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Abstract

Purpose of Review This review aims to consolidate recent observations regarding extra-osseous roles of the RANK-RANKL-
OPG axis, primarily within skeletal muscle.

Recent Findings Preclinical efforts to decipher a common signalling pathway that links the synchronous decline in bone and
muscle health in ageing and disease disclosed a potential role of the RANK-RANKL-OPG axis in skeletal muscle. Evidence
suggests RANKL inhibition benefits skeletal muscle function, mass, fibre-type switching, calcium homeostasis and reduces
fall incidence. However, there still exists ambiguity regarding the exact mechanistic actions and subsequent functional
improvements. Other potential RANK-RANKL-OPG extra-osseous roles include regulation of neural-inflammation and
glucose metabolism.

Summary Growing evidence suggests the RANK-RANKL-OPG axis may play a regulatory role in extra-osseous tissues,
especially in skeletal muscle. Targeting RANKL may be a novel therapy in ameliorating loss of muscle mass and function.
More research is warranted to determine the causality of the RANK-RANKL-OPG axis in extra-osseous tissues, especially
those affected by aging.
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Introduction

Receptor activator of nuclear factor kappa B (RANK),
RANK ligand (RANKL), and osteoprotegerin (OPG) com-
prise the RANK-RANKL-OPG axis, a complex, and mul-
tifaceted signalling system. The axis has a pivotal role in
regulating bone mass and calcium homeostasis by control-
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ling osteoclasts and bone remodelling [1, 2]. The axis also
has other prominent roles, including, but not restricted to,
endothelial physiology, angiogenesis, cell proliferation [3],
inflammation, immunity [4, 5], tumorigenesis, metastasis [6]
and brain signalling [7, 8]. RANKL specifically binds to and
activates RANK in a manner that is inhibited when RANKL
first binds to OPG, a soluble decoy receptor of RANKL.
RANKL can either be cell membrane-bound (M-RANKL)
or soluble (S-RANKL). Given its location, M-RANKL can
also participate in “reverse” signalling [9]. In recent years,
it has been suggested that RANKL and OPG are osteokines
that are involved in bone and extra-osseous tissue crosstalk,
with close anatomical neighbours, skeletal muscles, being
potential targets [10].
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Binding of RANKL by OPG inhibits osteoclastogenesis
which suggested a potential therapeutic role for OPG in
diseases of bone loss such as osteoporosis or cancer. OPG
has various domains including an N-terminal cysteine rich
region which is the primary site for RANKL binding, a
death domain homologous region which can interact with
TNF related apoptosis inducing ligand (TRAIL), and a
C-terminal heparin-binding domain which allows for inter-
action with, for example, heparan sulfates and integrins.
The latter domain limits the circulating half-life of OPG,
and deletion of this domain was among the early strategies
in creating recombinant therapeutic versions of OPG for
infrequent administration [11]. Concurrent efforts pursued
the production of fully human therapeutic antibodies to
RANKL, which have even longer half-lives than optimized
versions of OPG and do not bind TRAIL [12]. The first
such anti-RANKL to enter clinical development was origi-
nally named AMG162 (subsequently called denosumab). A
pivotal Phase 3 clinical trial (FREEDOM) in women with
postmenopausal osteoporosis (PMO) showed that deno-
sumab significantly increased bone mineral density (BMD)
at the hip, femoral neck, lumbar spine, and distal radius
and reduced the risk of vertebral, nonvertebral, and hip
fractures [13]. Numerous other trials confirm the ability
of denosumab to increase BMD and reduce the risk of fra-
gility fractures (reviewed in [14]). Interestingly, in FREE-
DOM, denosumab was associated with a significantly
lower incidence of falls and fall-related concussions, sug-
gesting potential extra-osseous benefits of RANKL inhi-
bition including improved skeletal muscle function [13].

An early study to explore a potential effect of the RANK-
RANKL-OPG pathway in muscle was undertaken in mus-
cular dystrophy (mdx mice) as this model exhibited severe
muscle degeneration alongside low BMD. While OPG,
administered as OPG-Immunoglobulin Fc segment complex
(OPG-Fc), had no effect on wildtype (WT) mice muscle
force, OPG-Fc rescued muscle force in a dose-dependent
manner in the soleus, extensor digitorum longus (EDL) and
diaphragm muscles of mdx mice [15]. However, this obser-
vation brought with it many new questions; for example, is
this muscle effect mediated by OPG inhibition of RANKL
or a RANKL-independent mechanism, are the benefits
limited to dystrophic or severely degenerated muscle, and
is this a direct effect on muscle or mediated by bone-to-
muscle crosstalk? This review aims to highlight some of
the notable findings of studies of the RANK-RANKL-OPG
axis in skeletal muscle with additional reference to effects
in other extra-osseous tissues.

Observed Effects of RANK-RANKL-OPG
Modifications on Muscle Mass
and Performance

Clinical Observations

Following on from the FREEDOM falls observation, a
meta-analysis investigated fall risk across five placebo-
controlled trials of denosumab [16], three associated with
osteoporosis [13, 17, 18] and two associated with cancer
treatment-induced bone loss [19, 20]. Prior to all stud-
ies, participants received no specific advice about exer-
cise or falls prevention. Meta-analysis showed that the
Kaplan—Meier estimated incidence of falls in the pooled
placebo groups was 6.5%, compared with 5.2% in deno-
sumab groups (a 21% reduction, p=0.0061). A greater
reduction in falls was observed with denosumab treat-
ment in subjects aged < 75 years versus subjects > 75 years
(hazard ratios 0.65, 95% CI 0.52—-0.82 and 1.01, 95% CI
0.78-1.31, respectively), potentially reflecting the impact
of other factors on falls risk in the oldest old (multimorbid-
ity, frailty, and other deficits, e.g., polypharmacy, ortho-
static hypotension, vestibular disorders, cataracts, and
macular degeneration) (Table 1) [16].

Outside the setting of randomised control trials, limited
comparative data support potential benefits of denosumab
on skeletal muscle (Table 1). In a non-randomised study
of a clinical cohort, denosumab treatment (n=51) signifi-
cantly improved gait speed, timed get up and go test and
four-square step test over 6 months, in community-dwell-
ing older adults [21] (Table 1). In another non-randomised
cohort study, 18 PMO women treated for osteoporosis with
denosumab over 3 years were compared to 55 controls
and 20 patients treated by bisphosphonate. Denosumab
treatment was associated with increased appendicular lean
mass (ALM) and hand grip strength compared with base-
line [22] (Table 1). In a retrospective, propensity score-
matched (sex, age, BMI, follow-up time) cohort study,
both denosumab and bisphosphonate treatment were asso-
ciated with a higher increase in grip force than a compara-
tor group receiving vitamin D only. Those treated with
denosumab also showed a greater improvement in chair
rising test force compared to the bisphosphonates group
[23] (Table 1). Interestingly, in a case study of facioscap-
ulohumeral muscular dystrophy, a switch from Forteo
(teriparatide, 2 years of treatment) to denosumab to help
combat worsening osteoporosis resulted in a rapid reversal
of many dystrophic symptoms (Table 1) [24].

@ Springer



Current Osteoporosis Reports (2024) 22:632-650

634

pajou sem (100 =d) JsU s[[e] pue

sanseow eruadoores yjoq Jo uruasiom JuedyIugis e ‘qeNg

Jo uonenunuodsip-jsod 1eak-auQ (10°0=d “em wy, pue o3

pue dn pown ‘yiSuans duid) somseswr eruadoores [[e Ur sjuaw

-onoxdur Jueoyrugis pue (1000 =d) JSHI S[[J UT 9SLAIIP Jued
-gIugis sem 219y ‘(s1eaA G) Aderoy qeNg Sunordwos uodn <

S[OJJUOD PIYOIJBW SNSIIA [[e] 0}
AJoYI] SS] %G ¢ 10Mm SIBIK G/ > page s103(qns pajean qeNg <
(19000=9) (%2°5) sdnoi3
qelNg 03 paredwod ‘(%6°9) sdnoi3 oqaderd oy ur 1oyS1y
Apueoyru3Is sem S[[e} JO douapIoul JIeJA—ue[dey] pajewnsyg <
3ur[ye; jo 1eoj 10§
QInseaw 9A103[qns e ur pue 3s9) dajs arenbs-1noy oy} ur syuSW
-oa01dwr 1918913 Y)IM PIIBIOOSSE SeM JUSWIRAI) qRIAI( Inq
‘91RUOIPI[0Z SUIATOIAI $)02[QNS UT USSS AIOM IO JR[IWIS <
AyiSe reuondaxpnnw Jur
-oueyU OSTe IS[IYM paads j1esd parordur Apyueoyrudis qeN( <

dINg ouids 1eq
-winy ur sa3ueyd Y)m paje[ariod A[Suons sijowered o[osnjy <
jou pIp sajeuoydsoydsiq searoym ‘yusunean
ou 0} paredwos yy3uons dupuey pue ssew ueo[ Je[norpuadde
pasodwl Jusunean qejA Jo STeak ¢ ‘uswom OJAd Ul <

159 pue)s 03 31s pue Js9) 03 pue dn 323 ‘yySuans dus puey
ur sjuawaAoIdwr Jueoyrusis IoYlIn,J :uondafur pI¢ 10Je [ g <
159) pue)s 0}
J1s pue 1593 03 pue dn 108 ‘y1Suans dus puey ur sjuowrosordur
JueoyruSIS “(sjuawasoidur pajs Jou ‘Iaylo Js3uowre) ondney
moym ouerd oy Aeyd pue ‘s1o3uy 1oy deus ‘sjeay Y3y ur
N[em ‘QpSIyMm 0] J[qe sem 392[qng :uonofur pug I9ye Y 47 <
Qouereq paaoxdwir payIqIyXe pue 103uoIs
A[reorsAyd sem pue ‘(uonoafur qejNq 2yp 03 Jorid op 03 9[qeun
sem) s910q uado ‘IoISed MO[[eMS ‘SAYSB[aAD oy AIng ‘Oued
B JNOYIIM Y[eM 0} 9[qe Sem 102[qng :uonosfur ST I10)Je [ $7 <
uonoafur qejNq 1sod syeam /—9 punoie
PIRIIUL SIO9Y [RIOYAUQ JO [BSIAAIY UonNIa[ur e A1
I9)Je paATasqo sem swoydwAs orydonsAp Jo [es1oaar onseIq <
(z0'0=d) dnoi3 ogaoerd 0)
paredwod uaym ‘(SJUSAD 9SIDAPE) S[[J Ul UONINPAI JULOYIUSIS
B [JIM POJBIOOSSE Sem SIBaA ¢ JOJ JUSTUIEaI) qeuunsoud(] <

Kdexoy stsorodooiso Surddols reak | 1ojye juowssasse

pug ‘yuswiean Jo sieak G—¢ I9)ye Juswssasse oruadoores pue

o11010d091s0 1S *(SIB9A G ‘9¢ [ = N/) 9JBUOIPUI[E pue (SIBAK

€ ‘9¢T =N) 91eu0Ipo[0Z Jurpn[oul ‘1931e)-0)-1831) :dnoi3 [on

-u0)) "(s1eak ¢ ‘g1 =N) s1sor0doaso oftuas/resnedousunysod

J10J Juaunean (Jerroreurquod o Arewtid) qejNq :dnoi3 Apmg
‘Apnys aandadsord ‘pafjonuod ‘Iojuadonnui [eurpniISuo| v

(orewoy %1°¢8) SILAA §'9F 8 1L “0E0S =N
QRIAI ‘ST8K 69 F 6 1L “900S =N 0gooe[d :SonsLooRIeyd
Pa100d "qBIN JO S[eLT) PO[[0NU03-0qaoe[d G Jo SISA[eue-eloA

sj[npe Iap[o Jur[emp

-K)Iunutuod Jo uonouny A[osnwW uo (g7 =) 2JeUOIP[OZ IO
(1S=N) QeI JO S199JJ° 9y uo (fauowr 9) Apn3s [euIpmISuo|

qurpaseq je oouaesard

armoely pue (NG ‘TING 93e 10J payojewr a1om sdnoi3

oy, *(SIeak T F 69 ‘G5 = N) d[oTyoA 10 (s1eak 6'0F L'69

‘g = N 9JBUOIPUR[E ‘7] =N 9JeuoIpo[oz) soyeuoydsoydsiq
‘(819K §'T F 69 ‘8T =N) qBINC UM pajean udtwom QNd

(uonoafur puosas 3sod srearojur

Kep-z7y—0f YIM) USAIS 91om SUOTIOD[UT USASS JO [810)  'ISIY

Q) 193Je sAep €9 UAIS uonoafur puodag ‘Jw(g qeNd YIm

parea], “(s1sorodoayso pue AydonsAp Jenosnw [eIownyo|
-ndeosoroey yiim pasouserp) oewd) po-I1eak-99 :Apms ase)

SIeA ¢ I0J Syjuow

9 L1042 (Z06€ =N) SWO9 (qRNQ) qeWNSoudp 10 (906E =N)
0qooe[d IOUII0 YIIM PoJeaI) AIom UdwoMm [esnedousaunsoq

[e€] 120T v 12 Kuepatn
(eruadoores pue s1s010dod)so

JO JuaWIean) JOJ QRINSOUP JO 103J2 [enp [enuajod & a1oy) S|

[911 020T “'1v 12 SuomureAnoyD
qeWnSoua(J JO S[eri],
PA[[01U0I-0qadE[J WOL] 3dUSPIOU] [[e] JO SISA[euy po[ood V

[12] 610T “1 12 nyq "INPY JoP[Q Sul[[om-AIunuio)) ut
uonoun pue ‘YP3uang [osnJA ‘S[[eJ U0 qeuunsoud( Jo 199Hg

[22] 610T “'1P 12 1ouUO "SSBW QUOQ SI0ISI pue AJIADIS
-uas urnsur pue YSuans dposnwr saroxdwr uonIqIYul TNV

[+2] T10T “AS[U1oy pue Z)IMONJOT ‘ZIMONJo]
qewnsoua(
s AydonsAp renosnuw [erownyondedsoroey Jo juawueal],

[¢1] 600T 7P 12 sBurwwny)
m_mo.ﬁomooumo 5?5 uaumom
resnedousunsod ut saInjoeIy Jo uonuaAdxd 10§ qeWNSOUS(]

s3urpuy Jofejy

s1ojowrered Apmg

QOURIRJAI ‘d)ep ‘IoyIne ‘ONIY,

IOpIO [BIISO[OUOIYD UT PISIUBSIO (R, "90UIPIOUI [[e] puk ddurwLIO)Ied pue SSew [snu [BI9[yS UO S1xe OJO-TINVI-MINV Y 23 Jo sojo1 enuajod ayy Surrofdxe sarpnys [edrur)) | ajqer

pringer

AQs



Current Osteoporosis Reports (2024) 22:632-650 635

Additionally, muscle loss has been associated with
Paget’s disease (OPG deficiency) [25, 26]. Interestingly,
Juvenile Paget’s disease of bone was also shown to be
associated with retinal abnormalities, including peripap-
illary atrophy, angioid streaks, and choroidal neovascu-
larization [27]. Recently, ocular manifestations were also
identified in a novel duplication variant of TNFRSF11A
(RANK), in familial Paget’s disease [28]. Taken together
the RANK-RANKL-OPG axis may also be related to ocu-

0.001) treatments

significantly increased grip force compared to vitamin D.

compared to the bisphosphonate group. Neither the changes
in bone metabolic parameters nor BMD were associated with

DMab group significantly increased chair rising test force
> Human ovarian cancer is associated with elevated RANKL,
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%_ g lar health, with a potential modality being vascular mainte-
g2 § nance — OPG activity has been associated with peripheral
= 2 . . . .
g 3 228 artery disease, vascular calcification and atherosclerosis,
g 2 g and abdominal aortic aneurysms [29-32].
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EH RS £ f Preclinical Observations
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g E E‘ § In vitro (Table 2) and in vivo models (Table 3) have been
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= | A useful in elucidating the causality of RANK-RANKL-OPG
8 4, signalling in skeletal muscle. OPG knockout mice (Opg™"),
s &0 3 . . . . o
EE2 a expressing higher levels of circulating RANKL exhibited
S §%; notable changes in skeletal muscle mass and function,
CE Z é ; including markedly reduced EDL weight and force produc-
%ﬁg _‘gl % tion, lower activity levels, and whole limb grip force. Fur-
g 2 ég thermore, Opg™~ mice treated with anti-RANKL IK22-5
E f‘é i s were able to walk or run farther distances and exhibited
El~ E Z significant improvements in whole limb grip force and EDL
E "3 = E; maximum specific force [35]. Denervated mice lacking skel-
g '§’ g = etal muscle RANK (RANK™ ) exhibited reduced EDL mus-
= ? fb b cle mass and specific force versus genotype and treatment
£2E2 controls [36] (Table 3).
2852 . j
2| 25 S < — Mice over-expressing human RANKL (huRANKLTg")
b5 o =1 " . . .
3 g £ 2 A % exhibited significantly lower gastrocnemius and soleus
g § el é " = weight (female mice, normalised to body weight), as well
= %‘ _% § i E % as significantly reduced limb muscle force (males only, trend
E § 232 g 3 seen in females), skeletal muscle volume, and fine movement
wn

versus WT controls. In iuRANKLTg" mice, denosumab
increased gastrocnemius and soleus weight and maximal
speed, whereas OPG-Fc increased soleus weight only. In
a mouse model of osteosarcopenia and impaired glucose
homeostasis (Pparb~~), OPG-Fc significantly increased
maximum force of the limb (normalised to gastrocnemius
mass), skeletal muscle volume, and area and number of type
I (slow-twitch) fibers, restoring parameters to that of WT
mice [22] (Table 3).

A cardiotoxin-induced (CTX) skeletal muscle injury
model explored the efficacy of human full-length (hFL)-
OPG-Fc in aiding skeletal muscle repair. Seven days post
injury, hFL-OPG-Fc treatment significantly improved iso-
metric and specific force of the soleus muscle, but had no
effect on soleus muscle mass [37]. In a cigarette smoke
(CS)-induced model of chronic obstructive pulmonary
disease (COPD) in mice, IK22-5 treatment significantly
improved body weight, gastrocnemius and soleus weight,

by Non-Metastatic Ovarian Cancer in Mice. Pin et al., 2022

patients with low BMD: a retrospective, propensity score-
[34]

matched study. Rupp et al., 2022 [23]

RANKL Blockade Reduces Cachexia and Bone Loss Induced Female adults with ovarian cancer assessed (cachexia N

Beneficial effects of denosumab on muscle performance in

Table 1 (continued)
Title, author, date, reference
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Table 2 (continued)

Major findings

Study parameters

Title, author, date, reference

> Satellite cells isolated from Opg '~ mice exhibited reduced pro-

Characterisation of isolated satellite cells (+ differentiation proto-

cols) from Opg ™~ and WT 6-week-old male mice

Delayed denervation-induced muscle atrophy in Opg knockout

liferation but increased differentiation index and fusion index once

differentiated for 48 h (when compared to WT)
> Tet2 expression increased in differentiated satellite cells isolated

mice. Zhang et al., 2023 [41]

from Opg '~ mice (when compared to WT)
> After 15 min of RANKL exposure, C2C12 myotubes showed

Mitochondrial function was explored in C2C12 myotubes +20 ng/

ml RANKL. 5-day differentiation protocol

RANKL signaling drives skeletal muscle into the oxidative profile.

significant increases in phospho-ERK/total ERK and phospho-

p38/total p38 ratios
>RANKL treatment (24 h) significantly increased mitochondrial

Cavalcanti de Aratjo et al., 2024 [42]

area, mtDNA/nDNA ratio and expression of citrate synthase,

ATP-synthase, and NRF-1, a p38 MAPK inhibitor (SB203580)

and MEK inhibitor (U0126) ameliorated these effects
> C2C12 myotubes exhibited significant reductions in PTPRG and

MuRF1 gene expression and increased spare respiratory capacity

after 24 h of RANKL treatment

grip strength, running time and maximal speed to values
close to those seen in control (air) mice [38]. The role of
enhanced RANK-RANKL signalling in reducing muscle
mass and function is supported by a reversal of effects with
known RANKL inhibitors, hFL-OPG-Fc [37] and IK22-5
[38]. In parallel, IK22-5 treatment to mdx/utrn™" mice, also
improved the specific force of EDL and soleus muscles (ver-
sus PBS-treated mdx/utrn™~ mice) and dampened the effects
of edema [39] (Table 3).

Injection of anti-TRAIL, 1K22-5, truncated OPG-Fc
(RANKL-binding domain only) and full-length OPG-Fc
into mdx mice significantly increased EDL specific force
by 17%, 45%, 43% and 162% respectively, versus mdx con-
trol. Full-length OPG-Fc also increased maximum specific
force of mdx soleus and diaphragm muscles. mdx-RANK™°
mice exhibited significantly increased specific force of EDL,
soleus and diaphragm muscles (versus mdx control). Moreo-
ver, full-length OPG-Fc treatment of mdx-RANK"* mice
further enhanced the increase in EDL force compared with
mdx and mdx-RANK™*° groups, thereby suggesting OPG-
Fc may benefit dystrophic muscle independent of RANK-
RANKL [40] (Table 3).

Despite these reports of efficacy of OPG treatment and/
or other means of RANKL inhibition (e.g., IK22-5) in both
dystrophic and non-dystrophic models, uncertainties remain
due to disparities between studies (e.g., muscles analysed
and treatment schedules), and in some cases only marginal
improvements in test parameters. It is difficult to conclusively
state that direct inhibition of RANKL in skeletal muscle
may benefit its mass and function in clinical settings. Fur-
thermore, two recent observations demonstrate a beneficial
effect of RANKL signalling on skeletal muscle physiology:
OPG knockout delays rather than accelerates gastrocnemius
muscle atrophy after denervation in mice [41], and RANKL
signalling in skeletal muscle (in vitro and in vivo) promotes
mitochondrial biogenesis and subsequently benefits the oxida-
tive profile of the muscle [42]. These observations are incon-
sistent with the hypothesis that OPG activity and/or RANKL
inhibition is inherently beneficial to skeletal muscle (Table 3).
Rather, the complexity of the RANK-RANKL-OPG axis in
skeletal muscle physiology requires further study to under-
stand and develop potential therapeutic strategies.

Potential Mechanisms of RANK-RANKL-OPG
Axis in Skeletal Muscle

Skeletal Muscle Regeneration

Muscle regeneration is a complex process, one that involves
numerous stages of muscle stem (satellite) cell activation,

proliferation, differentiation, and maturation, collectively
called myogenesis (Fig. 1).

@ Springer
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Table 3 Utilisation of in vivo models to explore the potential role of the RANK-RANKL-OPG axis in skeletal muscle in a preclinical setting. * denotes studies in a dystrophic setting. Table

organised in chronological order

18

Major findings

Study parameters

Title, author, date, reference

Springer

> Up to 2 days post exercise OPG and IL-6 concentrations were

Young males (N=10) performed quadricep eccentric exer-

Systemic cytokine response following exercise-induced mus-

increased, and RANKL was decreased. Indication of a com-

cises. Blood samples were obtained before exercise and 6 h,

2 days, 5 days and 16 days post-exercise

cle damage in humans
Philippou et al., 2009 [44]

mon modulating role of IL-6 and the OPG/RANKL system

during skeletal muscle regeneration following damage

> 0.3 mg/kg OPG-Fc significantly increased maximal specific

force of mdx soleus (46%) and mdx EDL (114%)

of PBS or OPG-Fc (0.3 or 1 mg/kg/day) for 10 days (days 25 > 1 mg/kg OPG-Fc significantly increased maximal specific

Assessment of mdx dystrophic mice
to 35 after birth)

*QOsteoprotegerin protects against muscular dystrophy

Dufresne et al., 2015 [15]

(C57BL/10ScSn-Dmdmdx/J) — daily intraperitoneal injection

force of mdx soleus (70%), mdx EDL (223%) and mdx

diaphragm (59%) muscles, and reduced muscle damage and
macrophage (47%) and neutrophil (68%) infiltration of mdx

EDL muscles

> Denervated EDL muscles from RANK" mice exhibited
reduced mass, almost absent slow-twitch fibers and an

Muscle mass and functionality of RANK™*° mice (specific

Muscle RANK is a key regulator of Ca®* storage, SERCA

RANK skeletal muscle deletion). Sciatic denervation was

performed on adult mice aged 12-18 weeks.

activity, and function of fast-twitch skeletal muscles.

Dufresne et al., 2016 [36]

increase in the proportion of fast-twitch fibers (IIA, IIB, IIX),

whilst preserving the specific force tension.

> Sham and denervated RANK"* soleus and EDL muscles

exhibited a lower proportion of fast-twitch fibers express-

ing SERCA-1a and a higher proportion of fast twitch fibers

expressing SERCA-2a.

Ageing and disease can disrupt myogenesis, leading to
reduced muscle mass and function [46]. On the contrary,
an increase in muscle stem cell activity and muscle regen-
eration can result in an improvements in muscle mass and
function [47]. The improvements seen in muscle mass and
function following disruption of the RANK-RANKL path-
way indicate a potential beneficial effect on myogenic mech-
anisms. However, currently, evidence of this is lacking and
more exploration is required.

As myogenesis constitutes different stages, it is important
to consider the expression profile of the RANK-RANKL-
OPG axis throughout myogenesis. RANK is expressed in
C2C12 myotubes [36], which was corroborated in primary
mouse and immortalised (KM670) human myotubes [48].
RANKL was shown to be present at low concentrations in
C2C12 myotubes [34], and in human KM670 myotubes [48].
OPG is released from C2C12 myotubes [15]. As well, it
was shown that OPG is secreted from KM670 myoblasts
and OPG release increases as myogenic differentiation ini-
tiates and progresses [48]. These observations indicate that
the RANK-RANKL signalling may have a more dynamic
affect in the later stages of myogenesis (Table 2), whereas
OPG may regulate and influence earlier myogenic stages,
by virtue of its heparin binding and death domains (Fig. 1).

In a mouse model of CTX-induced skeletal muscle
injury, hFL-OPG-Fc treatment increased two key markers
of myogenesis, centrally nucleated cells and embryonic
myosin heavy chain (eMyHC) myofibers, as well as satel-
lite cell density as represented by Pax7" cells, myogenin
expression (potent mediator of myogenic differentiation)
and B3 integrin expression [37]. An increase in eMyHC
expression correlated with an increase in contractile tissue,
indicating improved regeneration [37]. In parallel, C2C12
myotubes treated with RANKL exhibited reduced eMyHC
expression [38], highlighting the RANK-RANKL-OPG axis
may influence eMyHC expression and subsequently regen-
erative capacity. Boured;i et al. suggest that the effects of
hFL-OPG-Fc on muscle may be initiated through integrin
signalling as OPG has a heparin binding domain (Table 3)
[37]. OPG interaction with these cell surface molecules
(e.g., integrins and HSPs, Fig. 1-2) has been shown to pro-
mote proliferation, survival and migration [49]. Further-
more, the expression of HSPs [50] and B3 integrins [51]
are increased during skeletal muscle regeneration, thereby
suggesting OPG may potentially work in a dualistic fashion
in skeletal muscle, binding to RANKL and HSPs/integrins
to aid regeneration. In vitro, hFL-OPG-Fc treatment signifi-
cantly increased C2C12 myotube fiber diameter and fusion
index, both of which reflect a more pro-myogenic phenotype
[37]. Conversely, RANKL treatment of C2C12 cells was
associated with significantly lower myotube cross sectional
area (CSA) [35]. Taken collectively, these findings suggest
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Fig.1 The myogenic program of skeletal muscle (top) and potential
points during myogenesis in which factors of the RANK-RANKL-
OPG axis may affect skeletal muscle physiology (bottom). RANK-
RANKL signalling may have the greatest effect on differentiated
myoblasts, i.e., myotubes, as growing evidence suggests RANK
expression is confined to myotubes. OPG may influence all stages of

RANKL signalling is potentially deleterious to myogenic
potential in vitro (Table 2).

Interpretation of potential mechanistic effects is, however,
complex and differs between models. An example is that
RANK and RANKL protein levels are elevated in the EDL of
mdx/utrn™~ mice compared with WT mice. In contrast to the
CTX model above, following IK22-5 anti-RANKL treatment,
the number of satellite cells (Pax7" cells) and the proportion of
centrally nucleated myofibers was lower [39] (Table 3). This
apparent paradox arises because satellite cell hyperplasia due

@ Springer

Myotube/
-NF-kB pathway

myofibre J}\\' . .
‘T [ -Atrophy signals

I -Survival -Inflammation
-Apoptosis -Ca?* Homeostasis

muscle regeneration, particularly earlier stages through its ability to
bind to TRAIL, heparan sulfate proteoglycan (HSPs) and integrins.
RANK-RANKL signalling may be a regulator of NF-xkB dynamics,
atrophy networks, inflammatory signals and Ca®* homeostasis in
skeletal muscle

to asymmetric cell division dysfunction is a common manifes-
tation in muscular dystrophy resulting in mitotic defects and
reduced numbers of myogenic progenitors [52]. Hence, the
observations here suggest asymmetric and symmetric satellite
cell division is returning to a more balanced state, one which
favours efficient muscle regeneration and tissue homeostasis.
Further research is warranted regarding the potential interplay
of the RANK-RANKL-OPG axis and the myogenic program
(Fig. 1) in both healthy and pathological muscle.
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«Fig.2 The OPG-RANKL-RANK in skeletal muscle — potential influ-
ences of RANKL inhibitors on sarcopenia. Top: domain structures of
RANK, RANKL and OPG (inclusive of homodimerization activa-
tion stage) and general overview of RANK-RANKL-OPG signalling.
Bottom: Summary of potential ways in which RANKL inhibitors
may modulate skeletal muscle atrophy and subsequently sarcopenia.
As well as inhibiting RANKL, OPG may modulate apoptosis path-
ways via interactions with TRAIL and may elicit responses in mus-
cle via cooperation with surface proteins (e.g. integrins). TRAF may
influence AKT dynamics in muscle [66, 67]. There may exist some
other unknown modes of actions of OPG in skeletal muscle. Dashed
lines represent potential RANK-RANKL independent interactions.
RANKL may also interact with SFRP1 [68] and LGR4 [69] in skel-
etal muscle

Changes in Muscle Fiber Morphology
and Contractile Properties when the RANK-RANKL
Pathway is Dysregulated

OPG and RANKL inhibition has been shown to benefit the
morphology of myofibers, mostly favouring a more pro-
myogenic state. For example, OPG knock out mice exhibited
reduced CSA of both EDL myofiber and fast-twitch-type
IIb fibers [35] (Table 3), while hFL-OPG-Fc treatment of
C2C12 cells in vitro enhanced the diameter of myotubes,
from which new myofibers are derived [37] (Table 2).
Increased primary mouse myotube diameter following OPG
treatment has also been observed in a different investigation
[48]. hFL-OPG-Fc treatment to CTX muscle injury also sig-
nificantly increased the CSA of soleus muscle fibers, as well
as that of centrally nucleated myofibers, 7 days after injury
[37]. IK22-5 improved the myofiber CSA of gastrocnemius
and soleus muscles in a CS-induced model of COPD [38].
In mdx/utrn™’~ mice, IK22-5 treatment promoted a favour-
able shift in myofiber size, with CSA distribution frequency
revealing a~3-fold reduction in the number of small myofib-
ers (< 500 pum?) accompanied by a significant increase in the
number of intermediate-sized myofibers (2500 pmz) [39]
(Table 3).

Emerging evidence suggests that the fiber composition
of skeletal muscle plays a part in the responsiveness to
alterations in the RANK-RANKL-OPG axis [35], and the
axis may potentially promote fiber-type switching e.g., in
Opg™~ mice, a type I (slow-twitch) to type II (fast-twitch)
switch was observed [41], whereas in huRANKLTg" mice,
denosumab treatment switched type II fibers to type I [22]
(Table 3). Muscles comprising predominantly fast-twitch
fibers (e.g. EDL) display a greater response to changes in
the RANK-RANKL pathway. For example, at 5 months,
Opg™~ mice exhibited significantly reduced contractile
properties of the EDL, whereas, contractile properties of
the predominately slow-twitch soleus muscles were not sig-
nificantly affected [35]. Type I fibers were almost absent
in RANK™° EDL muscles, versus RANK/oxedfloxed ED
In denervated RANK™® EDL muscles, the proportion of
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fast-twitch fibers, specifically IIA, IIB and IIX, were sig-
nificantly increased compared to denervated RANK/oed/floxed
EDL. RANK ablation was shown to preserve the specific
force tension of denervated EDL, but this effect was not
mimicked in slow-twitch soleus muscles [36] (Table 3).

Calcium-mediated Effects

The rapid, beneficial effects of denosumab/RANKL inhibi-
tion on dystrophic symptoms in a case study of facioscapu-
lohumeral muscular dystrophy are unambiguous and have
not been reported in any other clinical cases (Table 1). The
change in medication the patient received (teriparatide to
denosumab) may predicate the potential improvements seen
here [24]. Teriparatide is pro-calcemic, whereas denosumab
is anti-calcemic [53]. Impaired Ca** homeostasis underpins
multiple dystrophic abnormalities [54]. Hence, in this case,
the rapid improvements in dystrophic symptoms could be
attributed to potential alterations in Ca2* flux in the dys-
trophic muscles or in circulation. Investigating denosumab
(acute and rapid blood Ca®* reduction) against bisphos-
phonates (slower and adaptive blood Ca** reduction) may
provide new answers regarding the potential association
between RANKL inhibition and Ca®* signalling in amelio-
rating skeletal muscle dysfunction.

Preclinical work has explored some potential links
between the RANK-RANKL-OPG axis and Ca>" homeosta-
sis in skeletal muscle. Both sham and denervated RANK™*
soleus and EDL muscles exhibited a lower proportion of
fast-twitch fibers expressing sarco/endoplasmic reticulum
Ca’"-ATPase (SERCA)-1a and a higher proportion of fast
twitch fibers expressing SERCA-2a. These results suggest
RANK is a key regulator of SERCA activity and Ca** stor-
age [36]. SERCA regulates Ca>" transport from the cytosol
into the sarcoplasmic reticulum and is important in facili-
tating muscular relaxation post contraction. SERCA-1a is
expressed in fast-twitch skeletal muscle fibers, whereas
SERCA-2a is limited to cardiac and skeletal muscle slow-
twitch muscle fibers [55] (Table 3). It appears that RANKL
signalling has a more noticeable negative effect on fast-
twitch fibers, and its inhibition can potentially influence
SERCA activity, Ca>* flux, and fiber-type switching.

Full-length OPG-Fc has shown to significantly increase
SERCA activity, as measured by ATPase in mdx EDL mus-
cles, over different Ca** concentrations. Muscle RANK
deletion did not influence SERCA activity in this mdx
model. Moreover, full-length OPG-Fc induced a 6-fold sig-
nificant increase in mdx EDL SERCA-2a protein levels, but
not SERCA-1a [40] (Table 3). Alterations to the RANK-
RANKL-OPG axis induce similar effects on SERCA-1a/2a,
in both dystrophic and non-dystrophic muscle, therefore sug-
gesting a common modality of the RANK-RANKL-OPG
axis in skeletal muscle may be Ca?* regulation, which is
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vastly important in the context of skeletal muscle homeo-
stasis [36].

Markers of Inflammation and Skeletal Muscle
Atrophy

The ubiquitin proteasome system has an influential role on
skeletal muscle protein degradation, subsequently regulating
atrophy/hypertrophy pathways. Dysfunction of this system
promotes muscle wasting as seen in age-associated sarco-
penia. Atrogin-1 and MuRF-1 are two E3 ubiquitin ligases
which are defined as major regulators of ubiquitin-mediated
protein degradation in skeletal muscle [56]. Furthermore, as
well as regulating inflammation, NF-kB signalling (a pivotal
target of RANKL-RANK) plays an influential role in skel-
etal muscle atrophy [57]. Collectively, Atrogin-1, MuRF-1
and NF-kB are considered key players in progressive muscle
wasting (Fig. 2).

In the fast-twitch-dominant tibialis anterior (TA) muscle
of Opg™~ mice, MuRF-1 and Atrogin-1 protein levels were
significantly elevated (1.6- and 2-fold higher, respectively)
compared to WT mice. The ratio of active p-NF-kB-p65/
NF-kB-p65 was also significantly higher in Opg™~ mice
(Table 3). The same authors recorded significant increases
in Atrogin-1, MuRF-1 and p-NF-xB-p65 (Ser536) protein
levels in C2C12 myotubes treated with RANKL [35], similar
effects were also seen in [38] (Table 2). siRNA-RANK in
combination with RANKL treatment significantly reduced
these atrophy markers compared to C2C12s treated solely
with RANKL [38] (Table 2). Interestingly, anti-RANKL
(IK22-5) treatment was shown to significantly reduce
MuRF-1, Atrogin-1 and myostatin (a potent negative regu-
lator of skeletal muscle growth) protein levels in the gas-
trocnemius muscle of mice exposed to CS (COPD model).
IK22-5 treatment attenuated inflammation, as shown by a
reduction of p-NF-kB-p65(Ser536)/NF-kB-p65 ratio, TNF-a
and IL-6, in skeletal muscles from CS-exposed mice [38]
(Table 3). Contrasting with this, a recent publication showed
a reduction in MuRF1 (and PTPRG, an anti-myogenic pro-
tein) expression in C2C12 myotubes after 24 h of RANKL
treatment [42], highlighting the puzzling mechanisms of
RANKL signalling in skeletal muscle (Table 2).

OPG-Fc reversed the effects of chronic RANKL exposure
on C2C12 myotubes by blocking NF-«B signalling, as shown
by decreased mRNA expression of Fos, Jun and NFAT,
whilst inducing no effect on apoptotic markers (e.g. Bcl2) or
Ca”" signalling (e.g. Syk). Furthermore, in Pparb™~ mice,
OPG-Fc treatment significantly reduced genes related to
NF-kB signalling (e.g. NFAT and Jun) [22] (Table 3). It
is important to mention here that components and down-
stream targets of RANKL mediated NF-kB signalling may
also be implicated in skeletal muscle atrophy and homeosta-
sis. TRAF6, an E3 ubiquitin ligase, is indispensable during

RANK signal transduction and can also interact with p62/
SQSTMI1 [58]. Loss of TRAF6 activity has been associated
with reduced muscle atrophy in vivo and in vitro [59-61].
P62/SQSTMI, a classical selective autophagy receptor,
also plays a part in the ubiquitin—proteasome system. P62/
SQSTMI1 has shown to accumulate in sarcopenic [62] and
aged [63] skeletal muscle. Hence, RANK-TRAF6-p62/
SQSTMI interactions may provide mechanistic explanation
to some published findings and warrants further exploration.
Moreover, the NFAT family of Ca**-dependent transcrip-
tion factors, particularly NFATc], is a target of RANKL
mediated NF-xB signalling. NFATc1 activity controls fiber
type and is a negative regulator of MyoD (Fig. 1) activity in
skeletal muscle [64]. Interplay between NFAT activity and
Ca”* flux may influence skeletal muscle homeostasis. These
points add to the complexity and ambiguity of the potential
roles of the RANK-RANKL-OPG axis in skeletal muscle
physiology and atrophy dynamics (Fig. 2).

Dystrophic mdx/utrn™~ mice exhibit excessive fibrosis
and inflammation compared to other mdx mouse models.
IK22-5 treatment to mdx/utrn™~ mice has been shown to
significantly reduce serum creatine kinase (35%), areas of
fibrotic damage in the EDL muscle, the number of pro-
inflammatory M1 macrophages (38%) and increase anti-
inflammatory M2 macrophages (132%) [39]. As well as reg-
ulating inflammatory responses, M2 macrophages are also
involved in muscle growth and regeneration [65]. Hamoudi
et al. observed elevated levels of M2 macrophages following
IK22-5 treatment to mdx/utrn™~ mice, indicating potentially
improved muscle regeneration support. IK22-5 significantly
reduced the p-NF-kB-p65(Ser536)/NF-kB-p65 ratio in the
TA muscle of mdx/utrn*’~ mice, suggesting RANKL sig-
nalling in dystrophic muscle promotes inflammation and its
inhibition reduces this [39]. Taken collectively, growing evi-
dence suggests the RANK-RANKL-OPG axis may influence
inflammatory and atrophic pathways, which is also reflected
phenotypically to a degree (refer to Tables 2 and 3).

The Effects of OPG and the RANK-RANKL
Pathway in Cardiac Muscle

A review by Marcadet et al. highlights potential roles of the
RANK-RANKL-OPG axis in cardiac muscle [70]. Here we
add to their discussion. Like skeletal muscle, cardiac muscle
is striated and composed of repeated sarcomeres. Cardio-
myocytes, the active cellular unit of cardiac muscle, function
as a syncytium, contract involuntarily and exhibit branched
fibers [71]. Human recombinant OPG significantly pro-
moted cardiomyocyte hypertrophy and inhibited autophagy,
as shown by a significant reduction in LC3-II expression
(autophagosome formation marker) and increased p62/
SQSTM1 in H9C2 cardiomyocytes. It was also shown that
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OPG (5mg/kg/day) treatment for 7 days significantly stimu-
lated cardiac hypertrophy (as shown by heart/body weight
ratio) in 14-week-old mice. Furthermore, the hypertrophic
effects of OPG were exacerbated by 3-Methyladenine
(autophagy inhibitor) [72]. Contrary to OPG treated young
mice, aged OPG™"~ mice exhibit increased heart and left
ventricle (LV) weight, apoptotic cells and TRAIL activation,
as well as reduced cardiac wall thickness and contractile
function. OPG treatment to OPG ™~ mice partially improved
LV structure and function suggesting OPG may play a role in
preserving myocardial structure and function during aging
[73]. Clinically, OPG levels positively correlated with LV
wall thickness, with authors speculating OPG, via potential
interactions with the renin-angiotensin system, promotes
cardiac hypertrophy [74]. Recently, Marcadet et al. showed
anti-RANKL IK22-5 treatment significantly reduced heart
mass and LV hypertrophy, maintained cardiac function,
and inhibited two mediators of cardiac hypertrophy, NF-xB
and PI3K in mdx mice (versus mdx controls). As well, anti-
RANKL treatment potentially improved Ca** homeostasis
in dystrophic hearts as shown by increased SERCA activity
and increased SERCA2a, RyR and FKBP12 expression [75].

The Role of the OPG-RANKL-RANK Axis
in Neural Tissue

Components of OPG-RANKL-RANK axis have been shown
to be expressed in prominent cell types within neural tis-
sue [7, 8], including microglia [76, 77]. OPG has also been
shown to be highly expressed in spinal cord and cerebrospi-
nal fluid and positively correlates with age in patients with
non-inflammatory neurological diseases [78]. It has been
shown that microglia express Toll-like receptors (TLRs).
RANKL-RANK signalling has the capacity to decrease
TLR3/TLR4 mediated expression of inflammatory mark-
ers e.g., iINOS and cyclo-oxygenase 2. Conversely, TLR4
supresses RANK expression and simultaneously enhances
TLR3, which intensifies pro-inflammatory signalling via
a positive feedback loop. Adding to this, OPG may influ-
ence this pathway and may block pro-apoptotic TRAIL
[77, 79]. An important study by Hanada et al. found that
RANKL-RANK signalling was influential on the central
fever response in inflammation and female thermoregula-
tion in mice [8]. In rodents, RANKL intracerebroventricular
injections triggered a severe fever (whereas intraperitoneal
RANKL injections did not) and OPG alleviated the fever.
Tissue-specific Nestin-Cre and GFAP-Cre rank/** deleter
mice revealed RANK was implicated in the fever response
and was genetically mapped to astrocytes. RANKL induced
fever via the COX2-PGE2/EP3R pathway and activated
brain regions involved in thermoregulation. Furthermore,
impaired fever during pneumonia was observed in two
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children with RANK mutations [8]. As thermogenesis is
metabolically demanding, the RANK-RANKL-OPG axis
could be associated with energy supply and subsequently
glucose metabolism. Hence, the RANK-RANKL-OPG axis
could have additional roles in metabolically demanding tis-
sues (e.g., muscle and liver) and conditions associated with
altered glucose metabolism (e.g., diabetes mellitus, DM).

RANKL Inhibition, a Novel Target to Treat
Diabetes Mellitus?

Patients with Type 2 DM exhibit higher serum OPG levels
[80]. Conversely, in patients with Type 1 DM, plasma OPG
levels were significantly lower and serum RANKL levels
were significantly higher compared to controls [81]. Moreo-
ver, OPG is a useful biomarker in predicting loss of gly-
caemic control and associated deterioration of albuminuria
[82]. Recently, in a large-scale analysis, it was reported that
denosumab treatment was associated with a lower risk of
diabetes incidence in patients with osteoporosis [83].

The RANK-RANKL-OPG axis is expressed in and/or
regulates prominent tissues associated with glucose metab-
olism, including pancreatic islet cells [84], skeletal mus-
cle [22], fat/adipocytes [85] and hepatic tissue/hepatocytes
[86]. Accumulatively, experimental investigations suggest
RANKL signalling is deleterious to glucose homeostasis,
with RANKL signalling increasing skeletal muscle [22] and
hepatic [87, 88] insulin resistance, via NF-xB activation.
It has been speculated that RANKL could induce NF-kB-
inducing kinase, subsequently impairing glucose-stimulated
insulin secretion in human islets [89]. However, in vivo
(OPG™/~mice and WT mice infused with RANKL) and in
vitro (preadipocyte lineage 3T3-L1) investigations showed
the capacity of RANKL to potentiate beige adipocyte dif-
ferentiation. This is important in the context of DM as beige
adipocytes improve insulin responsiveness and lipid and glu-
cose metabolism. OPG deficiency also improved glucose
metabolism when subject to a high-fat diet. Collectively, it
is important to note tissue specific effects of RANKL sig-
nalling on regulating glucose metabolism [85]. Bonnet et
al. showed huRANKLTg" mice exhibit decreased glucose
uptake and increased PTP-RG expression in skeletal mus-
cle, which is associated with inflammation-induced insulin
resistance (Table 3). Furthermore, prolonged RANKL expo-
sure in C2C12s increased phosphorylation of IRS1(ser318),
which is known to downregulate the activity of insulin
receptor 1. This affect was reversed by OPG-Fc treatment
[22] (Table 2). As well, RANKL signalling has been shown
to reduce human and rodent pancreatic f-cell proliferation.
Both OPG and denosumab showed to promote p-cell rep-
lication — mechanistically it was shown that inhibition of
RANKL modulated CREB and GSK3 pathways [84]. More
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recently, it was shown that RANK-TRAF®6 interactions and
subsequent NF-kB activation mediates cytokine-induced
rodent and human f-cell death. Both denosumab and OPG
provided cytotoxicity protection. In nonobese diabetic/Ltj
mice, OPG reduced insulitis, reversed recent-onset T1DM,
increased f-cell mass and proliferation, as well as plasma
insulin and improved glucose homeostasis. Moreover, den-
osumab and OPG reduced human T1DM serum-induced
f-cell cytotoxicity and dysfunction [90].

Conclusion and Future Directions

The RANK-RANKL-OPG axis is a pivotal regulator of bone
homeostasis, and emerging evidence suggests this axis also
plays a role in extra-osseous tissues, with recent publica-
tions suggesting functional involvement in skeletal muscle
homeostasis and pathophysiology. The beneficial effects of
RANKL inhibition on skeletal muscle function and mass in
humans and in vivo, and in vitro models are promising obser-
vations. However, the exact mechanistic actions of OPG
and other means of RANKL inhibition in skeletal muscle
is poorly understood. Adding to this, disparities between
different studies highlight the potential complexity of the
RANK-RANKL-OPG axis in normal, pathological, and
aged skeletal muscle. For example, there lacks robustness
between improvements in falls and muscle parameters in
PMO women and analogous rodent models [16, 22, 23]. As
well, varying effects on atrophy networks in OPG knockout
mouse models indicate the enigmatic function of the RANK-
RANKL-OPG axis in skeletal muscle [35, 41].

There is an urgent need for new pharmaceutical treat-
ments to ameliorate muscle wasting during ageing and in
disease e.g., sarcopenia, cachexia, muscular dystrophies, and
certain myopathies. We encourage further research on the
roles of the RANKL-RANK-OPG axis in skeletal muscle,
particularly on Ca** homeostasis, NF-kB dynamics, myo-
genic potential and atrophy mechanisms (e.g., TRAF6, p62/
SQSTM1 and MuRF1). Utilising different OPG constructs
(e.g. truncated forms vs full-length) in conjunction with and
compared to RANKL inhibitors will help to further elucidate
the exact mechanistic actions in muscle. Increased knowl-
edge of the RANKL-RANK-OPG axis in muscle may pro-
vide novel solutions to improve muscle function and mass,
frailty parameters and/or may contribute to new knowledge
regarding skeletal muscle physiology. Finally, dysregu-
lation of the RANK-RANKL-OPG axis appears to occur
within ageing tissues, especially bone [91]. More research
is warranted to understand how the RANK-RANKL-OPG
axis influences neural and homeostatic regulatory tissues,
especially glucose metabolising organs including muscle,
adipose, the pancreas and the liver, during ageing.
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