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MYCN-amplified RB1 wild-type (MYCNampRB1+/+) retinoblastoma is a rare and aggressive subtype, 
often resistant to standard therapies. Identifying unique MRI features is crucial for diagnosing this 
subtype, as biopsy is not recommended. This study aimed to differentiate MYCNampRB1+/+ from the 
most prevalent RB1-/- retinoblastoma using pretreatment MRI and radiomics. Ninety-eight unilateral 
retinoblastoma patients (19 MYCN cases and 79 matched controls) were included. Tumors on T2-
weighted MR images were manually delineated and validated by experienced radiologists. Radiomics 
analysis extracted 120 features per tumor. Several combinations of feature selection methods, 
oversampling techniques and machine learning (ML) classifiers were evaluated in a repeated fivefold 
cross-validation machine learning pipeline to yield the best-performing prediction model for MYCN. 
The best model used univariate feature selection, data oversampling (duplicating MYCN cases), and 
logistic regression classifier, achieving a mean AUC of 0.78 (SD 0.12). SHAP analysis highlighted lower 
sphericity, higher flatness, and greater gray-level heterogeneity as predictive for MYCNampRB1+/+ 
status, yielding an AUC of 0.81 (SD 0.11). This study shows the potential of MRI-based radiomics to 
distinguish MYCNampRB1+/+ and RB1-/- retinoblastoma subtypes.
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Abbreviations
RB1-/-	� Pathogenic variants in the RB1 gene
MYCNampRB1+/+	� MYCN-amplified RB1 wild-type
MRI	� Magnetic resonance imaging
STARD	� Standards for Reporting Diagnostic accuracy studies
PCA	� Principal component analysis
RFE-LR	� Recursive feature elimination approach using a logistic regression in nested cross-valida-

tion
RFE-RF	� Recursive feature elimination approach using random forest in nested cross-validation
Univariate	� Univariate selection method based on ANOVA testing that retained the top 10 percentile 

features
AUC	� Area under the curve
SD	� Standard deviation
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Retinoblastoma is the most prevalent malignant ocular neoplasm in pediatric patients with an incidence of 
1:17,000 live births and is typically diagnosed before the age of five1. The initiation of tumorigenesis primarily 
involves biallelic inactivation of the RB1 tumor suppressor gene, resulting in RB1-/- retinoblastoma. It has been 
established that distinct molecular subtypes of retinoblastoma exist, offering potential avenues for individualized 
therapeutic interventions2–8.

In 2013 a subtype of retinoblastoma was identified, characterized by a significant amplification of MYCN 
in the tumor without detectable pathogenic variants in the RB1 alleles(MYCNampRB1+/+). In this subtype, 
MYCN amplification was identified as the key driver in initiating retinal tumors, observed in approximately 1–2% 
of retinoblastoma cases9–11. Although MYCN amplifications can also be found in RB1-/- tumors, RB1 wild-type 
(RB1+/+) tumors with MYCN amplification (MYCNampRB1+/+) show a clear inclination and exhibiting unique 
clinical characteristics12,13. A previous study revealed that this MYCNampRB1+/+  retinoblastoma manifests as 
unilateral large tumors at an early age, displaying distinctive histopathological features characterized by poorly 
differentiated neuroblastic cells and limited rosette formations9. Moreover, this subtype demonstrated relative 
resistance to conventional therapeutic interventions14. The diagnosis of retinoblastoma in children under 12 
months of age frequently indicates an inherited condition with increased risk of bilateral disease and subsequent 
significant loss of vision, which enhances efforts to pursue eye-saving therapeutic approaches. However, caution 
must be exercised when considering eye salvage in this aggressive subtype of retinoblastoma. Hence, early 
identification of patients with MYCNampRB1+/+ retinoblastoma holds significant clinical importance, as it may 
facilitate the implementation of a tailored treatment strategy.

Clinical detection of genetic characteristics in retinoblastoma is challenging due to limited availability of 
histopathologic material for molecular testing. Tumor biopsy is contraindicated due to the risks of local tumor 
seeding and metastasis. Additionally, there is a decreasing availability of enucleated specimens as eye-saving 
treatment options are more commonly employed, even in advanced-stage cases15,16. Therefore, the development 
of methods to stratify tumor subtypes in-vivo and implement targeted therapies is crucial. A promising 
technique involves obtaining cell-free tumor DNA from the aqueous humor17, however this approach requires 
an invasive procedure and is not yet in widespread use. Another emerging, and non-invasive technique, 
is magnetic resonance imaging (MRI), which is widely utilized in retinoblastoma for diagnostic support, 
disease staging, and screening for intracranial trilateral disease18–20. Qualitative analysis of MR images showed 
MYCNampRB1+/+  retinoblastoma can be differentiated from the subtype RB-/- retinoblastoma in a case–control 
study with very young unilaterally affected retinoblastoma patients21. The MYCN-amplified RB1  wild-type 
more frequently exhibits specific features such as a peripheral location, peritumoral hemorrhage, subretinal 
hemorrhage with fluid–fluid level and retinal folding with vitreous enclosure21. In addition to qualitative analysis 
of MR images, these same images can be utilized for quantitative data extraction through radiomics—a potential 
tool in oncology research to enhance personalized medicine22. Some exploratory radiomics studies have been 
conducted in the field of retinoblastoma23,24. Notably, Li et al.'s 2022 study demonstrated that their radiomics 
model for predicting postlaminar optic nerve tumor invasion, a significant risk factor for metastasis, surpassed 
radiologists’ assessments in terms of sensitivity. Nevertheless, existing literature concerning the differentiation 
of retinoblastoma subtypes remains limited.

Consequently, the objective of this study was to distinguish MYCNampRB1+/+ retinoblastoma from RB1-/- 
retinoblastoma utilizing quantitative radiomics on pretreatment MR imaging.

Methods
This retrospective multicenter case–control study was conducted in compliance with the STARD (Standards 
for Reporting Diagnostic accuracy studies) checklist and received approval from the institutional review board 
of the Amsterdam UMC. The necessity to obtain informed consent from participants was waived (IRB number 
IRB00002991).

Scientific Reports |        (2024) 14:25103 2| https://doi.org/10.1038/s41598-024-76933-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Patients
This study utilized a patient cohort from a multicenter retrospective case–control study by Jansen et al.21. This 
patients were included from 10 tertiary retinoblastoma referral centers in 5 countries. In that study patients 
were included when 1) retinoblastoma was histopathologically confirmed; 2) unilateral disease; 3) availability 
of pretreatment MR images obtained after 1995 and at least included T1-weighted and T1-weighted contrast-
enhanced MR images, and 4) availability genetic of analysis of tumor material. Cases of MYCNampRB1+/+ 
retinoblastoma subtype were matched with controls (RB1-/- retinoblastoma with proven pathogenic variants in 
both alleles of the RB1 gene) based on age, MRI scan date, and referral site at a ratio of 1:4. If controls could not 
be obtained in the same institution, controls from different institutions were used. The patient cohort consist of 
110 retinoblastoma patients, including 22 MYCNampRB1+/+ retinoblastoma cases and 88 RB1-/-  retinoblastoma 
matched controls. In the current study, patients from the cohort were excluded if no T2-weighted MR images 
were available or if the images could not be processed or analyzed through the radiomics analysis pipeline 
(e.g. if tumor sizes were too small). If an MYCNampRB1+/+ retinoblastoma case was excluded its controls were 
subsequently also deleted.

Quantitative MR imaging feature extraction and statistical methods for predicting MYCN-
status
To enable quantitative feature extraction from MR images, the whole tumors were manually delineated on T2-
weighted MR images using 3D Slicer (Version 4.10.1, MIT, USA). The delineation excluded non-enhancing 
areas of pure retinal detachment and subretinal fluid or hemorrhage. Expert radiologists (P.d.G. and M.d.J.) 
subsequently validated the manual delineations. All image processing and feature calculations were performed 
using the PyRadiomics package (version 3.1.0)25. MR images and delineations were resampled to 2x2x2 mm 
isotropic voxels and discretized using a fixed bin width of 6425. A total of 120 radiomics features were extracted 
from the delineated tumors, which could be divided into three main categories: intensity (n = 19), morphology 
(n = 26), and texture (n = 75). A previously used framework was employed to train a prediction models for 
MYCN-status and evaluate their performance using a cross-validation procedure26.

This pipeline consists of a repeated cross-validation scheme that evaluates different combinations of feature 
selection methods, oversampling techniques, and classifiers to obtain an average classification performance for 
each configuration. Features were scaled using a z-score normalization. To reduce redundancy, features with a 
linear correlation above 0.8 with another feature were removed (removing the feature with the highest average 
correlation with the feature set). Four dimension reduction strategies were used: principal component analysis 
(PCA), recursive feature elimination in nested cross-validation using logistic regression (RFE-LR) and using 
random forests (RFE-RF), and a univariate selection method based the f-statistic from ANOVA (selecting the top 
10 percentile). To address the inherently imbalanced dataset, oversampling of MYCNampRB1+/+ retinoblastoma 
cases was applied using duplication of cases and interpolation (SMOTE). Two classifiers were evaluated: a 
logistic regression classifier (with L1 regularization) and a random forest classifier27. Model hyperparameters 
were optimized in nested cross-validation. For each combination of the aforementioned methods, a stratified 
repeated fivefold cross-validation approach was used to assess model generalizability. In every cross-validation 
fold, the model was trained on 80% of the samples and validated on the holdout subset of 20% of the samples. 
The fivefold cross-validation was repeated twenty times to further limit chance findings. Model performance 
was evaluated using the receiver-operator characteristic curve area-under-the-curve (AUC) was generated. The 
average AUC (with standard deviation [SD]) was calculated across the cross-validation iterations. The Brier 
score loss was calculated to additionally assess model calibration (0.0 being optimal28). For the best-performing 
combination of methods, the contribution of individual features to predictions were evaluated by calculating the 
SHAP values from a model trained on the whole dataset29. To assess whether the best-performing combination 
of methods exhibited significant performance beyond chance, random permutations were conducted. the 
repeated cross-validation procedure was repeated 1000 time using randomly shuffled labels, generating 1000 
mean (cross-validated) AUCs representative of “random guessing”. The resulting p  value was defined as the 
fraction of repeated cross-validation iterations where the permutation mean AUC equaled or exceeded the 
observed mean AUC30. A schematic flowchart is shown in Fig. 1.

Results
Patients
Out of 110 patients in the cohort, 98 (89%) were included. Baseline characteristics of the patients are shown 
in Table 1 and examples of a case (MYCNampRB1+/+ retinoblastoma) and a control (RB1-/- retinoblastoma) are 
shown in Fig. 2. A summary of MR imaging parameters can be found in Table S1. Twelve patients could not be 
evaluated: 1) one MYCNampRB1+/+ patient had extensive extra-ocular disease outside of the analysis frame; 2) 
one MYCNampRB1+/+ patient had no T2-weighted imaging; 3) eight matched control patients were subsequently 
excluded along with the abovementioned two MYCNampRB1+/+ patients, and 4) two other control scans showed 
tumors with diameters below 5.38 mm and volume less than 63 mm3 which were too small for PyRadiomics 
evaluation after resampling.

Classification performance
The best-performing combinations of methods was constructed by univariate feature selection, duplication of 
the MYCN features as means of oversampling, and logistic regression as classifier resulting in a mean AUC of 
0.78 (SD 0.12; p = 0.001) with a mean Brier score of 0.20 (SD 0.05). The other combinations of methods had 
AUCs ranging 0.60 (SD 0.15) to 0.78 (SD 0.12). Performance of all radiomics models is shown in Table 2. For 
the best-performing combinations of methods, the SHAP values of the individual features are shown in Fig. 3. 
Of these three features, none were within the intensity category, two (66%) within the morphology category, 
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Fig. 1.  Work flowchart of the study. (1) Manual delineation of the whole-tumor and validated by expert 
radiologists; (2) Processing data through PyRadiomics (version 3.1.0). (2.1) Resampling of MR imaging to 
2×2×2 mm isotropic voxels and discretization by a 64 fixed bin. (2.2) Extracting 120 radiomics features divided 
into three categories: intensity (n = 19), morphology (n = 26), texture (n = 76); 3) Schematic framework of the 
creation of prediction models for MYCN-status utilizing different combinations of feature selection methods, 
oversampling techniques, and classifiers; (4) Selection and evaluation of the best-performing model. (4.1) 
Selection of the best-performing model by the highest mean AUC after the fivefold cross-validation which 
was 20 times repeated. (4.2) Evaluating the highest selected model by “random guessing” in which the original 
mean AUC was compared to permuted mean AUC. The permuted mean AUC was calculated by randomly 
shuffling the MYCN status and using it as input in the fivefold cross-validation which was repeated 20 times. 
This shuffling and 20 times repeated fivefold cross-validation was repeated 1000 times to obtain the permuted 
mean AUC.
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and one (33%) within the texture category. The morphology features were sphericity (morphologic resemblance 
to a sphere) and flatness, indicating that MYCNampRB1+/+ tumors were less spherical and were flatter compared 
to RB1-/- retinoblastoma. The selected texture feature was gray level non uniformity indicating MYCNampRB1+/+ 
tumors were more heterogeneous in terms of gray level distribution. Using these three features with logistic 
regression yielded a mean cross-validation AUC of 0.81 (SD 0.11).

Discussion
Due to their aggressive nature and relative resistance to typical chemotherapy approaches, identification of 
patients with MYCN-amplified RB1 wild-type (MYCNampRB1+/+) retinoblastoma might be clinically valuable in 
the future, although current treatment guidelines are not yet stratified according to genetic somatic alterations. 
As tissue biopsy is not considered safe in retinoblastoma, we sought to determine whether quantitative analysis 
of MR imaging could be used to identify this rare retinoblastoma subtype. However, there are promising results 
regarding aqueous humor liquid biopsy as a surrogate for tumor biopsy31. The various radiomics models based 
on the pretreatment T2-weighted MR images showed that MYCNampRB1+/+ and RB1-/- retinoblastoma patients 
could be differentiated with an AUC of at least 0.60 up until 0.78. Eventually, the models could supplement 
the known clinical, ophthalmologic and qualitative MR imaging findings for pretreatment recognition of 
MYCNampRB1+/+ retinoblastoma.

The use of radiomics analyses in research on retinoblastoma is scarce and only a limited number of published 
studies successfully used quantitative image analysis of retinoblastoma. A recent study investigating the 
ability of MR imaging-based radiomics features of the tumor to differentiate retinoblastoma with and without 
postlaminar optic nerve invasion resulted in a model with an AUC of 0.8424. In that study, a total of 2058 
features were extracted and after feature selection only nine strongly correlated MRI features remained and were 
implemented in their prognostic model. Though individually appraising radiomics features is challenging, all of 
the features in our model could be linked to the tumor characteristics of MYCNampRB1+/+ on MRI as reported 
by Jansen et al21. The two morphological features, sphericity and flatness, were respectively lower and higher in 
MYCNampRB1+/+ tumors compared to RB1-/- controls, indicating that the MYCNampRB1+/+ tumors were less 
spherical and more flat. This is consistent with the qualitative observations by Jansen et al. showing a more 
diffuse growth pattern in MYCNampRB1+/+ tumors versus the bulkier mass lesions in RB1-/- tumors21. The texture 
feature in our model, gray level non uniformity was found to be higher in MYCNampRB1+/+ retinoblastoma 
compared to RB1-/- controls. This suggests an increased variability in grey levels within MYCNampRB1+/+ tumors 
as a sign of intratumoral heterogeneity, which could be related to the more aggressive nature of this subtype 

Fig. 2.  MRI phenotype MYCN-amplified RB1 wild-type (MYCNampRB1+/+) retinoblastoma versus 
RB1 pathogenic variation (RB1−/−) retinoblastoma. (A) Axial 2D T2-weighted MR image of a 42-month-old 
patient with MYCNampRB1+/+ retinoblastoma. The tumor has a diffuse growth pattern and is plaque shaped. 
Also, the intensity in the tumor varies greatly. (B) Axial 2D T2-weighted MR image of a 35-month-old patient 
with RB1−/− retinoblastoma. The tumor has an endophytic growth pattern and is dome shaped.

 

Total patients Cases (MYCNampRB1+/+ retinoblastoma)
Controls (RB1-/- 

retinoblastoma) p value

Patients n (%) 98 20 (20%) 78 (80%)

Female sex n (%) 44 (45%) 7 (35%) 37 (47%) .440†

Laterality (left eye) n (%) 49 (50%) 9 (45%) 40 (51%) .803†

Age in months at scan date; median, [IRQ], (range) 8 [5-12], (0-67) 7 [4-8], (3-42) 9 [5-13], (0-67) .059§

MRI examination year, median [IRQ], (range) 2011 [2007–2015], (2001–2021) 2014 [2009–2017], (2002–2021) 2011 [2006–2015], (2001–2021) .546§

Table 1.  Patient demographics. p values were derived from † Fisher’s exact test or § Mann Whitney U –test.
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Fig. 3.  All features in the best-performing model with univariate feature selecting, duplicate scaling, and a 
logistic regression as classifier. Features in three categories were assessed: Intensity features, texture features 
and morphology features. Intensity features comprised of first order statistics [19 features]. Morphology 
features comprised of shaped-based 2D features [10 features] and 3D features [16 features]. Texture features 
comprised on features based on gray-level co-occurrence matrices (GLCM) [24 features], gray-level run length 
matrices (GLRLM) [16 features], gray-level size zone matrices (GLSZM) [16 features], neighborhood gray-
tone difference matrices (NGTDM) [5 features], and gray-level dependence matrices (GLDM) [14 features]. 
Original_shape_Sphericity = original shape sphericity; original_shape_Flatness = original shape flatness; 
original_glszm_GrayLevelNonUniformity = Original glszm gray level non uniformity.

 

Feature selection Oversampling Classifier Mean AUC AUC SD Mean brier score Brier score SD

Univariate Duplicate Logistic Regression 0.78 0.12 0.20 0.05

Univariate Interpolate Logistic Regression 0.78 0.12 0.20 0.05

Univariate None Logistic Regression 0.77 0.12 0.15 0.03

RFE-RF None Logistic Regression 0.76 0.12 0.15 0.03

RFE-RF Duplicate Logistic Regression 0.76 0.13 0.21 0.05

RFE-RF Interpolate Logistic Regression 0.75 0.13 0.21 0.05

RFE-LR Duplicate Logistic Regression 0.75 0.15 0.22 0.06

RFE-LR None Logistic Regression 0.74 0.15 0.16 0.05

RFE-LR Interpolate Logistic Regression 0.74 0.15 0.22 0.06

RFE-LR None Random Forest 0.66 0.13 0.16 0.03

RFE-LR Duplicate Random Forest 0.65 0.13 0.17 0.03

PCA Duplicate Logistic Regression 0.64 0.15 0.23 0.04

RFE-RF None Random Forest 0.64 0.13 0.16 0.03

PCA Interpolate Logistic Regression 0.64 0.15 0.23 0.05

PCA Interpolate Random Forest 0.64 0.15 0.18 0.04

PCA Duplicate Random Forest 0.64 0.15 0.17 0.03

RFE-RF Duplicate Random Forest 0.64 0.13 0.17 0.03

Univariate Interpolate Random Forest 0.64 0.14 0.21 0.05

RFE-LR Interpolate Random Forest 0.63 0.14 0.18 0.03

RFE-RF Interpolate Random Forest 0.63 0.13 0.18 0.03

PCA None Logistic Regression 0.63 0.15 0.19 0.04

PCA None Random Forest 0.63 0.16 0.16 0.03

Univariate None Random Forest 0.62 0.15 0.17 0.04

Univariate Duplicate Random Forest 0.60 0.15 0.19 0.05

Table 2.  Radiomics models predicting MYCN-status. Results from all cross-validation analyses (PCA: 
principal component analysis; RFE-RF: a recursive feature elimination approach using a random forest in 
nested cross-validation; Univariate: a univariate selection method based on ANOVA testing that retained the 
top 10 percentile features; AUC: area under the curve; SD: standard deviation; Brier score assesses the model 
calibration and refinement [0.0 being optimal]).
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of retinoblastoma. Notably, this is in line with two recently identified features of peritumoral hemorrhage and 
subretinal hemorrhage associated with the fast-growing MYCNampRB1+/+  tumors21. This correlation between 
qualitative features and quantitative features strengthens the suggestion that radiomics models may well become 
powerful supportive tools for subtype recognition in retinoblastoma, especially when predictive models combine 
clinical characteristics and ophthalmological and qualitative radiological features.

There were several limitations of this study. The subtype MYCNampRB1+/+ is rare and cases with MR 
imaging available world-wide are limited and MR imaging acquisition protocols and quality varied within and 
between centers. Another consequence of the rarity of this tumor subtype was the unavailability of a separate 
validation cohort for the current study. To address this, a fivefold cross-validation was used to assess model 
generalization. Also, the case–control design of the study might have inflated the accuracy results, as there was 
an overrepresentation of MYCNcases in the study setting compared to clinical practice32. Last, some of the 
strong clinical predictors of MYCNampRB1+/+ such as a young-age at presentation and unilaterality could not 
be incorporated in our analyses due to the case–control study design9. Combination of these strong clinical 
predictors with the quantitative features obtained through radiomics might result in an even an better prediction 
of higher AUC for predicting MYCN status.

In conclusion, this study demonstrated the feasibility of distinguishing between MYCNampRB1+/+ and RB1-/- 
tumors using quantitative imaging analysis. Facilitating early detection of this more aggressive retinoblastoma 
subtype, MYCNampRB1+/+, and may aid in selecting personalized treatments, ultimately improving future 
outcomes.

Data Availability
 The data that support the findings of this study are not openly available due to reasons of sensitivity and are 
available from the corresponding author upon reasonable request, only if permission of the providing center is 
obtained.
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