small fraction of such a vast sequence space
can ever be experimentally or computationally surveyed. Deep neural networks are
increasingly being used to navigate high-dimensional sequence spaces’. However,
these models are extremely complicated. Here, by experimentally sampling from
sequence spaces larger than 10", we show that the genetic architecture of at least
some proteins is remarkably simple, allowing accurate genetic predictionin
high-dimensional sequence spaces with fully interpretable energy models. These
models capture the nonlinear relationships between free energies and phenotypes
but otherwise consist of additive free energy changes with a small contribution from
pairwise energetic couplings. These energetic couplings are sparse and associated
with structural contacts and backbone proximity. Our results indicate that protein

geneticsis actually both rather simple and intelligible.

Massively parallel experiments allow the effects of single aa changesin
proteins to be comprehensively quantified®. Similarly, experimental
analysis of double mutantsiis feasible, at least for small proteins*’. The
analysis of higher-order mutants, however, quickly becomes infeasi-
ble owing to the combinatorial explosion of possible genotypes. For
example, the number of ways to combine one mutation at 34 different
sites in a protein is 2>* =~ 1.7 x 10", Experimental exploration of such a
large number of genotypes is extremely challenging® given current
technology, which—so far—has experimentally analysed sequence
spaces up to about 10° (refs. 4,7).

Moreover, combining random mutations in even moderate num-
bers nearly always results in non-functional proteins®®. For example,
only 2-8% of 5 aavariants and <0.2% of 10 aa variantsin asmall protein
domainare expectedtobefolded ifenergies combine additively (n=2
domains; Fig.1aand Extended Data Fig.1a). Sampling even tens of mil-
lions of random combinatorial genotypes in most proteins will there-
fore provide almost noinformationabout genetic architecture—the set
of rules that govern how mutations combine to determine phenotypes—
and will not be useful for training and evaluating predictive models
beyond testing the trivial prediction that most genotypes are unfolded.

One strategy for exploring high-dimensional sequence spaces is to
use deep learning. Deep neural networks with millions of fitted param-
eters have proved successful for diverse predictionand protein design
tasks, including predicting the effects of combinatorial mutants'®2.,
However, these models have extremely complicated and difficult to
interpret architectures.

It could be that protein genotype-phenotype landscapes are com-
plex, with many interactions between mutations required for accurate
prediction. Alternatively, these landscapes might be much simpler, as
suggested by energy measurements® and inferences®?* and the use
of statistical models®?. For us, a simple model is one with few param-
eters (so providing alarge datacompression) and parameters thatare
interpretable (so providing understanding).

Here we use an experimental design that enriches functional protein
sequences to explore the genetic architecture of high-dimensional
protein sequence spaces with more than 30 dimensions and more
than10" genotypes. We find that protein architectures are remarkably
simple, with additive energy models providing very good predictive
performance. Quantifying the pairwise energetic couplings between
mutations further increases predictive power, providing excellent
performancein high-dimensional genotype spaces. These couplings are
sparse andrelated to protein3D structures. The genetic architecture of
atleastsome proteinsis therefore very simple, with additive energetics
and a small contribution from sparse pairwise structural couplings.

Sampling a10'’sequence space

We previously showed that the energetic effects of thousands of
individual mutations on the stability of a protein can be measured
en masse using pooled variant synthesis, selection and sequencing
experiments®?*, Inthese experiments, the effect of each mutationon
the cellular abundance of aproteinis measuredin the wild-type protein
and also in a small number of variants with different fold stabilities.
For example, using a shallow double-mutant library, we could infer
the changes in Gibbs free energy of folding (AAG;) for nearly all muta-
tions (1,056/1,064 = 99%) in the C-terminal SH3 domain of the adaptor
protein GRB2 (ref. 23). Similar massively parallel measurements of
single-mutant fold stabilities have now been made for other signalling
domains, including the oncoprotein KRAS*, and, in vitro, for many,
mostly prokaryotic, small domains’.

Combining random mutations in the GRB2-SH3 domain very quickly
results in unfolded proteins, with about 98% and more than 99.9% of
genotypes with five and ten mutations expected to be unfolded (based
onadditive energies; see Fig.1a). This rapid decay of stability as muta-
tions are combined is consistent with experimental measurements
of the activity of other proteins®’. To experimentally explore folded
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Fig.1|Anefficient strategy to explore high-dimensional proteinsequence
space and enrich multi-mutants for conserved fold and function. a, Violin
plotshowingdistributions of simulated AbundancePCA growthrates
(assuming additivity of individual inferred folding free energy changes?)
versus number of random aa substitutions (n =100,000). Violins are scaled

to have the same maximum width. b, DMS data, energy model and algorithm
usedtoselectasetof single aa substitutions for combinatorial mutagenesis.
Ashallow double-mutant library of GRB2-SH3 protein variants was assayed

by AbundancePCA (see panel ¢) and BindingPCA (see Fig. 4b; in combination
referred to as ddPCA), followed by energy modelling to infer single aa
substitution free energy changes of folding and binding?’. We used this model
together withagreedy algorithm toselect aset of 34 single aa substitutions
that, when combined, would simultaneously maximize both the predicted
AbundancePCA and BindingPCA growthrates, thatis, preserving both fold

genotypes in high-dimensional sequence spaces, we therefore used
a heuristic technique to enrich for conserved fold and function in
combinatorial variants. For each possible starting single aa substitu-
tion, we iteratively selected further substitutions—one per residue
position—that simultaneously maximizes the resulting combinatorial
mutant’s predicted abundance and binding to an interaction partner
(see Methods). For GRB2-SH3, the largest set of mutations predicted
to preserve both molecular phenotypes consisted of 34 single aa sub-
stitutions: 25 in surface residues (relative solvent-accessible surface
area (RSASA) > 0.25), three in the protein core (RSASA < 0.25) and six
mutationsin the GAB2 ligand binding interface (ligand distance <5 A;
Fig.1b, right).

We synthesized alibrary (‘library 1’) containing all combinations of
these 34 mutants and quantified the cellular abundance of a sample
of the 2** = 1.7 x 10'° genotypes using a highly validated pooled selec-
tion, abundance protein fragment complementation assay (Abundan-
cePCA®?*%) Intotal, we obtained triplicate abundance measurements
for 129,320 variants, which is 0.0007% of the sequence space. The
measurements were highly reproducible (Pearson’s r > 0.91; Fig. 1d
and see Methods).

The symmetrical pod-like shape of the genotype frequency land-
scape, with the number of genotypes peaking at the intermediate
Hamming distance of 17—that is, equidistant from the wild type
(zeroth-order) and 34th-order mutant—is recapitulated in the experi-
mentally sampled library (Fig.1e). Median abundance measurements
decrease with increasing number of aa substitutions, but there are
still thousands of genotypes with many mutations that, nevertheless,
maintain abundance scores that are indistinguishable from that of the
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and function. 3D structure of GRB2-SH3 (PDB: 2VWF) indicating the 34
combinatorially mutated residues (orange) and GAB2 ligand (blue) is shown
ontheright.c, Overview of AbundancePCA onthe protein of interest
(GRB2-SH3)%, yes, yeast growth; no, yeast growth defect; DHF, dihydrofolate;
THF, tetrahydrofolate. d, Scatter plots showing the reproducibility of fitness
estimates from triplicate AbundancePCA experiments. Pearson’s risindicated
inred.Rep., biological replicate. e, Histogram showing the number of observed
aavariants atincreasing Hamming distances from the wild type (denoted
by WT), for which the xaxis is shared with panelf.f, Violin plot showing
distributions of AbundancePCA growthratesinferred from deep sequencing
data versus number of aa substitutions. In panelsaandf, the percentage of
folded protein variants (predicted fraction folded molecules > 0.5) is shown at
each Hamming distance from the wild type.

wild-type protein (n =2,706 with more than 20 mutations, two-sided
z-test nominal P> 0.05; Fig. 1f).

Genetic prediction with energy models

Quantifying the effects of alarge number of multi-mutants allowed us
to test the predictive performance of genotype-phenotype models
in regions of the genetic landscape beyond the local neighbourhood
used for training. For model building and evaluation, we restricted
all analyses to variants with quantitative measurements in all three
biological replicates (n = 71,233). Notably, our original energy model
(Fig. 2a) trained on abundance and ligand binding selections (dou-
bledeepPCA, ddPCA) quantifying the effects of single and double
aa mutants only? explains as much as half of the fitness variance in
combinatorial multi-mutants (R*= 0.5; Fig. 2b, lower-right panel), for
which most (94%) include at least 13 aa substitutions in the wild-type
sequence. The only trained parameters in this simple model are Gibbs
free energy terms for the wild type (AG;) and single aa substitutions
(AAG;) and atwo-parameter (affine) transformation relating the frac-
tion of folded moleculesto the AbundancePCA score (fitness; Fig. 2a).
That such alarge proportion of phenotypic variance is explained by
an additive energy model (no specific epistasis/genetic interactions)
trained on genotypes containing only one or two genetic changes sug-
gests that the energetic effects of mutations in proteins are largely
context-independent.

On the other hand, a linear model—which implicitly assumes
that mutation effects combine additively at the phenotypic level in
multi-mutants—trained on the same ddPCA data performs much worse
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Fig.2| Thermodynamic modelling of protein abundance to infer folding
freeenergy changes and energetic couplings. a, Two-state equilibriumand
corresponding neural network architecture used to fit thermodynamic model
to AbundancePCA data (bottom, target and output data), thereby inferring the
causalchangesinfree energy of folding associated with single aa substitutions
(top, input values). AG;, Gibbs free energy of folding; K;, folding equilibrium
constant; p, fraction folded; g, nonlinear function of AGg; R, gas constant;
T,temperatureinkelvin. b, Performance of first-order linear models (left
column) and first-order energy models (right column) evaluated on GRB2-SH3
combinatorial AbundancePCA data. The top row indicates the results of
models that were trained on asubset of the same combinatorial DMS data.
Thebottomrowindicates the results of models that were trained on GRB2-SH3

(R*=0.32). The linear model also systematically underestimates the
observed phenotypiceffects of mutant combinations (Fig.2b, lower-left
panel), aconsequence of not accounting for the scaling of mutational
effects owing to protein thermodynamics (global epistasis?®°).
For example, introducing a destabilizing mutation in an already-
unfolded protein has no effect on the fraction of folded molecules
(lower plateau of model in Fig. 2¢), which is not captured by a linear
model. These results demonstrate a key advantage of fitting energy
models: accounting for global epistasis improves the generalizability
of predictions beyond the local neighbourhood of the training data.
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ddPCA data consisting of single and double aa substitutions only?*. R?is the
proportion of variance explained. ¢, Nonlinear relationship (global epistasis)
betweenobserved AbundancePCA fitness and changesin free energy of
folding. Thermodynamic model fitisshowninred.d, Comparisons of the
model-inferred free energy changes to previously reported estimates using
GRB2-SH3 ddPCA data®. Pearson’s ris shown. e, Performance of energy model
thatincludes all first-order and second-order geneticinteraction (energetic
coupling) terms/coefficients. See Extended Data Fig. 2 for plots of the residuals
versus fitted values for linear and energy models of the first and second order.
f, Distributions of folding free energy changes (AAG, grey) and pairwise energetic
couplings (AAAG, red). WT, wild type.

Fitting linear and energy models to the combinatorial dataimproves
the variance explained by 30% and 13%, respectively (Fig. 2b, upper
panels), probably because of the greater amount of training data and
(relevant) genetic backgrounds in which the effects of each single aa
are quantified: about 50% of all variants in the library (n = 30,000)
include—and therefore report on the effects of—any given one of the
34 single aa substitutions, that is, almost three orders of magnitude
more measurements per single mutant compared with the relatively
shallow (ddPCA) library. Although the fraction of variance explained by
first-order linear and energy modelsis comparable (R*= 0.62and 0.63;
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Fig.2b, upper panels), the biased regression residualsin the case of the
linear model show that this modelis less appropriate (Extended Data
Fig.2a). The energy model provides an excellent fit to the data, faithfully
capturing the global nonlinear relationship (global epistasis) between
observed AbundancePCA fitness and inferred changes in free energy
of folding (AG;) (Fig. 2c). There is also very good agreement between
free energy changes (model parameters) inferred from combinatorial
and ddPCA datasets (Pearson’sr = 0.87), but the former tend to be more
extreme, once again demonstrating the use of assaying the effects of
mutationsin greater numbers of genetic backgrounds, thereby allow-
ing their energetic effects to be more accurately estimated (Fig. 2d).

Couplingsimprove genetic prediction

We next tested whether quantifying non-additive energetic couplings
between mutations improved predictive performance. In our combi-
natorial dataset, each pair of mutationsis presentin amedian 0f17,923
genotypes, allowing robust measurement of second-order genetic
interaction terms (energetic couplings, AAAG;(refs. 31,32)). Including
all second-order energetic couplings improves model performance
by an extra 9% (R?=0.72), consistent with expectations that pairwise
effects are an important source of specific epistasis in proteins®
(Fig. 2e). Whereas first-order terms are stronger in magnitude and
biased towards destabilizing effects, second-order energetic couplings
tend to have milder effects centred on zero (Fig. 2f).

Physical contacts and backbone proximity

Measured at the phenotypic level, genetic interactions in proteins
have previously been shown to reflect—at least in part—protein struc-
tures***73¢, Combining combinatorial deep mutational scanning with
thermodynamic modelling allowed us to infer a total of 561 pairwise
energetic couplings, providing an opportunity to interrogate their
mechanistic origins and relationship with protein structure. Compar-
ing coupling energy magnitude (absolute folding AAAG;) with the 3D
distance separating mutation pairs in the folded structure (minimal
side-chain heavy-atom distance) reveals an L-shaped distribution
with the strongest energetic couplings occurring between structur-
ally proximal residues (Fig. 3a; see also Extended Data Fig. 3a). The top
five energetic couplings all involve pairs of residues within 5.5 A and
15 of the top 20 (75%) energetic couplings involve pairs separated by
lessthan8 A. Although there is aweak anticorrelation between contact
distance and coupling energy strength (Spearman’s p = —0.12; Fig. 3a),
this trend breaks down for pairs that are not proximal in the primary
sequence (Spearman’s p =—0.02, backbone distance >5 residues).

On the other hand, comparing coupling strength with separation
distance betweenresiduesinthe primary sequence (alongthe peptide
backbone) reveals a marked inverse relationship that extends over
quite large distances (Spearman’s p = -0.28) and is robust to the exclu-
sion of direct physical contacts between residues (<5 A, Spearman’s
p=-0.27; Fig. 3b and see also Extended Data Fig. 3b). The interaction
matrix in Fig. 3c summarizes these observations: the strongest ener-
getic couplings coincide with direct physical contacts (black circles; see
alsoFig.3d) and energetic coupling strength decays along the protein
backbone (Fig. 3¢, near-diagonal versus far off-diagonal cells). The
matrix also highlights physical interactions between secondary struc-
tural elements as hotspots for strong energetic couplings.

To disentangle the relative importance of these different potential
structural determinants of energetic coupling strength, we gathered a
collection of quantitative features describing both the number and the
type of chemical bonds or interactions existing between the atoms of
pairs of residues, as well as their relative positions in the folded struc-
ture (Fig. 3e). A linear regression model based on these 12 structural
featuresis predictive of coupling strength (Fig. 3f; see Methods). Nota-
bly, the same model performs similarly well when evaluated on a held
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out, non-overlapping set of inferred energetic couplings derived from
an independent combinatorial mutagenesis experiment (‘library 3,
which is described below; Pearson’s r = 0.46, R? = 0.21). This suggests
that, despite its simplicity, the integrated model captures structural
determinants of energetic coupling strength and that energetic cou-
plings are caused by structural interactions.

Couplings decay along the peptide chain

To directly test the hypothesis that inter-residue backbone distance
is associated with energetic coupling strength independently of 3D
contact distance, we designed acombinatorial saturation mutagenesis
library involving all possible mutations at four physically proximal
surface residuesin the same secondary structure element (‘library 2’;
Extended Data Figs. 4a and 5a and see Methods). We reasoned that
energetic couplings owing to the propagation of perturbations along
the protein backbone should also be apparent among solvent-facing
residues. In total, we obtained abundance measurements for 138,157
variants (86% of the sequence landscape) and the measurements
were highly reproducible (Pearson’s r > 0.89; Extended Data Fig. 5b
and see Methods).

The single-mutant effects at these four residues have alarger range
thanthose of the combinatorial library that was designed to conserve
fold and function (Extended Data Fig. 5c,d). Therefore, when com-
bined in double, triple and quadruple mutants—the most numerous
class—the resultis alarger fraction of unfolded variants (Extended
Data Fig. 5c-e). A two-state thermodynamic model that includes all
first-order and second-order coefficients provides an excellent fit to
the data (R*= 0.93; Extended Data Fig. 5e-g) and inferred folding free
energy changes (first-order terms) are highly correlated (Pearson’s
r=0.94) with those obtained previously using an independent shal-
low double-mutant library (Extended DataFig. 5h). Although the four
mutated residues are physically proximal in 3D space, with all except
one pair (H26:T44) separated by lessthan 5 A (3.8-8.4 A; Extended Data
Fig.5i), their relative positionsin the primary peptide sequence covera
large range (2-18 residues; Extended DataFig. 5j). Thereis norelation-
ship between contact distance and folding coupling strength for these
contacting residues (Spearman’s p = -0.05; Extended Data Fig. 5i),
whereas the relationship for backbone distance is significant (Spear-
man’s p = -0.41; Extended Data Fig. 5j). Indeed, backbone distance is
very well correlated with coupling strength when averaging energy
terms per residue pair (Spearman’s p = —0.94; Extended Data Fig. 5j).
The relative position of aa residues in the primary protein sequence
istherefore associated with coupling strength independently of their
proximity in 3D space.

Higher-order mutants fold and function

Our experiments identified a large number of GRB2-SH3 genotypes
containing many mutations that have high cellular abundance (for
example, 25,564 genotypes containing more than five mutations;
Fig.1f). To further confirm that abundant multi-mutants are correctly
folded and functional, we performed athird combinatorial mutagenesis
experiment in which we also tested the ability of GRB2-SH3 variants
to bind to a peptide ligand using a protein—-protein interaction assay
(BindingPCA*?**": Fig. 4a). Recognition of the peptide ligand can only
occur if the protein adopts its native conformation® (Fig. 1b,c). We
designedalibrary (library 3) consisting of all combinations of 15single
aa substitutions occurring within a 22-aa residue window, avoiding
mutations in our original library in binding interface residues (mini-
malside-chain heavy-atom distance totheligand < 5 A; Extended Data
Fig.4band also see Methods). The library contains 2" (=32,768) variants
and shares six single aa substitutions with our original 2** library. In
total, we obtained binding measurements for 25,967 variants and abun-
dance measurements for 31,936 variants (79% and 97% of the sequence
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landscape, respectively). The measurements were highly reproducible
(Pearson’sr>0.85and 0.94 for binding and abundance, respectively;
Fig. 4c, Extended Data Fig. 6a-fand also see Methods).

Plotting the changes in binding against the changes in abundance
for third-order, sixth-order and ninth-order variants shows that most
mutations altering binding also alter the concentration of the isolated
domain, consistent with previous results and the expectation that
changes in protein stability are a main cause of mutational effects on
binding®?** (Fig. 4d and Extended Data Fig. 6g). Notably, however,
most higher-order mutants that have high abundance scores also bind
the GAB2ligand, indicating that they are correctly folded (Fig. 4d and
Extended Data Fig. 6g). For example, 4% (204/4,805) of variants con-
taining nine mutations have abundance indistinguishable from that
of the wild-type protein (nominal P> 0.05) and 96% (177/184) of these
alsobind theligand (predicted fraction bound molecules > 0.5). Most
of the abundant higher-order GRB2-SH3 mutants are thus correctly
folded.
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error bandsrepresent the 95% confidence intervals for the predicted values.

Multi-phenotype genetic prediction

Thelarge number of genetic backgrounds in which both single and dou-
ble aa mutant effects were measured for these two related molecular
phenotypesisarichsource of datafor thermodynamic modelling. First,
considering only the abundance phenotype, we observe thatanadditive
two-state thermodynamic model—with unfolded and folded energetic
states—outperforms alinear model when evaluated on held-out vari-
ants (R?=0.93 versus 0.87; Extended Data Fig. 7a,b). To attain similar
predictive performance as the first-order energy model requires inclu-
sion of both second-order and third-order genetic interaction terms
inthe linear model (Extended Data Fig. 7c,d), representing a massive
increasein model complexity (715 versus 16 parameters; thatis, greater
than 40-fold more). This greater complexity of models that use many
specific pairwise and higher-order geneticinteraction terms to capture
global nonlinearities in data (global epistasis) has been referred to as
‘phantom epistasis™°.
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Next, extending previous work?, we used a neural network imple-  and AAG,), as well as folding and binding energetic couplings (AAAG;
mentation of athree-state equilibrium model*—with unfolded, folded and AAAG,) (Fig. 4f). The model fits the data extremely well (Fig. 4g),
andbound energetic states (Fig. 4e)—to simultaneously infer theunder-  explaining virtually all of the fitness variance (Fig. 4h), and theinferred
lying causal free energy changes of both folding and binding (AAG; folding and binding free energy changes (first-order terms) are well
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Fig.5|Proximity and connectivity of residues near the binding interface
explain energetic effects onbinding affinity. a, Relationship between the
absolute changein free energy of folding (top) and binding (bottom) and
minimal side-chain heavy-atomdistance to theligand. Residues are coloured
by their positionin the structure relative to the binding interface, triangles
indicate betastrand residues and connectionlinesindicate the strength of
energetic couplings between aa pairs (see legend). Spearman’s pis shown.

b, Interaction matrix indicating folding (top) and binding (bottom) coupling
terms, as well as pairwise structural contactsin GRB2-SH3 (PDB: 2VWF; minimal

correlated (Pearsons’sr= 0.9 and 0.7) with those obtained previously
using anindependent shallow double-mutant library® (Fig. 4i, double
mutants). Thisis the first time, to our knowledge, that alarge number
of folding (AAAG;) and binding (AAAG,) energetic coupling terms have
been measured for any protein.

Allostery inligand-proximal residues

We observe that mutational effects on folding energy tend to be
larger than those on binding energy (Fig. 5a), recapitulating previous
results®?, Energetic couplings show the same pattern, with folding
coupling energies tending to be larger in magnitude than binding
energetic couplings (area under the curve =0.7,n=210,P=3.6 x107,
two-sided Mann-Whitney U'test, ]JAAAG{ mean = 0.087,s.d. = 0.084,
|AAAG,| mean = 0.038, s.d. = 0.035; Fig. 5b). As none of the mutations
in this library occur in the binding interface, any notable effects on
binding affinity must be through an allosteric mechanism??, Plotting
absolute free energy changes against the 3D distance to the ligand
shows a negative correlation as previously reported®* (Spearman’s
p=-0.46), with mutationsin second-shell residues and residues adja-
cent (inthe sequence) to bindinginterface residues highly enriched for
strong allosteric effects on binding affinity (Fig. 5a). Consistent with
previous observations?**, mutations at distal glycine residues have
among the strongest effects on binding affinity.

Whereas the mutations with the strongest folding coupling energies
arenear-diagonal (closely spaced inthe primary sequence), particularly

side-chain heavy-atom distance <8 A, black circles). Grey cells indicate missing
values (non-mutated residues) and constitutive single aasubstitutions are
indicated in the x-axis and y-axis labels (see panel a for axis label text colour
key). Mutationsinbetastrand residues areindicated and couplings between
betastrandresidues are boxed. The bar plotsabove and to theright of the
bindinginteraction matrix indicate the total number of pairwise physical
interactions (<8 A) involving each residue, with green bars indicating the
fraction of interacting partners classified as second-shell residues. The
strongest binding energetic coupling (P11A:G18C) isindicated by anarc.

between pairs of residues in the beta strand, the strongest binding
couplinginthe datasetisaninteraction betweenresiduesP11and G18
(Fig. 5b). These two residues are proximal in 3D space (<8 A) and consti-
tute one of only two long-range physical contacts between the mutated
residues (backbone distance > 5 residues; Fig. 5b), suggesting that
allosteric energetic couplings are also driven by structural contacts.

SRC kinase combinatorial mutagenesis

Finally, to further test the generality of our conclusions, we used the
same greedy approach to design alibrary containing 2" (=32,768) vari-
ants in an unrelated and larger protein, the human proto-oncogene
tyrosine-protein kinase Src (SRC). We obtained triplicate abundance
measurements for 31,557 variants and the measurements were highly
reproducible (r>0.86; Fig. 6b-d). As for our three GRB2-SH3 combi-
natorial libraries, asecond-order energy model was highly predictive
of abundance changes (R*= 0.87; Fig. 6¢,f), with energetic couplings
predicted by both 3D spatial proximity (Fig. 6g) and backbone proxim-
ity (Fig. 6h). The consistency of these results in an unrelated full-length
protein further supports their generality.

Discussion

By experimentally quantifying protein fold stability in samples from
sequence spaces greater than 10'° in size, we have shown here that
the fundamental genetic architecture of at least some proteins is
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shared with paneld.d, Violin plot showing distributions of abundance growth
ratesinferred from deep sequencing data versus number of aa substitutions.
The percentage of bound protein variants (predicted fractionbound
molecules >0.5) isshown ateach Hamming distance from the wild type.

e, Nonlinear relationship (global epistasis) between observed abundance
fitness and changes in free energy of folding. Thermodynamic model fitis

remarkably simple. Thermodynamic models in which the energetic
effects of mutations are summed provide very good prediction of fold
stability when tens of mutations are combined. Quantifying the pair-
wise energetic couplings between mutations further increases predic-
tive power, providing very good performance in high-dimensional
genotype spaces. The large number of energetic couplings quanti-
fied here reveals important principles about their origins: couplings
are strongest between structurally contacting residues and coupling
strength also decays along the protein backbone.

The energy models used here are very sparse and represent very large
data compressions: up to about 102 (2**/34) for the additive models
and up to about 107 (2**/596) for the models with energetic couplings.
Analyses of previously published combinatorial protein mutagen-
esis datasets®***, mutagenesis of a protein interaction interface*,
hydrophobic protein cores®, an intrinsically disordered region*, a
tRNA** and an alternatively spliced exon*’ suggest that this simplicity
of genotype-phenotype landscapesis widely observed and probably a
general principle of macromolecules and their molecular interactions.

Energy models are grounded in our understanding of protein ther-
modynamics and their simplicity and interpretability contrasts with
the complexity and lack of mechanistic insight provided by deep neural
networks. Predictive energy models are likely to have many applica-
tions, including for clinical variant effect interpretation*®, pathogenand
pandemic forecasting* and protein engineering for biotechnology'.
Animportant challenge moving forward is how to efficiently quantify
the free energy changes and energetic couplings for all mutations in
proteins of interest. Quantifying mutational effects across diverse
genetic backgrounds and homologous sequences may be an efficient
way to achieve this®.

1002 | Nature | Vol 634 | 24 October 2024

Abundance fitness

Thermodynamic model )
(first and second order)
p=-022
0.6 p =-0.09 (>5 residues)
5 N
£
s § 0.4 Position
o i A 4 Core
ﬁ g « Remainder
€ J o024+
g’ A * 4
e s o a
2 of¥ s
-2 0 2 4 5 10 15 20
Folding AG (inferred) Inter-residue distance (&)
h
p=-0.32
=-0.34 (>5 A)
— 06 P 54
0] s A _
2 £ Inter-residue
g 025 § 0.4 distance (A)
= = AL ® <5
3 T
k< 050 3 5-10
3 < 024 4 10-20
& 2 s
5 N 4 ® >20
-0.75 S Aataatite s
N : 1an
40 05 0 5 10 15 20

Observed fitness Backbone distance (residues)
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Our data do not rule out the importance of higher-order genetic
interactions for protein stability. Rather, they show that, when
global nonlinearities owing to cooperative protein folding are prop-
erly accounted for and measurements are averaged across genetic
backgrounds, first-order and pairwise energetic couplings provide
sufficientinformation for many prediction tasks. Animportant ques-
tionto addressin future work will be the extent to which higher-order
energetic interactions become important in even larger sequence
spaces, including in the ‘twilight zone’ of structurally homologous
proteins with very low sequence identity. Indeed, the superior
performance of our models in 2%-sized compared with in 23*-sized
sequence spaces hints that higher-order interactions become increas-
ingly important as sequences diverge. Simple experimental designs
should be able to definitively address this question for a diversity of
protein folds.
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Methods

Combinatorial mutagenesis library designs

Combinatorial library 1. Library 1was designed using a computation-
ally efficient greedy strategy to search for the largest number of single
aasubstitutions that, when combined, preserve both fold and function
eveninthe highest-order mutants (Fig. 1b). The algorithm used previ-
ously published ddPCA data and thermodynamic modelling results
for GRB2-SH3, including inferred single aa substitution free energy
changes of folding and binding for this protein®. We showed previ-
ously that thismodel—-which assumes thatindividual inferred folding
and binding free energy changes (AAG;and AAG,) combine additively
in multi-mutants—accurately predicts the effects of double aa sub-
stitutions?®. Therefore, this same additive model was used to make
predictions about the energetic and phenotypic effects of higher-order
mutants explored in the greedy search.

First, the set of candidate single aa mutations was restricted to
those with confident free energy changes, defined as those with 95%
confidence intervals < 1kcal mol™and whose effects were measured
in at least 20 genetic backgrounds (that is, double aa mutations).
Candidate mutations were further restricted to those reachable by
single-nucleotide substitutions in the wild-type sequence to simplify
synthesis of the resulting combinatorial mutagenesis library. The
algorithm begins from an arbitrary starting mutation and iteratively
selects further mutations at other residue positions until all residues
in the protein have been mutated. The heuristic works by selecting
further mutations at each step that maximize the fold and function
of the current highest-order mutant combination, that is, the geo-
metric mean of model-predicted AbundancePCA and BindingPCA
growthrates. This procedureis then repeated for all possible starting
mutations.

Tovisualize and compare the resulting solutions, we also simulated
the median AbundancePCA and BindingPCA growth rates of all can-
didate combinatorial libraries, calculated using a random sample of
10,000 variants. Although the algorithmis not guaranteed to produce
the optimal solution at each Hamming distance from the wild-type
sequence, the greedy approach nevertheless achieves solutions in
whichboth phenotypes are predicted tobe preservedin variants with
more than 30 mutations (Extended Data Fig. 1b), beyond which one or
both phenotypes are lost. Defining viable libraries as those preserving
both molecular phenotypes above 70% of the maximal value (that is,
the geometric mean of simulated median AbundancePCA and Bind-
ingPCA growth rates) resulted in the largest candidate combinatorial
library consisting of all combinations of 34 single aa mutations (Fig. 1
and Extended Data Fig. 1b-d).

Combinatorial library 2. We clustered the contact map (minimal
side-chain heavy-atom distance < 5 A) comprising all GRB2-SH3 sur-
faceresidues (RSASA > 0.25) existing in secondary structure elements
(Extended DataFig.4) and selected the following four physically proxi-
mal residues for saturation combinatorial mutagenesis: H26, M28,
A39 and T44 (see Extended Data Fig. 5).

Combinatorial library 3. This library was designed to include all
combinations of 15 single aa substitutions with mild effects (within
one-third of the AbundancePCA fitness interquartile range of the wild
type?) in close proximity in the primary sequence and reachable by
single-nucleotide substitutions while avoiding mutations in binding
interface residues (minimal side-chain heavy-atom distance to the
ligand < 5 A). We used a sliding window approach to determine the
number of candidate mutant residues in stretches of 20, 21 and 22
consecutive residues in GRB2-SH3 (Extended Data Fig. 4b). Only one
window with awidth of 22 aa (starting at residue position 10) includes
15 candidate positions (Extended Data Fig. 4b). The final library con-
sisted of all combinations of the following randomly selected candidate

mutations at these positions: DION, P11A, D14N, G15E, G18C, R20S,
R21Q, D23E, F241,H26L, V271, M28K, D29E, N30T and S31T (see Fig. 4).

Combinatorial library 4: SRC. This library was designed using the same
greedy algorithm from data and thermodynamic modelling results for
SRC*, including inferred single aa substitution free energy changes of
folding and activity for this protein. The design includes 15 single aa
substitutions reachable by single nt substitution in a 22 aa window,
located inthe N-lobe of the SRC kinase domain, avoiding mutationsin
theactivationloop, subsetting folding and activity ddGs to confident
energies (95% confidence interval <1kcal mol™) and associated with
singles observed in at least seven backgrounds. The final library con-
sisted of all combinations of the following randomly selected candidate
mutations at these positions: V329G, G344S, F349V, K343M, E331K,
V337A,E332A, M341K, S330N, 1336L, T338S, S345T, L346V, P333T and
Y340S (see Fig. 6).

Mutagenesis library construction and selection assays

Media and buffers used.

« LB:10 g I'bacto-tryptone, 5 g I 'yeast extract, 10 g " NaCl. Autoclaved
20 minat120 °C.

« YPDA: 20 g I glucose, 20 g I peptone, 10 g I yeast extract, 40 mg I
adenine sulphate. Autoclaved 20 minat 120 °C.

* SORB: 1M sorbitol, 100 mM LiOAc, 10 mM Tris pH 8.0, 1 mM EDTA.
Filter sterilized (0.2-mm nylon membrane, Thermo Scientific).

« Plate mixture: 40% PEG3350,100 mM LiOAc,10 mM Tris-HCIpH 8.0,
1mMEDTA pH 8.0. Filter sterilized.

« Recovery medium: YPD (20 g [ glucose, 20 g I peptone, 10 g I yeast
extract) + 0.5 M sorbitol. Filter sterilized.

» SC-URA: 6.7 g I yeast nitrogen base without aa, 20 g I glucose,
0.77 g1 complete supplement mixture drop-out without uracil.
Filter sterilized.

« SC-URA/MET/ADE: 6.7 g ' yeast nitrogen base without aa, 20 g I
glucose, 0.74 g I complete supplement mixture drop-out without
uracil, adenine and methionine. Filter sterilized.

« Competition medium: SC-URA/MET/ADE + 200 pg ml” methotrexate
(Merck Life Science), 2% DMSO.

» DNA extraction buffer: 2% Triton-X, 1% SDS, 100 mM NacCl, 10 mM
Tris-HCIpH 8.0,1mM EDTA pH 8.0.

Plasmid construction. For libraries 1-3: GRB2 mutagenesis plasmid
pGJJ286: wild-type GRB2-SH3 was digested from pGJJ046 (described
previously?) with the restriction enzymes Avrll and Hindlll and cloned
into the digested plasmid pGJJ191 (described previously**) using T4
ligase (New England Biolabs). AbundancePCA pGJJ046 and pGJJ045
plasmids and BindingPCA pGJJ034 and pGJJO01 plasmids were previ-
ously described®. For library 4: pTB043 plasmid containing full-length
SRCwas described previously™. pTB043 is based on the same backbone
asthe AbundancePCA plasmids. The difference s that full-length SRC
isfused to the DHFR[3] fragment at its N terminus and to the DHFR[1,2]
fragment atits C terminus, so DHFRis reconstituted following correct
folding of SRC, whereas unfolded SRC genotypesresultin degradation
of the fusion protein.

Libraries construction. Libraries 1-3: libraries were constructed
in two steps. First, an IDT primer containing the chosen combina-
tion of mutations was assembled by Gibson into the mutagenesis
plasmid pGJJ286. Libraries were then cloned into the yeast plasmids
AbundancePCA pGJJ045 and BindingPCA pGJJ001 by digestion/
ligation. For the first step, the libraries into the mutagenesis plasmid
were assembled by Gibson reaction (in-house preparation) of two
fragments. The vector fragment was obtained by polymerase chain
reaction (PCR) amplification of pGJJ286 with the oligos shown in
Supplementary Tables 1and 2, incubated with Dpnl to remove the
template and gel purified using QIAquick gel extraction kit (Qiagen).



The insert fragment was obtained by mixing equimolar amounts of
IDT mutation primer (Supplementary Tables 1and 2) and areverse
elongation primer (Supplementary Tables 1 and 2) and incubat-
ing for one cycle of annealing/extension with Q5 polymerase (New
England Biolabs). dsDNA product was then incubated with ExoSAP-IT
(Applied Biosystems) to remove the remaining ssDNA and purified
with MinElute columns (Qiagen).100 ng of vector inamolar ratio of
1:5 with the insert was incubated for 3 h at 50 °C with a Gibson mix
2x prepared in-house. The reaction was desalted by dialysis with
membrane filters (MF-Millipore) for 1 h and concentrated 4x using
aSpeedVac concentrator (Thermo Scientific). DNA was then trans-
formed into NEB 10-beta High Efficiency Electrocompetent £. coli.
Cells were allowed to recover in SOC medium (NEB 10-beta Stable
Outgrowth Medium) for 30 min and later transferred to LB medium
with spectinomycin overnight. A fraction of cells was also plated
into spectinomycin + LB + agar plates to estimate the total number
of transformants. 100 ml of each saturated E. coli culture was col-
lected the next morning to extract the mutagenesis plasmid library
using the QIAfilter Plasmid Midi Kit (QIAGEN). To obtain the final
libraries into the yeast plasmids, libraries in pGJ)J286 plasmid were
digested with Nhel and Hindlll, gel purified (MinElute Gel Extraction
Kit, QIAGEN) and cloned into pGJJ045 or pGJJ034 digested plasmids
with T4 ligase (New England Biolabs) by temperature-cycle ligation
following the manufacturer’sinstructions, 67 fmol of backbone and
200 fmol of insert in a 33.3-pl reaction. The ligation was desalted
by dialysis using membrane filters for 1 h, concentrated 4x using a
SpeedVac concentrator (Thermo Scientific) and transformed into
NEB 10-beta High Efficiency Electrocompetent E. coli cells.

Library 4: thislibrary was constructed in one step by Gibsonreaction
oftwo fragments. The vector fragment was obtained by amplification
of pTB043 plasmid with the oligos shown in the Supplementary Tables 1
and 2. The second fragment was obtained with ten cycles of PCR using
mutated IDT primer as template (Supplementary Tables 1and 2).

Methotrexate yeast selection assay. The yeast selection assay was
previously described®. The high-efficiency yeast transformation pro-
tocol described below (adjusted to a pre-culture of 200 ml of YPDA)
was scaled up or down, depending on the number of transformants for
eachlibrary (Supplementary Table2). Threeindependent pre-cultures
of BY4742 were grown in 20 ml of standard YPDA at 30 °C overnight.
The next morning, the cultures were diluted into 200 ml of pre-warmed
YPDA atan OD,m = 0.3 and incubated at 30 °C for 4 h. Cells were then
collected and centrifuged for 5 minat3,000g, washed with sterile water
and SORB medium, resuspended in 8.6 ml of SORB and incubated at
room temperature for 30 min. After incubation, 175 pul of 10 mg ml™
boiled salmon sperm DNA (Agilent Genomics) and 3.5 pg of plasmid
library were added to each tube of cells and mixed gently. 35 ml of
plate mixture was added to each tube to be incubated at room tem-
perature for a further 30 min. 3.5 ml of DMSO was added to each tube
and the cells were then heat shocked at 42 °C for 20 min (inverting
tubes from time to time to ensure homogenous heat transfer). After
heat shock, cells were centrifuged and resuspended in approximately
50 ml of recovery media and allowed to recover for 1 h at 30 °C. Cells
were then centrifuged, washed with SC-URA medium and resuspended
in 200 mI SC-URA. 10 pl was plated on SC-URA Petri dishes and incu-
bated for about 48 hat 30 °Cto measure the transformation efficiency.
The independent liquid cultures were grown at 30 °C for about 48 h
until saturation. Saturated cells were diluted again to OD¢ygp, = 0.1in
SC-URA/MET/ADE media and allowed to grow four generations until
ODyoonm =1.6 at 30 °C and 200 rpm. A fraction of the culture was then
used toinoculate 200 ml of competition media containing methotrex-
ate at a starting ODyoonm = 0.05 and the rest was collected and pellets
frozen and stored as input. Cells in competition media were allowed
to grow for 3-5 generations (Supplementary Table 2), collected and
frozen and stored as output.

DNA extractions and plasmid quantification. The DNA extraction
protocol used was previously described®. The protocol below is for
100 mlof collected culture at OD¢,, = 1.6. Protocols were scaled up or
down, depending on the library (Supplementary Table 2). Cell pellets
(one for each experiment input/output replicate) were resuspended
in1 ml of DNA extraction buffer, frozen by dry ice/ethanol bath and
incubated at 62 °Cin a water bath twice. Subsequently, 1 ml of phenol/
chloro/isoamyl in a ratio of 25:24:1 (equilibrated in 10 mM Tris-HCI,
1mMEDTA, pH 8.0) was added, together with 1 g of acid-washed glass
beads (Sigma Aldrich) and the samples were vortexed for 10 min. Sam-
pleswere centrifuged at room temperature for 30 minat4,000 rpmand
theaqueous phase was transferred into new tubes. The same step was
repeated twice. 0.1 mlof NaOAc 3 Mand 2.2 ml of pre-chilled absolute
ethanol were added to the aqueous phase. The samples were gently
mixed and incubated at -20 °C for atleast 30 min. After that, they were
centrifuged for 30 min at full speed at 4 °Cto precipitate the DNA. The
ethanolwas removed and the DNA pellet was allowed to dry overnight
atroomtemperature. DNA pellets were resuspendedin 0.6 mI TE1X and
treated with 5 pl of RNase A (10 mg ml, Thermo Scientific) for 30 min
at37 °C. Todesalt and concentrate the DNA solutions, the QIAEX 11 Gel
ExtractionKit was used (50 pl of QIAEX 11 beads, QIAGEN). The samples
were washed twice with PE buffer and eluted twice by 125 pl of 10 mM
Tris-HClIbuffer, pH 8.5.Finally, plasmid concentrationsin the total DNA
extract (which also contained yeast genomic DNA) were quantified by
quantitative PCR using the primer pair 0GJJ152-0GJJ153 that binds to
the oriregion of the plasmids.

Sequencing library preparation. Libraries 1-3: this was shown in
ref. 23. Briefly, the sequencing libraries were constructed in two con-
secutive PCRassays. The first PCR (PCR1) was designed to amplify the
mutated protein ofinterest and to increase the nucleotide complexity
ofthefirst sequenced bases by introducing frame-shift bases between
the adapters and the sequencing region of interest (Supplementary
Tables1and2). The second PCR (PCR2) was necessary to add the remain-
der of thellluminaadapter and demultiplexing indexes. PCR2 reactions
were runfor each sampleindependently using Hot Start High-Fidelity
DNA Polymerase. In this second PCR, the remaining parts of the Illu-
minaadapters wereadded to thelibrary amplicon. The forward primer
(5’ P5 Illumina adapter) was the same for all samples (GJJ_1J), whereas
thereverse primer (3’ P7 llluminaadapter) differed by the barcode index
(Supplementary Table 3) to be subsequently pooled and demultiplexed
after deep sequencing. Allsamples were pooled in an equimolar ratio
and gel purified using the QIAEX Il Gel Extraction Kit. The purified
amplicon library pools were subjected to lllumina 150-bp paired-end
NextSeq500 sequencing at the CRG Genomics Core Facility.

Library 4: the method for preparing the library for sequencing was
thesameasforthe otherlibrariesbutin the second PCR step, we used
abarcodedindexinthe forward primer as well (5’ P5SIllumina adapter).
The purified amplicon library pool was sequenced with an lllumina
paired-end NextSeq2000 machine this time.

Sequencing data processing

FastQfiles from paired-end sequencing of all AbundancePCA and Bind-
ingPCA experiments were processed with DiMSum v1.3 (ref. 52) using
default settings with smalladjustments (https://github.com/lehner-lab/
DiMSum). Supplementary Table 4 contains DiMSum fitness estimates
and associated errors for all experiments. Experimental design files
and command-line options required for running DiMSum on these
datasets are available on GitHub (https://github.com/lehner-lab/
archstabms). Variants with fewer than ten input read counts in any
replicate were discarded (‘fitnessMinInputCountAll’ option), that
is, only variants observed in all replicates above this threshold were
retained. For library 1, we also included fitness estimates that derived
from a subset of replicates whose input read counts exceeded this
threshold (‘fitnessMinInputCountAny’ option; see Fig.1).
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Forlibrary1, wealsoincluded awild-type-only sample for sequencing
using pGJJ046 as template to derive empirical estimates of sequencing
error rates. The FastQ file for this sample was processed identically to
those of the replicateinput/output samplesinthe first-pass analysis with
DiMSum with permissive base quality thresholds (‘vsearchMinQual=5
and ‘vsearchMaxee =1000’). Read counts for all variants were then
adjusted by subtracting the expected number of sequencing errors
derived from the wild-type-only sample and proportional to the total
sequencing library size of each sample. Finally, fitness estimates and
associated errors for library 1 were then obtained from the resulting
corrected variant counts with DiMSum (‘countPath’ option).

Thermodynamic modelling with MoCHI

We used MoCHI* (https://github.com/lehner-lab/MoCHI) to fit all
thermodynamic models to combinatorial DMS data using default set-
tings with small adjustments. The software is based on our previously
described genotype-phenotype modelling approach?, with extra func-
tionality andimprovements for ease of use and flexibility***3, Models fit
toshallow (double-mutant) libraries and used in the analyses described
inthis work (for example, combinatorial mutagenesis library designs)
were obtained using the original software implementation®.

We model protein folding as an equilibrium between two states:
unfolded (u) and folded (f), and protein binding as an equilibrium
between three states: unfolded and unbound (uu), folded and unbound
(fu) and folded and bound (fb). We assume that the probability of the
unfolded and bound state (ub) is negligible and free energy changes of
folding and binding are additive, that is, the total binding and folding
free energy changes of an arbitrary variant relative to the wild-type
sequenceissimply the sum over residue-specific energies correspond-
ing to all constituent single aa substitutions.

We configured MoCHI parameters to specify a neural network
architecture consisting of additive trait layers (free energies) for
each biophysical trait to be inferred (folding or folding and binding
for AbundancePCA or BindingPCA, respectively), as well asone linear
transformation layer per observed phenotype. The specified nonlinear
transformations ‘TwoStateFractionFolded’ and ‘ThreeStateFraction-
Bound’ derived from the Boltzmann distribution function relate ener-
gies to proportions of folded and bound molecules, respectively (see
Figs. 2a and 4e,f). The target (output) data to fit the neural network
comprise fitness scores for the wild-type and aa substitution variants of
allmutationorders. Theinclusion of both first-order and second-order
(pairwise energetic coupling) model coefficients in the models was
specified using the ‘max_interaction_order’ option.

Arandom30% of aa substitution variants of all mutation orders was
held out during model training, with 20% representing the validation
data and 10% representing the test data. Validation data were used
to evaluate training progress and optimize hyperparameters (batch
size). Optimal hyperparameters were defined as those resultingin the
smallest validation loss after 100 training epochs. Test data were used
to assess final model performance.

MoCHI optimizes the parameters 6 of the neural network using sto-
chastic gradient descent on aloss function £[8] based on a weighted
and regularized form of mean absolute error:

N-1
LIOI=YN ¥ 1y, ~J,| 0. +A, 6]
n=0

inwhichy,and o,are the observed fitness score and associated stand-
ard error, respectively, for variant n, y, is the predicted fitness score,
Nisthe batch size and A, is the L, regularization penalty. To penalize
very large free energy changes (typically associated with extreme fit-
ness scores), we set A, to 107¢, representing light regularization. The
mean absolute error is weighted by the inverse of the fitness error (g,,%)
to downweight the contribution of less confidently estimated fitness
scores to the loss. Furthermore, to capture the uncertainty in fitness

estimates, the training data were replaced with arandom sample from
the fitness error distribution of each variant. The validation and test
datawere left unaltered.

Models were trained with default settings, that s, for amaximum of
1,000 epochs using the Adam optimization algorithm with an initial
learning rate of 0.05 (except for library 1, for which we used an initial
learning rate of 0.005). MoCHIreduces the learning rate exponentially
(y=0.98)if the validation loss has notimproved inthe most recent ten
epochs compared with the preceding ten epochs. Also, MoCHI stops
model training early if the wild-type free energy terms over the most
recent ten epochs have stabilized (standard deviation <107%).

Free energies are calculated directly from model parameters
as follows: AG, = 6,RT and AG;= O0RT, in which T=303K and R=
0.001987 kcal K mol ™. We estimated the confidence intervals of
model-inferred free energies using aMonte Carlo simulation approach.
Thevariability ofinferred free energy changes was calculated between
ten separate models fit using data from: (1) independent random
training-validation-test splits and (2) independent random samples
of fitness estimates from their underlying error distributions. Con-
fident inferred free energy changes are defined as those with Monte
Carlo simulation-derived 95% confidence intervals < 1kcal mol™. Sup-
plementary Table 5 contains inferred binding and folding free energy
changes and energetic couplings from all second-order models.

Linear model to predict energetic coupling strength
Webuiltalinear model to predict energetic coupling strength (absolute
value of energetic coupling terms) from 12 features (see Fig. 3e), com-
prising five distance metrics for residue pairs or positions thereof in
the proteinstructure: backbone distance (linear 1D distance separating
residue pairs along the primary aa sequence), inter-residue distance
(minimalside-chain heavy-atomdistancein 3D space), number of core
residues (0,1 or both residues in the pair with RSASA < 0.25), number
of binding interface residues (0, 1 or both with minimal side-chain
heavy-atom distance to the ligand < 5 A), number of beta-sheet resi-
dues (0,1 or bothin beta strands) and seven features describing the
number of chemical bonds or interactions between the atoms of pairs
of residues as calculated using the GetContacts software tool (https://
getcontacts.github.io/): backbone to backbone hydrogenbonds, side
chain tobackbone hydrogenbonds, side chain to side chain hydrogen
bonds, pi-cation interactions, pi-stacking interactions, salt-bridge
interactions and van der Waals interactions. Before running GetCon-
tacts, we used PyMOL to fill missing hydrogens (‘h_add’ command),
FoldX* to restore the wild-type proline at position 54 that is mutated
in the reference crystal structure (PDB: 2VWF; ‘PositionScan’ com-
mand) and removed GAB2 ligand atoms. The training dataset com-
prised energetic couplings inferred from library 1 and the test set
comprisedindependently inferred energetic couplings fromlibrary 3
(see Fig. 3f).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

AlIDNA sequencing data have been deposited in the Gene Expression
Omnibus (GEO) with accession number GSE246322. Associated fit-
ness measurements and free energies are provided in Supplementary
Tables 4 and 5. Shallow double-mutant ddPCA DNA sequencing data
for GRB2-SH3 and PSD95-PDZ3 are available in the GEO with acces-
sion number GSE184042, and the processed data used in this study
can be found in Supplementary Tables 6 and 7 of the corresponding
publication (https://doi.org/10.1038/s41586-022-04586-4). Protein
structures are available from the Protein Data Bank for GRB2-SH3 (entry
ID: 2VWF) and SRC (entry ID: 2SRC).
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Code availability

Source code for fitting thermodynamic models (MoCHI) is available
at https://github.com/lehner-lab/MoCHI. Source code for all down-
streamanalyses, including DiMSum and MoCHI configuration files, and
to reproduce all figures described here is available at https://github.
com/lehner-lab/archstabms. An archive of this repository is also pub-
licly available on Zenodo at https://doi.org/10.5281/zenodo.11671164
(ref. 54).
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GAB2ligand (blue).See also Extended DataFig. 4. b, Scatter plots showing the
reproducibility of fitness estimates from triplicate AbundancePCA experiments.
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Extended DataFig. 6 | ddPCA datafrom combinatorial library 3 show that
abundant multi-mutants are binding-competent (have conserved fold).

a, Scatter plots showing the reproducibility of fitness estimates from triplicate
AbundancePCA experiments for combinatorial library 3 (see Fig. 4). Pearson’sr
indicated inred. Rep., biological replicate. b, Similar to panel abut showing
results fromtriplicate BindingPCA experiments (same as Fig. 4c). ¢, Histogram
showing the number of observed aa variants atincreasing Hamming distances

from the wild type for AbundancePCA, in which the xaxisis shared with panel d.

d, Violin plot showing distributions of AbundancePCA growthratesinferred

fromdeep sequencing data versus number of aasubstitutions. The percentage
offolded protein variants (predicted fraction folded molecules > 0.5) is shown
ateach Hamming distance from the wild type. e,f, Similar to panelscand d but
showing results for BindingPCA. The percentage of bound protein variants
(predicted fraction folded molecules > 0.5) isshown at each Hamming distance
fromthewild typein panelf.g, 2D density plots comparing abundance and
bindingfitness for increasing Hamming distances 1-14 from the wild type as
indicated.
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