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The genetic architecture of protein stability

Andre J. Faure1,5 ✉, Aina Martí-Aranda1,2, Cristina Hidalgo-Carcedo1, Antoni Beltran1, 
Jörn M. Schmiedel1,6 & Ben Lehner1,2,3,4 ✉

There are more ways to synthesize a 100-amino acid (aa) protein (20100) than there  
are atoms in the universe. Only a very small fraction of such a vast sequence space  
can ever be experimentally or computationally surveyed. Deep neural networks are 
increasingly being used to navigate high-dimensional sequence spaces1. However, 
these models are extremely complicated. Here, by experimentally sampling from 
sequence spaces larger than 1010, we show that the genetic architecture of at least 
some proteins is remarkably simple, allowing accurate genetic prediction in 
high-dimensional sequence spaces with fully interpretable energy models. These 
models capture the nonlinear relationships between free energies and phenotypes 
but otherwise consist of additive free energy changes with a small contribution from 
pairwise energetic couplings. These energetic couplings are sparse and associated 
with structural contacts and backbone proximity. Our results indicate that protein 
genetics is actually both rather simple and intelligible.

Massively parallel experiments allow the effects of single aa changes in 
proteins to be comprehensively quantified2,3. Similarly, experimental 
analysis of double mutants is feasible, at least for small proteins4,5. The 
analysis of higher-order mutants, however, quickly becomes infeasi-
ble owing to the combinatorial explosion of possible genotypes. For 
example, the number of ways to combine one mutation at 34 different 
sites in a protein is 234 ≈ 1.7 × 1010. Experimental exploration of such a 
large number of genotypes is extremely challenging6 given current 
technology, which—so far—has experimentally analysed sequence 
spaces up to about 106 (refs. 4,7).

Moreover, combining random mutations in even moderate num-
bers nearly always results in non-functional proteins8,9. For example, 
only 2–8% of 5 aa variants and <0.2% of 10 aa variants in a small protein 
domain are expected to be folded if energies combine additively (n = 2 
domains; Fig. 1a and Extended Data Fig. 1a). Sampling even tens of mil-
lions of random combinatorial genotypes in most proteins will there-
fore provide almost no information about genetic architecture—the set 
of rules that govern how mutations combine to determine phenotypes—
and will not be useful for training and evaluating predictive models 
beyond testing the trivial prediction that most genotypes are unfolded.

One strategy for exploring high-dimensional sequence spaces is to 
use deep learning. Deep neural networks with millions of fitted param-
eters have proved successful for diverse prediction and protein design 
tasks, including predicting the effects of combinatorial mutants10–21. 
However, these models have extremely complicated and difficult to 
interpret architectures.

It could be that protein genotype–phenotype landscapes are com-
plex, with many interactions between mutations required for accurate 
prediction. Alternatively, these landscapes might be much simpler, as 
suggested by energy measurements22 and inferences23,24 and the use 
of statistical models25,26. For us, a simple model is one with few param-
eters (so providing a large data compression) and parameters that are 
interpretable (so providing understanding).

Here we use an experimental design that enriches functional protein 
sequences to explore the genetic architecture of high-dimensional 
protein sequence spaces with more than 30 dimensions and more 
than 1010 genotypes. We find that protein architectures are remarkably 
simple, with additive energy models providing very good predictive 
performance. Quantifying the pairwise energetic couplings between 
mutations further increases predictive power, providing excellent 
performance in high-dimensional genotype spaces. These couplings are 
sparse and related to protein 3D structures. The genetic architecture of 
at least some proteins is therefore very simple, with additive energetics 
and a small contribution from sparse pairwise structural couplings.

Sampling a 1010 sequence space
We previously showed that the energetic effects of thousands of 
individual mutations on the stability of a protein can be measured 
en masse using pooled variant synthesis, selection and sequencing 
experiments23,24. In these experiments, the effect of each mutation on 
the cellular abundance of a protein is measured in the wild-type protein 
and also in a small number of variants with different fold stabilities. 
For example, using a shallow double-mutant library, we could infer 
the changes in Gibbs free energy of folding (ΔΔGf) for nearly all muta-
tions (1,056/1,064 = 99%) in the C-terminal SH3 domain of the adaptor 
protein GRB2 (ref. 23). Similar massively parallel measurements of 
single-mutant fold stabilities have now been made for other signalling 
domains, including the oncoprotein KRAS24, and, in vitro, for many, 
mostly prokaryotic, small domains7.

Combining random mutations in the GRB2-SH3 domain very quickly 
results in unfolded proteins, with about 98% and more than 99.9% of 
genotypes with five and ten mutations expected to be unfolded (based 
on additive energies; see Fig. 1a). This rapid decay of stability as muta-
tions are combined is consistent with experimental measurements 
of the activity of other proteins8,9. To experimentally explore folded 

https://doi.org/10.1038/s41586-024-07966-0

Received: 27 October 2023

Accepted: 20 August 2024

Published online: 25 September 2024

Open access

 Check for updates

1Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. 2Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK. 3Universitat 
Pompeu Fabra (UPF), Barcelona, Spain. 4Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. 5Present address: ALLOX, Barcelona, Spain. 6Present address: factorize.bio, 
Berlin, Germany. ✉e-mail: andre.faure@crg.eu; bl11@sanger.ac.uk

https://doi.org/10.1038/s41586-024-07966-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-07966-0&domain=pdf
mailto:andre.faure@crg.eu
mailto:bl11@sanger.ac.uk


996  |  Nature  |  Vol 634  |  24 October 2024

Article

genotypes in high-dimensional sequence spaces, we therefore used 
a heuristic technique to enrich for conserved fold and function in 
combinatorial variants. For each possible starting single aa substitu-
tion, we iteratively selected further substitutions—one per residue 
position—that simultaneously maximizes the resulting combinatorial 
mutant’s predicted abundance and binding to an interaction partner 
(see Methods). For GRB2-SH3, the largest set of mutations predicted 
to preserve both molecular phenotypes consisted of 34 single aa sub-
stitutions: 25 in surface residues (relative solvent-accessible surface 
area (RSASA) ≥ 0.25), three in the protein core (RSASA < 0.25) and six 
mutations in the GAB2 ligand binding interface (ligand distance < 5 Å; 
Fig. 1b, right).

We synthesized a library (‘library 1’) containing all combinations of 
these 34 mutants and quantified the cellular abundance of a sample 
of the 234 ≈ 1.7 × 1010 genotypes using a highly validated pooled selec-
tion, abundance protein fragment complementation assay (Abundan-
cePCA23,24,27). In total, we obtained triplicate abundance measurements 
for 129,320 variants, which is 0.0007% of the sequence space. The 
measurements were highly reproducible (Pearson’s r > 0.91; Fig. 1d 
and see Methods).

The symmetrical pod-like shape of the genotype frequency land-
scape, with the number of genotypes peaking at the intermediate 
Hamming distance of 17—that is, equidistant from the wild type 
(zeroth-order) and 34th-order mutant—is recapitulated in the experi-
mentally sampled library (Fig. 1e). Median abundance measurements 
decrease with increasing number of aa substitutions, but there are 
still thousands of genotypes with many mutations that, nevertheless, 
maintain abundance scores that are indistinguishable from that of the 

wild-type protein (n = 2,706 with more than 20 mutations, two-sided 
z-test nominal P > 0.05; Fig. 1f).

Genetic prediction with energy models
Quantifying the effects of a large number of multi-mutants allowed us 
to test the predictive performance of genotype–phenotype models 
in regions of the genetic landscape beyond the local neighbourhood 
used for training. For model building and evaluation, we restricted 
all analyses to variants with quantitative measurements in all three 
biological replicates (n = 71,233). Notably, our original energy model 
(Fig. 2a) trained on abundance and ligand binding selections (dou-
bledeepPCA, ddPCA) quantifying the effects of single and double 
aa mutants only23 explains as much as half of the fitness variance in 
combinatorial multi-mutants (R2 = 0.5; Fig. 2b, lower-right panel), for 
which most (94%) include at least 13 aa substitutions in the wild-type 
sequence. The only trained parameters in this simple model are Gibbs 
free energy terms for the wild type (ΔGf) and single aa substitutions 
(ΔΔGf) and a two-parameter (affine) transformation relating the frac-
tion of folded molecules to the AbundancePCA score (fitness; Fig. 2a). 
That such a large proportion of phenotypic variance is explained by 
an additive energy model (no specific epistasis/genetic interactions) 
trained on genotypes containing only one or two genetic changes sug-
gests that the energetic effects of mutations in proteins are largely 
context-independent.

On the other hand, a linear model—which implicitly assumes 
that mutation effects combine additively at the phenotypic level in 
multi-mutants—trained on the same ddPCA data performs much worse 
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Fig. 1 | An efficient strategy to explore high-dimensional protein sequence 
space and enrich multi-mutants for conserved fold and function. a, Violin 
plot showing distributions of simulated AbundancePCA growth rates 
(assuming additivity of individual inferred folding free energy changes23) 
versus number of random aa substitutions (n = 100,000). Violins are scaled  
to have the same maximum width. b, DMS data, energy model and algorithm 
used to select a set of single aa substitutions for combinatorial mutagenesis.  
A shallow double-mutant library of GRB2-SH3 protein variants was assayed  
by AbundancePCA (see panel c) and BindingPCA (see Fig. 4b; in combination 
referred to as ddPCA), followed by energy modelling to infer single aa 
substitution free energy changes of folding and binding23. We used this model 
together with a greedy algorithm to select a set of 34 single aa substitutions 
that, when combined, would simultaneously maximize both the predicted 
AbundancePCA and BindingPCA growth rates, that is, preserving both fold  

and function. 3D structure of GRB2-SH3 (PDB: 2VWF) indicating the 34 
combinatorially mutated residues (orange) and GAB2 ligand (blue) is shown  
on the right. c, Overview of AbundancePCA on the protein of interest 
(GRB2-SH3)23. yes, yeast growth; no, yeast growth defect; DHF, dihydrofolate; 
THF, tetrahydrofolate. d, Scatter plots showing the reproducibility of fitness 
estimates from triplicate AbundancePCA experiments. Pearson’s r is indicated 
in red. Rep., biological replicate. e, Histogram showing the number of observed 
aa variants at increasing Hamming distances from the wild type (denoted  
by WT), for which the x axis is shared with panel f. f, Violin plot showing 
distributions of AbundancePCA growth rates inferred from deep sequencing 
data versus number of aa substitutions. In panels a and f, the percentage of 
folded protein variants (predicted fraction folded molecules > 0.5) is shown at 
each Hamming distance from the wild type.
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(R2 = 0.32). The linear model also systematically underestimates the 
observed phenotypic effects of mutant combinations (Fig. 2b, lower-left 
panel), a consequence of not accounting for the scaling of mutational 
effects owing to protein thermodynamics (global epistasis28–30).  
For example, introducing a destabilizing mutation in an already- 
unfolded protein has no effect on the fraction of folded molecules 
(lower plateau of model in Fig. 2c), which is not captured by a linear 
model. These results demonstrate a key advantage of fitting energy 
models: accounting for global epistasis improves the generalizability 
of predictions beyond the local neighbourhood of the training data.

Fitting linear and energy models to the combinatorial data improves 
the variance explained by 30% and 13%, respectively (Fig. 2b, upper 
panels), probably because of the greater amount of training data and 
(relevant) genetic backgrounds in which the effects of each single aa 
are quantified: about 50% of all variants in the library (n ≈ 30,000) 
include—and therefore report on the effects of—any given one of the 
34 single aa substitutions, that is, almost three orders of magnitude 
more measurements per single mutant compared with the relatively 
shallow (ddPCA) library. Although the fraction of variance explained by 
first-order linear and energy models is comparable (R2 = 0.62 and 0.63; 
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Fig. 2 | Thermodynamic modelling of protein abundance to infer folding 
free energy changes and energetic couplings. a, Two-state equilibrium and 
corresponding neural network architecture used to fit thermodynamic model 
to AbundancePCA data (bottom, target and output data), thereby inferring the 
causal changes in free energy of folding associated with single aa substitutions 
(top, input values). ΔGf, Gibbs free energy of folding; Kf, folding equilibrium 
constant; pf, fraction folded; g, nonlinear function of ΔGf; R, gas constant;  
T, temperature in kelvin. b, Performance of first-order linear models (left 
column) and first-order energy models (right column) evaluated on GRB2-SH3 
combinatorial AbundancePCA data. The top row indicates the results of 
models that were trained on a subset of the same combinatorial DMS data.  
The bottom row indicates the results of models that were trained on GRB2-SH3 

ddPCA data consisting of single and double aa substitutions only23. R2 is the 
proportion of variance explained. c, Nonlinear relationship (global epistasis) 
between observed AbundancePCA fitness and changes in free energy of 
folding. Thermodynamic model fit is shown in red. d, Comparisons of the 
model-inferred free energy changes to previously reported estimates using 
GRB2-SH3 ddPCA data23. Pearson’s r is shown. e, Performance of energy model 
that includes all first-order and second-order genetic interaction (energetic 
coupling) terms/coefficients. See Extended Data Fig. 2 for plots of the residuals 
versus fitted values for linear and energy models of the first and second order. 
f, Distributions of folding free energy changes (ΔΔG, grey) and pairwise energetic 
couplings (ΔΔΔG, red). WT, wild type.
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Fig. 2b, upper panels), the biased regression residuals in the case of the 
linear model show that this model is less appropriate (Extended Data 
Fig. 2a). The energy model provides an excellent fit to the data, faithfully 
capturing the global nonlinear relationship (global epistasis) between 
observed AbundancePCA fitness and inferred changes in free energy 
of folding (ΔGf) (Fig. 2c). There is also very good agreement between 
free energy changes (model parameters) inferred from combinatorial 
and ddPCA datasets (Pearson’s r = 0.87), but the former tend to be more 
extreme, once again demonstrating the use of assaying the effects of 
mutations in greater numbers of genetic backgrounds, thereby allow-
ing their energetic effects to be more accurately estimated (Fig. 2d).

Couplings improve genetic prediction
We next tested whether quantifying non-additive energetic couplings 
between mutations improved predictive performance. In our combi-
natorial dataset, each pair of mutations is present in a median of 17,923 
genotypes, allowing robust measurement of second-order genetic 
interaction terms (energetic couplings, ΔΔΔGf (refs. 31,32)). Including 
all second-order energetic couplings improves model performance 
by an extra 9% (R2 = 0.72), consistent with expectations that pairwise 
effects are an important source of specific epistasis in proteins32 
(Fig. 2e). Whereas first-order terms are stronger in magnitude and 
biased towards destabilizing effects, second-order energetic couplings 
tend to have milder effects centred on zero (Fig. 2f).

Physical contacts and backbone proximity
Measured at the phenotypic level, genetic interactions in proteins 
have previously been shown to reflect—at least in part—protein struc-
tures4,33–36. Combining combinatorial deep mutational scanning with 
thermodynamic modelling allowed us to infer a total of 561 pairwise 
energetic couplings, providing an opportunity to interrogate their 
mechanistic origins and relationship with protein structure. Compar-
ing coupling energy magnitude (absolute folding ΔΔΔGf) with the 3D 
distance separating mutation pairs in the folded structure (minimal 
side-chain heavy-atom distance) reveals an L-shaped distribution 
with the strongest energetic couplings occurring between structur-
ally proximal residues (Fig. 3a; see also Extended Data Fig. 3a). The top 
five energetic couplings all involve pairs of residues within 5.5 Å and 
15 of the top 20 (75%) energetic couplings involve pairs separated by 
less than 8 Å. Although there is a weak anticorrelation between contact 
distance and coupling energy strength (Spearman’s ρ = −0.12; Fig. 3a), 
this trend breaks down for pairs that are not proximal in the primary 
sequence (Spearman’s ρ = −0.02, backbone distance >5 residues).

On the other hand, comparing coupling strength with separation 
distance between residues in the primary sequence (along the peptide 
backbone) reveals a marked inverse relationship that extends over 
quite large distances (Spearman’s ρ = −0.28) and is robust to the exclu-
sion of direct physical contacts between residues (<5 Å, Spearman’s 
ρ = −0.27; Fig. 3b and see also Extended Data Fig. 3b). The interaction 
matrix in Fig. 3c summarizes these observations: the strongest ener-
getic couplings coincide with direct physical contacts (black circles; see 
also Fig. 3d) and energetic coupling strength decays along the protein 
backbone (Fig. 3c, near-diagonal versus far off-diagonal cells). The 
matrix also highlights physical interactions between secondary struc-
tural elements as hotspots for strong energetic couplings.

To disentangle the relative importance of these different potential 
structural determinants of energetic coupling strength, we gathered a 
collection of quantitative features describing both the number and the 
type of chemical bonds or interactions existing between the atoms of 
pairs of residues, as well as their relative positions in the folded struc-
ture (Fig. 3e). A linear regression model based on these 12 structural 
features is predictive of coupling strength (Fig. 3f; see Methods). Nota-
bly, the same model performs similarly well when evaluated on a held 

out, non-overlapping set of inferred energetic couplings derived from 
an independent combinatorial mutagenesis experiment (‘library 3’, 
which is described below; Pearson’s r = 0.46, R2 = 0.21). This suggests 
that, despite its simplicity, the integrated model captures structural 
determinants of energetic coupling strength and that energetic cou-
plings are caused by structural interactions.

Couplings decay along the peptide chain
To directly test the hypothesis that inter-residue backbone distance 
is associated with energetic coupling strength independently of 3D 
contact distance, we designed a combinatorial saturation mutagenesis 
library involving all possible mutations at four physically proximal 
surface residues in the same secondary structure element (‘library 2’;  
Extended Data Figs. 4a and 5a and see Methods). We reasoned that 
energetic couplings owing to the propagation of perturbations along 
the protein backbone should also be apparent among solvent-facing 
residues. In total, we obtained abundance measurements for 138,157 
variants (86% of the sequence landscape) and the measurements 
were highly reproducible (Pearson’s r > 0.89; Extended Data Fig. 5b 
and see Methods).

The single-mutant effects at these four residues have a larger range 
than those of the combinatorial library that was designed to conserve 
fold and function (Extended Data Fig. 5c,d). Therefore, when com-
bined in double, triple and quadruple mutants—the most numerous 
class—the result is a larger fraction of unfolded variants (Extended 
Data Fig. 5c–e). A two-state thermodynamic model that includes all 
first-order and second-order coefficients provides an excellent fit to 
the data (R2 = 0.93; Extended Data Fig. 5e–g) and inferred folding free 
energy changes (first-order terms) are highly correlated (Pearson’s 
r = 0.94) with those obtained previously using an independent shal-
low double-mutant library (Extended Data Fig. 5h). Although the four 
mutated residues are physically proximal in 3D space, with all except 
one pair (H26:T44) separated by less than 5 Å (3.8–8.4 Å; Extended Data 
Fig. 5i), their relative positions in the primary peptide sequence cover a 
large range (2–18 residues; Extended Data Fig. 5j). There is no relation-
ship between contact distance and folding coupling strength for these 
contacting residues (Spearman’s ρ = −0.05; Extended Data Fig. 5i), 
whereas the relationship for backbone distance is significant (Spear-
man’s ρ = −0.41; Extended Data Fig. 5j). Indeed, backbone distance is 
very well correlated with coupling strength when averaging energy 
terms per residue pair (Spearman’s ρ = −0.94; Extended Data Fig. 5j). 
The relative position of aa residues in the primary protein sequence 
is therefore associated with coupling strength independently of their 
proximity in 3D space.

Higher-order mutants fold and function
Our experiments identified a large number of GRB2-SH3 genotypes 
containing many mutations that have high cellular abundance (for 
example, 25,564 genotypes containing more than five mutations; 
Fig. 1f). To further confirm that abundant multi-mutants are correctly 
folded and functional, we performed a third combinatorial mutagenesis 
experiment in which we also tested the ability of GRB2-SH3 variants 
to bind to a peptide ligand using a protein–protein interaction assay 
(BindingPCA23,24,37; Fig. 4a). Recognition of the peptide ligand can only 
occur if the protein adopts its native conformation38 (Fig. 1b,c). We 
designed a library (library 3) consisting of all combinations of 15 single 
aa substitutions occurring within a 22-aa residue window, avoiding 
mutations in our original library in binding interface residues (mini-
mal side-chain heavy-atom distance to the ligand < 5 Å; Extended Data 
Fig. 4b and also see Methods). The library contains 215 (=32,768) variants 
and shares six single aa substitutions with our original 234 library. In 
total, we obtained binding measurements for 25,967 variants and abun-
dance measurements for 31,936 variants (79% and 97% of the sequence 
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landscape, respectively). The measurements were highly reproducible 
(Pearson’s r > 0.85 and 0.94 for binding and abundance, respectively; 
Fig. 4c, Extended Data Fig. 6a–f and also see Methods).

Plotting the changes in binding against the changes in abundance 
for third-order, sixth-order and ninth-order variants shows that most 
mutations altering binding also alter the concentration of the isolated 
domain, consistent with previous results and the expectation that 
changes in protein stability are a main cause of mutational effects on 
binding23,24,39 (Fig. 4d and Extended Data Fig. 6g). Notably, however, 
most higher-order mutants that have high abundance scores also bind 
the GAB2 ligand, indicating that they are correctly folded (Fig. 4d and 
Extended Data Fig. 6g). For example, 4% (204/4,805) of variants con-
taining nine mutations have abundance indistinguishable from that 
of the wild-type protein (nominal P > 0.05) and 96% (177/184) of these 
also bind the ligand (predicted fraction bound molecules > 0.5). Most 
of the abundant higher-order GRB2-SH3 mutants are thus correctly  
folded.

 
Multi-phenotype genetic prediction
The large number of genetic backgrounds in which both single and dou-
ble aa mutant effects were measured for these two related molecular 
phenotypes is a rich source of data for thermodynamic modelling. First, 
considering only the abundance phenotype, we observe that an additive 
two-state thermodynamic model—with unfolded and folded energetic 
states—outperforms a linear model when evaluated on held-out vari-
ants (R2 = 0.93 versus 0.87; Extended Data Fig. 7a,b). To attain similar 
predictive performance as the first-order energy model requires inclu-
sion of both second-order and third-order genetic interaction terms 
in the linear model (Extended Data Fig. 7c,d), representing a massive 
increase in model complexity (715 versus 16 parameters; that is, greater 
than 40-fold more). This greater complexity of models that use many 
specific pairwise and higher-order genetic interaction terms to capture 
global nonlinearities in data (global epistasis) has been referred to as 
‘phantom epistasis’40.
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Next, extending previous work23, we used a neural network imple-
mentation of a three-state equilibrium model41—with unfolded, folded 
and bound energetic states (Fig. 4e)—to simultaneously infer the under-
lying causal free energy changes of both folding and binding (ΔΔGf 

and ΔΔGb), as well as folding and binding energetic couplings (ΔΔΔGf 
and ΔΔΔGb) (Fig. 4f). The model fits the data extremely well (Fig. 4g), 
explaining virtually all of the fitness variance (Fig. 4h), and the inferred 
folding and binding free energy changes (first-order terms) are well 
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correlated (Pearsons’s r = 0.9 and 0.7) with those obtained previously 
using an independent shallow double-mutant library23 (Fig. 4i, double 
mutants). This is the first time, to our knowledge, that a large number 
of folding (ΔΔΔGf) and binding (ΔΔΔGb) energetic coupling terms have 
been measured for any protein.

Allostery in ligand-proximal residues
We observe that mutational effects on folding energy tend to be 
larger than those on binding energy (Fig. 5a), recapitulating previous 
results23,24. Energetic couplings show the same pattern, with folding 
coupling energies tending to be larger in magnitude than binding 
energetic couplings (area under the curve = 0.7, n = 210, P = 3.6 × 10−7, 
two-sided Mann–Whitney U test, |ΔΔΔGf| mean = 0.087, s.d. = 0.084, 
|ΔΔΔGb| mean = 0.038, s.d. = 0.035; Fig. 5b). As none of the mutations 
in this library occur in the binding interface, any notable effects on 
binding affinity must be through an allosteric mechanism23,24. Plotting 
absolute free energy changes against the 3D distance to the ligand 
shows a negative correlation as previously reported23,24 (Spearman’s 
ρ = −0.46), with mutations in second-shell residues and residues adja-
cent (in the sequence) to binding interface residues highly enriched for 
strong allosteric effects on binding affinity (Fig. 5a). Consistent with 
previous observations23,24, mutations at distal glycine residues have 
among the strongest effects on binding affinity.

Whereas the mutations with the strongest folding coupling energies 
are near-diagonal (closely spaced in the primary sequence), particularly 

between pairs of residues in the beta strand, the strongest binding 
coupling in the dataset is an interaction between residues P11 and G18 
(Fig. 5b). These two residues are proximal in 3D space (<8 Å) and consti-
tute one of only two long-range physical contacts between the mutated 
residues (backbone distance > 5 residues; Fig. 5b), suggesting that 
allosteric energetic couplings are also driven by structural contacts.

SRC kinase combinatorial mutagenesis
Finally, to further test the generality of our conclusions, we used the 
same greedy approach to design a library containing 215 (=32,768) vari-
ants in an unrelated and larger protein, the human proto-oncogene 
tyrosine-protein kinase Src (SRC). We obtained triplicate abundance 
measurements for 31,557 variants and the measurements were highly 
reproducible (r > 0.86; Fig. 6b–d). As for our three GRB2-SH3 combi-
natorial libraries, a second-order energy model was highly predictive 
of abundance changes (R2 = 0.87; Fig. 6e,f), with energetic couplings 
predicted by both 3D spatial proximity (Fig. 6g) and backbone proxim-
ity (Fig. 6h). The consistency of these results in an unrelated full-length 
protein further supports their generality.

Discussion
By experimentally quantifying protein fold stability in samples from 
sequence spaces greater than 1010 in size, we have shown here that 
the fundamental genetic architecture of at least some proteins is 
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remarkably simple. Thermodynamic models in which the energetic 
effects of mutations are summed provide very good prediction of fold 
stability when tens of mutations are combined. Quantifying the pair-
wise energetic couplings between mutations further increases predic-
tive power, providing very good performance in high-dimensional 
genotype spaces. The large number of energetic couplings quanti-
fied here reveals important principles about their origins: couplings 
are strongest between structurally contacting residues and coupling 
strength also decays along the protein backbone.

The energy models used here are very sparse and represent very large 
data compressions: up to about 108 (234/34) for the additive models 
and up to about 107 (234/596) for the models with energetic couplings. 
Analyses of previously published combinatorial protein mutagen-
esis datasets8,41–43, mutagenesis of a protein interaction interface44, 
hydrophobic protein cores45, an intrinsically disordered region46, a 
tRNA43,47 and an alternatively spliced exon40 suggest that this simplicity 
of genotype–phenotype landscapes is widely observed and probably a 
general principle of macromolecules and their molecular interactions.

Energy models are grounded in our understanding of protein ther-
modynamics and their simplicity and interpretability contrasts with 
the complexity and lack of mechanistic insight provided by deep neural 
networks. Predictive energy models are likely to have many applica-
tions, including for clinical variant effect interpretation48, pathogen and 
pandemic forecasting49 and protein engineering for biotechnology1. 
An important challenge moving forward is how to efficiently quantify 
the free energy changes and energetic couplings for all mutations in 
proteins of interest. Quantifying mutational effects across diverse 
genetic backgrounds and homologous sequences may be an efficient 
way to achieve this50.

Our data do not rule out the importance of higher-order genetic 
interactions for protein stability. Rather, they show that, when 
global nonlinearities owing to cooperative protein folding are prop-
erly accounted for and measurements are averaged across genetic 
backgrounds, first-order and pairwise energetic couplings provide 
sufficient information for many prediction tasks. An important ques-
tion to address in future work will be the extent to which higher-order 
energetic interactions become important in even larger sequence 
spaces, including in the ‘twilight zone’ of structurally homologous 
proteins with very low sequence identity. Indeed, the superior 
performance of our models in 215-sized compared with in 234-sized 
sequence spaces hints that higher-order interactions become increas-
ingly important as sequences diverge. Simple experimental designs 
should be able to definitively address this question for a diversity of  
protein folds.
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Methods

Combinatorial mutagenesis library designs
Combinatorial library 1. Library 1 was designed using a computation-
ally efficient greedy strategy to search for the largest number of single 
aa substitutions that, when combined, preserve both fold and function 
even in the highest-order mutants (Fig. 1b). The algorithm used previ-
ously published ddPCA data and thermodynamic modelling results 
for GRB2-SH3, including inferred single aa substitution free energy 
changes of folding and binding for this protein23. We showed previ-
ously that this model—which assumes that individual inferred folding 
and binding free energy changes (ΔΔGf and ΔΔGb) combine additively 
in multi-mutants—accurately predicts the effects of double aa sub-
stitutions23. Therefore, this same additive model was used to make 
predictions about the energetic and phenotypic effects of higher-order 
mutants explored in the greedy search.

First, the set of candidate single aa mutations was restricted to 
those with confident free energy changes, defined as those with 95% 
confidence intervals < 1 kcal mol−1 and whose effects were measured 
in at least 20 genetic backgrounds (that is, double aa mutations). 
Candidate mutations were further restricted to those reachable by 
single-nucleotide substitutions in the wild-type sequence to simplify 
synthesis of the resulting combinatorial mutagenesis library. The 
algorithm begins from an arbitrary starting mutation and iteratively 
selects further mutations at other residue positions until all residues 
in the protein have been mutated. The heuristic works by selecting 
further mutations at each step that maximize the fold and function 
of the current highest-order mutant combination, that is, the geo-
metric mean of model-predicted AbundancePCA and BindingPCA 
growth rates. This procedure is then repeated for all possible starting  
mutations.

To visualize and compare the resulting solutions, we also simulated 
the median AbundancePCA and BindingPCA growth rates of all can-
didate combinatorial libraries, calculated using a random sample of 
10,000 variants. Although the algorithm is not guaranteed to produce 
the optimal solution at each Hamming distance from the wild-type 
sequence, the greedy approach nevertheless achieves solutions in 
which both phenotypes are predicted to be preserved in variants with 
more than 30 mutations (Extended Data Fig. 1b), beyond which one or 
both phenotypes are lost. Defining viable libraries as those preserving 
both molecular phenotypes above 70% of the maximal value (that is, 
the geometric mean of simulated median AbundancePCA and Bind-
ingPCA growth rates) resulted in the largest candidate combinatorial 
library consisting of all combinations of 34 single aa mutations (Fig. 1 
and Extended Data Fig. 1b–d).

Combinatorial library 2. We clustered the contact map (minimal 
side-chain heavy-atom distance < 5 Å) comprising all GRB2-SH3 sur-
face residues (RSASA ≥ 0.25) existing in secondary structure elements 
(Extended Data Fig. 4) and selected the following four physically proxi-
mal residues for saturation combinatorial mutagenesis: H26, M28, 
A39 and T44 (see Extended Data Fig. 5).

Combinatorial library 3. This library was designed to include all 
combinations of 15 single aa substitutions with mild effects (within 
one-third of the AbundancePCA fitness interquartile range of the wild 
type23) in close proximity in the primary sequence and reachable by 
single-nucleotide substitutions while avoiding mutations in binding 
interface residues (minimal side-chain heavy-atom distance to the 
ligand < 5 Å). We used a sliding window approach to determine the 
number of candidate mutant residues in stretches of 20, 21 and 22 
consecutive residues in GRB2-SH3 (Extended Data Fig. 4b). Only one 
window with a width of 22 aa (starting at residue position 10) includes 
15 candidate positions (Extended Data Fig. 4b). The final library con-
sisted of all combinations of the following randomly selected candidate 

mutations at these positions: D10N, P11A, D14N, G15E, G18C, R20S, 
R21Q, D23E, F24I, H26L, V27I, M28K, D29E, N30T and S31T (see Fig. 4).

Combinatorial library 4: SRC. This library was designed using the same 
greedy algorithm from data and thermodynamic modelling results for 
SRC51, including inferred single aa substitution free energy changes of 
folding and activity for this protein. The design includes 15 single aa 
substitutions reachable by single nt substitution in a 22 aa window, 
located in the N-lobe of the SRC kinase domain, avoiding mutations in 
the activation loop, subsetting folding and activity ddGs to confident 
energies (95% confidence interval < 1 kcal mol−1) and associated with 
singles observed in at least seven backgrounds. The final library con-
sisted of all combinations of the following randomly selected candidate 
mutations at these positions: V329G, G344S, F349V, K343M, E331K, 
V337A, E332A, M341K, S330N, I336L, T338S, S345T, L346V, P333T and 
Y340S (see Fig. 6).

Mutagenesis library construction and selection assays
Media and buffers used. 
•	 LB: 10 g l−1 bacto-tryptone, 5 g l−1 yeast extract, 10 g l−1 NaCl. Autoclaved 

20 min at 120 °C.
•	 YPDA: 20 g l−1 glucose, 20 g l−1 peptone, 10 g l−1 yeast extract, 40 mg l−1 

adenine sulphate. Autoclaved 20 min at 120 °C.
•	 SORB: 1 M sorbitol, 100 mM LiOAc, 10 mM Tris pH 8.0, 1 mM EDTA. 

Filter sterilized (0.2-mm nylon membrane, Thermo Scientific).
•	 Plate mixture: 40% PEG3350, 100 mM LiOAc, 10 mM Tris-HCl pH 8.0, 

1 mM EDTA pH 8.0. Filter sterilized.
•	 Recovery medium: YPD (20 g l−1 glucose, 20 g l−1 peptone, 10 g l−1 yeast 

extract) + 0.5 M sorbitol. Filter sterilized.
•	 SC-URA: 6.7 g l−1 yeast nitrogen base without aa, 20 g l−1 glucose, 

0.77 g l−1 complete supplement mixture drop-out without uracil. 
Filter sterilized.

•	 SC-URA/MET/ADE: 6.7 g l−1 yeast nitrogen base without aa, 20 g l−1 
glucose, 0.74 g l−1 complete supplement mixture drop-out without 
uracil, adenine and methionine. Filter sterilized.

•	 Competition medium: SC-URA/MET/ADE + 200 μg ml−1 methotrexate 
(Merck Life Science), 2% DMSO.

•	 DNA extraction buffer: 2% Triton-X, 1% SDS, 100 mM NaCl, 10 mM 
Tris-HCl pH 8.0, 1 mM EDTA pH 8.0.

Plasmid construction. For libraries 1–3: GRB2 mutagenesis plasmid 
pGJJ286: wild-type GRB2-SH3 was digested from pGJJ046 (described 
previously23) with the restriction enzymes AvrII and HindIII and cloned 
into the digested plasmid pGJJ191 (described previously24) using T4 
ligase (New England Biolabs). AbundancePCA pGJJ046 and pGJJ045 
plasmids and BindingPCA pGJJ034 and pGJJ001 plasmids were previ-
ously described23. For library 4: pTB043 plasmid containing full-length 
SRC was described previously51. pTB043 is based on the same backbone 
as the AbundancePCA plasmids. The difference is that full-length SRC 
is fused to the DHFR[3] fragment at its N terminus and to the DHFR[1,2] 
fragment at its C terminus, so DHFR is reconstituted following correct 
folding of SRC, whereas unfolded SRC genotypes result in degradation 
of the fusion protein.

Libraries construction. Libraries 1–3: libraries were constructed 
in two steps. First, an IDT primer containing the chosen combina-
tion of mutations was assembled by Gibson into the mutagenesis 
plasmid pGJJ286. Libraries were then cloned into the yeast plasmids 
AbundancePCA pGJJ045 and BindingPCA pGJJ001 by digestion/ 
ligation. For the first step, the libraries into the mutagenesis plasmid 
were assembled by Gibson reaction (in-house preparation) of two 
fragments. The vector fragment was obtained by polymerase chain 
reaction (PCR) amplification of pGJJ286 with the oligos shown in 
Supplementary Tables 1 and 2, incubated with DpnI to remove the 
template and gel purified using QIAquick gel extraction kit (Qiagen).  



The insert fragment was obtained by mixing equimolar amounts of 
IDT mutation primer (Supplementary Tables 1 and 2) and a reverse 
elongation primer (Supplementary Tables 1 and 2) and incubat-
ing for one cycle of annealing/extension with Q5 polymerase (New  
England Biolabs). dsDNA product was then incubated with ExoSAP-IT 
(Applied Biosystems) to remove the remaining ssDNA and purified 
with MinElute columns (Qiagen). 100 ng of vector in a molar ratio of 
1:5 with the insert was incubated for 3 h at 50 °C with a Gibson mix 
2× prepared in-house. The reaction was desalted by dialysis with 
membrane filters (MF-Millipore) for 1 h and concentrated 4× using 
a SpeedVac concentrator (Thermo Scientific). DNA was then trans-
formed into NEB 10-beta High Efficiency Electrocompetent E. coli. 
Cells were allowed to recover in SOC medium (NEB 10-beta Stable 
Outgrowth Medium) for 30 min and later transferred to LB medium 
with spectinomycin overnight. A fraction of cells was also plated 
into spectinomycin + LB + agar plates to estimate the total number 
of transformants. 100 ml of each saturated E. coli culture was col-
lected the next morning to extract the mutagenesis plasmid library 
using the QIAfilter Plasmid Midi Kit (QIAGEN). To obtain the final 
libraries into the yeast plasmids, libraries in pGJJ286 plasmid were 
digested with NheI and HindIII, gel purified (MinElute Gel Extraction 
Kit, QIAGEN) and cloned into pGJJ045 or pGJJ034 digested plasmids 
with T4 ligase (New England Biolabs) by temperature-cycle ligation 
following the manufacturer’s instructions, 67 fmol of backbone and 
200 fmol of insert in a 33.3-μl reaction. The ligation was desalted 
by dialysis using membrane filters for 1 h, concentrated 4× using a 
SpeedVac concentrator (Thermo Scientific) and transformed into  
NEB 10-beta High Efficiency Electrocompetent E. coli cells.

Library 4: this library was constructed in one step by Gibson reaction 
of two fragments. The vector fragment was obtained by amplification 
of pTB043 plasmid with the oligos shown in the Supplementary Tables 1 
and 2. The second fragment was obtained with ten cycles of PCR using 
mutated IDT primer as template (Supplementary Tables 1 and 2).

Methotrexate yeast selection assay. The yeast selection assay was 
previously described23. The high-efficiency yeast transformation pro-
tocol described below (adjusted to a pre-culture of 200 ml of YPDA) 
was scaled up or down, depending on the number of transformants for 
each library (Supplementary Table 2). Three independent pre-cultures 
of BY4742 were grown in 20 ml of standard YPDA at 30 °C overnight. 
The next morning, the cultures were diluted into 200 ml of pre-warmed 
YPDA at an OD600nm = 0.3 and incubated at 30 °C for 4 h. Cells were then 
collected and centrifuged for 5 min at 3,000g, washed with sterile water 
and SORB medium, resuspended in 8.6 ml of SORB and incubated at 
room temperature for 30 min. After incubation, 175 μl of 10 mg ml−1 
boiled salmon sperm DNA (Agilent Genomics) and 3.5 μg of plasmid 
library were added to each tube of cells and mixed gently. 35 ml of 
plate mixture was added to each tube to be incubated at room tem-
perature for a further 30 min. 3.5 ml of DMSO was added to each tube 
and the cells were then heat shocked at 42 °C for 20 min (inverting 
tubes from time to time to ensure homogenous heat transfer). After 
heat shock, cells were centrifuged and resuspended in approximately 
50 ml of recovery media and allowed to recover for 1 h at 30 °C. Cells 
were then centrifuged, washed with SC-URA medium and resuspended 
in 200 ml SC-URA. 10 μl was plated on SC-URA Petri dishes and incu-
bated for about 48 h at 30 °C to measure the transformation efficiency. 
The independent liquid cultures were grown at 30 °C for about 48 h  
until saturation. Saturated cells were diluted again to OD600nm = 0.1 in 
SC-URA/MET/ADE media and allowed to grow four generations until 
OD600nm = 1.6 at 30 °C and 200 rpm. A fraction of the culture was then 
used to inoculate 200 ml of competition media containing methotrex-
ate at a starting OD600nm = 0.05 and the rest was collected and pellets 
frozen and stored as input. Cells in competition media were allowed 
to grow for 3–5 generations (Supplementary Table 2), collected and 
frozen and stored as output.

DNA extractions and plasmid quantification. The DNA extraction 
protocol used was previously described23. The protocol below is for 
100 ml of collected culture at OD600nm ≈ 1.6. Protocols were scaled up or 
down, depending on the library (Supplementary Table 2). Cell pellets 
(one for each experiment input/output replicate) were resuspended 
in 1 ml of DNA extraction buffer, frozen by dry ice/ethanol bath and 
incubated at 62 °C in a water bath twice. Subsequently, 1 ml of phenol/
chloro/isoamyl in a ratio of 25:24:1 (equilibrated in 10 mM Tris-HCl, 
1 mM EDTA, pH 8.0) was added, together with 1 g of acid-washed glass 
beads (Sigma Aldrich) and the samples were vortexed for 10 min. Sam-
ples were centrifuged at room temperature for 30 min at 4,000 rpm and 
the aqueous phase was transferred into new tubes. The same step was 
repeated twice. 0.1 ml of NaOAc 3 M and 2.2 ml of pre-chilled absolute 
ethanol were added to the aqueous phase. The samples were gently 
mixed and incubated at −20 °C for at least 30 min. After that, they were 
centrifuged for 30 min at full speed at 4 °C to precipitate the DNA. The 
ethanol was removed and the DNA pellet was allowed to dry overnight 
at room temperature. DNA pellets were resuspended in 0.6 ml TE 1X and 
treated with 5 μl of RNase A (10 mg ml, Thermo Scientific) for 30 min 
at 37 °C. To desalt and concentrate the DNA solutions, the QIAEX II Gel 
Extraction Kit was used (50 µl of QIAEX II beads, QIAGEN). The samples 
were washed twice with PE buffer and eluted twice by 125 µl of 10 mM 
Tris-HCI buffer, pH 8.5. Finally, plasmid concentrations in the total DNA 
extract (which also contained yeast genomic DNA) were quantified by 
quantitative PCR using the primer pair oGJJ152–oGJJ153 that binds to 
the ori region of the plasmids.

Sequencing library preparation. Libraries 1–3: this was shown in 
ref. 23. Briefly, the sequencing libraries were constructed in two con-
secutive PCR assays. The first PCR (PCR1) was designed to amplify the 
mutated protein of interest and to increase the nucleotide complexity 
of the first sequenced bases by introducing frame-shift bases between 
the adapters and the sequencing region of interest (Supplementary 
Tables 1 and 2). The second PCR (PCR2) was necessary to add the remain-
der of the Illumina adapter and demultiplexing indexes. PCR2 reactions 
were run for each sample independently using Hot Start High-Fidelity 
DNA Polymerase. In this second PCR, the remaining parts of the Illu-
mina adapters were added to the library amplicon. The forward primer  
(5′ P5 Illumina adapter) was the same for all samples (GJJ_1J), whereas 
the reverse primer (3′ P7 Illumina adapter) differed by the barcode index 
(Supplementary Table 3) to be subsequently pooled and demultiplexed 
after deep sequencing. All samples were pooled in an equimolar ratio 
and gel purified using the QIAEX II Gel Extraction Kit. The purified 
amplicon library pools were subjected to Illumina 150-bp paired-end 
NextSeq500 sequencing at the CRG Genomics Core Facility.

Library 4: the method for preparing the library for sequencing was 
the same as for the other libraries but in the second PCR step, we used 
a barcoded index in the forward primer as well (5′ P5 Illumina adapter). 
The purified amplicon library pool was sequenced with an Illumina 
paired-end NextSeq2000 machine this time.

Sequencing data processing
FastQ files from paired-end sequencing of all AbundancePCA and Bind-
ingPCA experiments were processed with DiMSum v1.3 (ref. 52) using 
default settings with small adjustments (https://github.com/lehner-lab/
DiMSum). Supplementary Table 4 contains DiMSum fitness estimates 
and associated errors for all experiments. Experimental design files 
and command-line options required for running DiMSum on these 
datasets are available on GitHub (https://github.com/lehner-lab/ 
archstabms). Variants with fewer than ten input read counts in any  
replicate were discarded (‘fitnessMinInputCountAll’ option), that 
is, only variants observed in all replicates above this threshold were 
retained. For library 1, we also included fitness estimates that derived 
from a subset of replicates whose input read counts exceeded this 
threshold (‘fitnessMinInputCountAny’ option; see Fig. 1).

https://github.com/lehner-lab/DiMSum
https://github.com/lehner-lab/DiMSum
https://github.com/lehner-lab/archstabms
https://github.com/lehner-lab/archstabms
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For library 1, we also included a wild-type-only sample for sequencing 

using pGJJ046 as template to derive empirical estimates of sequencing 
error rates. The FastQ file for this sample was processed identically to 
those of the replicate input/output samples in the first-pass analysis with 
DiMSum with permissive base quality thresholds (‘vsearchMinQual = 5’  
and ‘vsearchMaxee = 1000’). Read counts for all variants were then 
adjusted by subtracting the expected number of sequencing errors 
derived from the wild-type-only sample and proportional to the total 
sequencing library size of each sample. Finally, fitness estimates and 
associated errors for library 1 were then obtained from the resulting 
corrected variant counts with DiMSum (‘countPath’ option).

Thermodynamic modelling with MoCHI
We used MoCHI43 (https://github.com/lehner-lab/MoCHI) to fit all 
thermodynamic models to combinatorial DMS data using default set-
tings with small adjustments. The software is based on our previously 
described genotype–phenotype modelling approach23, with extra func-
tionality and improvements for ease of use and flexibility24,43. Models fit 
to shallow (double-mutant) libraries and used in the analyses described 
in this work (for example, combinatorial mutagenesis library designs) 
were obtained using the original software implementation23.

We model protein folding as an equilibrium between two states: 
unfolded (u) and folded (f), and protein binding as an equilibrium 
between three states: unfolded and unbound (uu), folded and unbound 
(fu) and folded and bound (fb). We assume that the probability of the 
unfolded and bound state (ub) is negligible and free energy changes of 
folding and binding are additive, that is, the total binding and folding 
free energy changes of an arbitrary variant relative to the wild-type 
sequence is simply the sum over residue-specific energies correspond-
ing to all constituent single aa substitutions.

We configured MoCHI parameters to specify a neural network 
architecture consisting of additive trait layers (free energies) for 
each biophysical trait to be inferred (folding or folding and binding 
for AbundancePCA or BindingPCA, respectively), as well as one linear 
transformation layer per observed phenotype. The specified nonlinear 
transformations ‘TwoStateFractionFolded’ and ‘ThreeStateFraction-
Bound’ derived from the Boltzmann distribution function relate ener-
gies to proportions of folded and bound molecules, respectively (see 
Figs. 2a and 4e,f). The target (output) data to fit the neural network 
comprise fitness scores for the wild-type and aa substitution variants of 
all mutation orders. The inclusion of both first-order and second-order 
(pairwise energetic coupling) model coefficients in the models was 
specified using the ‘max_interaction_order’ option.

A random 30% of aa substitution variants of all mutation orders was 
held out during model training, with 20% representing the validation 
data and 10% representing the test data. Validation data were used 
to evaluate training progress and optimize hyperparameters (batch 
size). Optimal hyperparameters were defined as those resulting in the 
smallest validation loss after 100 training epochs. Test data were used 
to assess final model performance.

MoCHI optimizes the parameters θ of the neural network using sto-
chastic gradient descent on a loss function θ[ ]L  based on a weighted 
and regularized form of mean absolute error:

L ∣ ̂ ∣∑θ N y y σ λ θ[ ] = 1/ − +
n

N

n n n
=0

−1
−1

2
2

in which yn and σn are the observed fitness score and associated stand-
ard error, respectively, for variant n, ŷn is the predicted fitness score, 
N is the batch size and λ2 is the L2 regularization penalty. To penalize 
very large free energy changes (typically associated with extreme fit-
ness scores), we set λ2 to 10−6, representing light regularization. The 
mean absolute error is weighted by the inverse of the fitness error (σn

−1)  
to downweight the contribution of less confidently estimated fitness 
scores to the loss. Furthermore, to capture the uncertainty in fitness 

estimates, the training data were replaced with a random sample from 
the fitness error distribution of each variant. The validation and test 
data were left unaltered.

Models were trained with default settings, that is, for a maximum of 
1,000 epochs using the Adam optimization algorithm with an initial 
learning rate of 0.05 (except for library 1, for which we used an initial 
learning rate of 0.005). MoCHI reduces the learning rate exponentially 
(γ = 0.98) if the validation loss has not improved in the most recent ten 
epochs compared with the preceding ten epochs. Also, MoCHI stops 
model training early if the wild-type free energy terms over the most 
recent ten epochs have stabilized (standard deviation ≤ 10−3).

Free energies are calculated directly from model parameters 
as follows: ΔGb = θbRT and ΔGf = θfRT, in which T = 303 K and R = 
0.001987 kcal K−1 mol−1. We estimated the confidence intervals of 
model-inferred free energies using a Monte Carlo simulation approach. 
The variability of inferred free energy changes was calculated between 
ten separate models fit using data from: (1) independent random  
training–validation–test splits and (2) independent random samples 
of fitness estimates from their underlying error distributions. Con-
fident inferred free energy changes are defined as those with Monte 
Carlo simulation-derived 95% confidence intervals < 1 kcal mol−1. Sup-
plementary Table 5 contains inferred binding and folding free energy  
changes and energetic couplings from all second-order models.

Linear model to predict energetic coupling strength
We built a linear model to predict energetic coupling strength (absolute 
value of energetic coupling terms) from 12 features (see Fig. 3e), com-
prising five distance metrics for residue pairs or positions thereof in 
the protein structure: backbone distance (linear 1D distance separating 
residue pairs along the primary aa sequence), inter-residue distance 
(minimal side-chain heavy-atom distance in 3D space), number of core 
residues (0, 1 or both residues in the pair with RSASA < 0.25), number 
of binding interface residues (0, 1 or both with minimal side-chain 
heavy-atom distance to the ligand < 5 Å), number of beta-sheet resi-
dues (0, 1 or both in beta strands) and seven features describing the 
number of chemical bonds or interactions between the atoms of pairs 
of residues as calculated using the GetContacts software tool (https://
getcontacts.github.io/): backbone to backbone hydrogen bonds, side 
chain to backbone hydrogen bonds, side chain to side chain hydrogen 
bonds, pi–cation interactions, pi-stacking interactions, salt-bridge 
interactions and van der Waals interactions. Before running GetCon-
tacts, we used PyMOL to fill missing hydrogens (‘h_add’ command), 
FoldX53 to restore the wild-type proline at position 54 that is mutated 
in the reference crystal structure (PDB: 2VWF; ‘PositionScan’ com-
mand) and removed GAB2 ligand atoms. The training dataset com-
prised energetic couplings inferred from library 1 and the test set 
comprised independently inferred energetic couplings from library 3  
(see Fig. 3f).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All DNA sequencing data have been deposited in the Gene Expression 
Omnibus (GEO) with accession number GSE246322. Associated fit-
ness measurements and free energies are provided in Supplementary 
Tables 4 and 5. Shallow double-mutant ddPCA DNA sequencing data 
for GRB2-SH3 and PSD95-PDZ3 are available in the GEO with acces-
sion number GSE184042, and the processed data used in this study 
can be found in Supplementary Tables 6 and 7 of the corresponding 
publication (https://doi.org/10.1038/s41586-022-04586-4). Protein 
structures are available from the Protein Data Bank for GRB2-SH3 (entry 
ID: 2VWF) and SRC (entry ID: 2SRC).

https://github.com/lehner-lab/MoCHI
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https://doi.org/10.1038/s41586-022-04586-4
https://www.rcsb.org/structure/2VWF
https://www.rcsb.org/structure/2SRC


Code availability
Source code for fitting thermodynamic models (MoCHI) is available 
at https://github.com/lehner-lab/MoCHI. Source code for all down-
stream analyses, including DiMSum and MoCHI configuration files, and 
to reproduce all figures described here is available at https://github.
com/lehner-lab/archstabms. An archive of this repository is also pub-
licly available on Zenodo at https://doi.org/10.5281/zenodo.11671164 
(ref. 54).
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Extended Data Fig. 1 | Combinatorial mutagenesis library 1 design and 
simulations. a, Violin plot showing distributions of simulated AbundancePCA 
growth rates (assuming additivity of individual inferred folding free energy 
changes23) versus number of random aa substitutions (n = 100,000) for 
PSD95-PDZ3. Violins are scaled to have the same maximum width. b, Simulated 
median AbundancePCA/BindingPCA growth rates of optimal combinatorial 
libraries of increasing maximum aa Hamming distances from the wild type. The 
horizontal dashed line indicates the 70th percentile of the maximal geometric 

mean (black). The vertical dashed line indicates the number of aa substitutions 
selected (n = 34) for the synthesized combinatorial mutagenesis library 1.  
c, Violin plot showing simulated distributions of AbundancePCA growth rates 
versus number of aa substitutions for combinatorial mutagenesis library 1.  
d, Similar to panel c but showing simulated distributions for BindingPCA 
growth rates. In panels c and d, the percentage of folded and bound protein 
variants (predicted fraction folded or bound molecules > 0.5) is shown at each 
Hamming distance from the wild type.



Extended Data Fig. 2 | Residuals versus fitted values for linear and 
thermodynamic models fit to AbundancePCA data from combinatorial 
library 1. a, Residual fitness (observed − predicted) versus predicted fitness 
for first-order linear models (left) and first-order thermodynamic models 
(right) evaluated on GRB2-SH3 combinatorial AbundancePCA data 
(combinatorial library 1; see Fig. 1). The smoothed conditional mean 

(generalized additive model) is shown in red. b, Similar to panel a except 
models include all first-order and second-order genetic interaction (energetic 
coupling) terms/coefficients. c, Similar to panel a except results are shown for 
models that were trained on GRB2-SH3 ddPCA data consisting of single and 
double aa substitutions only23.
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Extended Data Fig. 3 | Structural determinants of energetic couplings 
inferred from ddPCA data from combinatorial library 3. a, Relationship 
between folding coupling energy strength and minimal inter-residue 
side-chain heavy-atom distance for combinatorial library 3 (see Fig. 4). The 
mean is shown and error bars indicate 95% confidence intervals from a Monte 
Carlo simulation approach (n = 10 experiments). Points are coloured by binned 
inter-residue distances (see legend in panel b). Spearman’s ρ is shown for all 
couplings, as well as those involving pairs of residues separated by more than 
five residues in the primary sequence. Core residues are indicated as triangles. 
b, Relationship between folding coupling energy strength and linear sequence 
(backbone) distance in number of residues. The measure of centre and error 
bars are as defined in panel a.



Extended Data Fig. 4 | Design of combinatorial mutagenesis libraries 2  
and 3. a, Clustered heat map showing structural contacts (minimal side- 
chain heavy-atom distance < 5 Å) between all GRB2-SH3 surface residues 
(RSASA ≥ 0.25) existing in secondary structure elements. The four highlighted 
residues are all physically proximal and were selected as the targets for library 2 
saturation combinatorial mutagenesis (see Extended Data Fig. 5). b, Bar plot 
indicating the number of candidate mutant residues in stretches of 20, 21 and 
22 consecutive residues in GRB2-SH3 used to design mutagenesis library 3. 
Candidate mutations were defined as single aa substitutions with mild effects 

(within one-third of the AbundancePCA fitness interquartile range of the  
wild type23) in close proximity in the primary sequence and reachable by 
single-nucleotide substitutions while avoiding mutations in binding interface 
residues (minimal side-chain heavy-atom distance to the ligand < 5 Å). The 
selected mutant window size (22 aa residues), residue start position (10) and 
number of mutated residues (15) is indicated. The final library consisted of all 
combinations of the following randomly selected candidate mutations at these 
15 positions: D10N, P11A, D14N, G15E, G18C, R20S, R21Q, D23E, F24I, H26L, V27I, 
M28K, D29E, N30T and S31T (see Fig. 4).
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Extended Data Fig. 5 | Saturation combinatorial mutagenesis of a protein 
surface patch. a, 3D structure of GRB2-SH3 (PDB: 2VWF) indicating four residues 
targeted for saturation combinatorial mutagenesis (orange, library 2) and  
GAB2 ligand (blue). See also Extended Data Fig. 4. b, Scatter plots showing the 
reproducibility of fitness estimates from triplicate AbundancePCA experiments. 
Pearson’s r indicated in red. Rep., biological replicate. c, Histogram showing  
the number of observed aa variants at increasing Hamming distances from the 
wild type, in which the x axis is shared with panel d. d, Violin plot showing 
distributions of AbundancePCA growth rates inferred from deep sequencing 
data versus number of aa substitutions. The percentage of folded protein 
variants (predicted fraction folded molecules > 0.5) is shown at each Hamming 
distance from the wild type. e, Nonlinear relationship (global epistasis) between 
observed AbundancePCA fitness and changes in free energy of folding. 
Thermodynamic model fit shown in red. f, Performance of energy model 

including all first-order and second-order genetic interaction (energetic 
coupling) terms/coefficients. g, Distributions of folding free energy changes 
(ΔΔG, grey) and pairwise energetic couplings (ΔΔΔG, red). h, Comparisons  
of the model-inferred single aa substitution free energy changes to previously 
reported estimates using GRB2-SH3 ddPCA data23. Pearson’s r is shown. i, Box 
plots showing relationship between folding coupling energy strength and 
minimal inter-residue side-chain heavy-atom distance. Boxes are coloured  
by inter-residue distance. Spearman’s ρ is shown for all couplings (n = 2,166 
second-order coefficients), as well as the weighted mean per residue pair (n = 6 
residue pairs). j, Relationship between folding coupling energy strength and 
linear sequence (backbone) distance in number of residues. Boxes are coloured 
as in panel i. For box plots in panels i and j: centre line, median; box limits, upper 
and lower quartiles; whiskers, 1.5× interquartile range; n = 2,166 second-order 
coefficients.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | ddPCA data from combinatorial library 3 show that 
abundant multi-mutants are binding-competent (have conserved fold).  
a, Scatter plots showing the reproducibility of fitness estimates from triplicate 
AbundancePCA experiments for combinatorial library 3 (see Fig. 4). Pearson’s r 
indicated in red. Rep., biological replicate. b, Similar to panel a but showing 
results from triplicate BindingPCA experiments (same as Fig. 4c). c, Histogram 
showing the number of observed aa variants at increasing Hamming distances 
from the wild type for AbundancePCA, in which the x axis is shared with panel d. 
d, Violin plot showing distributions of AbundancePCA growth rates inferred 

from deep sequencing data versus number of aa substitutions. The percentage 
of folded protein variants (predicted fraction folded molecules > 0.5) is shown 
at each Hamming distance from the wild type. e,f, Similar to panels c and d but 
showing results for BindingPCA. The percentage of bound protein variants 
(predicted fraction folded molecules > 0.5) is shown at each Hamming distance 
from the wild type in panel f. g, 2D density plots comparing abundance and 
binding fitness for increasing Hamming distances 1–14 from the wild type as 
indicated.



Extended Data Fig. 7 | Performance of models fit to AbundancePCA  
data from combinatorial library 3. a, Performance of first-order two-state 
thermodynamic model (folded and unfolded states) fit to AbundancePCA data 
from combinatorial library 3 (see Fig. 4). b–d, Performance of first-order (b), 

second-order (c) and third-order (d) linear models fit to AbundancePCA data 
from combinatorial library 3 (see Fig. 4). R2 is the proportion of variance 
explained.
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