
Article https://doi.org/10.1038/s41467-024-53227-z

Overloading And unpacKing (OAK) - droplet-
based combinatorial indexing for ultra-high
throughput single-cell multiomic profiling

Bing Wu1, Hayley M. Bennett 1, Xin Ye2, Akshayalakshmi Sridhar3,
Celine Eidenschenk4, Christine Everett4, Evgeniya V. Nazarova5, Hsu-Hsin Chen3,
Ivana K. Kim 6, Margaret Deangelis7, Leah A. Owen8, Cynthia Chen1, Julia Lau1,
Minyi Shi1, Jessica M. Lund1, Ana Xavier-Magalhães1, Neha Patel1, Yuxin Liang1,
Zora Modrusan1 & Spyros Darmanis 1

Multiomic profiling of single cells by sequencing is a powerful technique for
investigating cellular diversity. Existing droplet-based microfluidic methods
produce many cell-free droplets, underutilizing bead barcodes and reagents.
Combinatorial indexing on microplates is more efficient for barcoding but
labor-intensive. Here we present Overloading And unpacKing (OAK), which
uses a droplet-based barcoding system for initial compartmentalization fol-
lowed by a second aliquoting round to achieve combinatorial indexing. We
demonstrateOAK’s versatilitywith single-cell RNA sequencing aswell as paired
single-nucleus RNA sequencing and accessible chromatin profiling.We further
showcase OAK’s performance on complex samples, including differentiated
bronchial epithelial cells and primary retinal tissue. Finally, we examine tran-
scriptomic responses of over 400,000 melanoma cells to a RAF inhibitor,
belvarafenib, discovering a rare resistant cell population (0.12%). OAK’s ultra-
high throughput, broad compatibility, high sensitivity, and simplified proce-
dures make it a powerful tool for large-scale molecular analysis, even for
rare cells.

The technological landscape of single-cell sequencing is rapidly evol-
ving, encompassing newly developed methods1–4 that offer an unpre-
cedented view of cellular heterogeneity. This technical evolution is
fueled by the need to achieve more precise cell type or state identifi-
cation, capture rare cell states or cellular lineages, and conduct com-
prehensive perturbation screens for new drug target discovery, all of
which have steered technological development toward analyzing a
greater number of cells at a reduced cost.

Droplet-based microfluidic approaches co-encapsulate a bar-
coded bead and a cell within an emulsion to enable parallel analysis of
thousands of individual cells5–7. These methods constitute an impor-
tant advancement in streamlining high-throughput single-cell
sequencing. However, the low cell concentration required tominimize
the number of multi-cell droplets leads to a large number of cell-free
droplets and a largely underutilized barcoding capacity. Alternatively,
combinatorial indexing on microwell plates8–13 provides a strategy for
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barcoding over 100,000 cells. However, this ultra-high throughput
approach comes with long and laborious protocols, involvingmultiple
rounds of splitting and pooling cells for indexing.

Inspired by the strengths and limitations of these two families of
single-cell sequencing methods, we develop OAK which utilizes the
Chromiummicrofluidic system to replacemicro-well plates in the first
step of split-and-pool for combinatorial indexing, to achieve both
elevated throughput and experimental simplicity. With OAK we mea-
sure gene expression, accessible chromatin, and antibody conjugated
oligonucleotides, either separately or jointly. Using OAK, we perform
paired single-nucleus RNA sequencing (snRNA-Seq) and single-nucleus
Assay for Transposase Accessible Chromatin with sequencing (snA-
TAC-Seq) on complex retinal tissue. Furthermore, we conduct a line-
age tracing experiment capturing RNA and lineage barcodes for over
400,000 cells, revealing the longitudinal response of melanoma cells
to a RAF inhibitor, belvarafenib.

Results
Principles and performance of OAK
OAK relies on fixed cells or nuclei which serve as individualized reac-
tion chambers for two rounds of indexing (Fig. 1a). The first round is
performed in droplets, for which we utilized a commercially available
system, the Chromium system by 10x Genomics. In this and other
droplet-based single-cell sequencing systems5–7,14, conventionally cells
are loaded at a low concentration to minimize the possibility of
encapsulating multiple cells within a single droplet. Based on the
Poisson distribution, this is estimated to result in over 80% of droplets
devoid of a cell (Fig. 1b), leaving their barcoding potential untapped
and themajority of reagents unused. To efficiently utilize the droplets,
we overloaded the microfluidic chip in the Chromium system, result-
ing in reduced percentage of cell-free droplets, concomitant with the
increase of single- and multi-cell droplets (Fig. 1b). To resolve single
cells in multi-cell droplets, after the first round of indexing mediated
by in-situ reverse transcription of mRNA, we unpacked droplets by
breaking emulsions and retrieving the fixed cells (Supplementary
Fig. 1a). As a result, encapsulated cells are recovered, mixed, and then
randomly distributed into multiple aliquots. The number of aliquots
can be tuned based on the scale of cell loading and the number of
droplets generated by the microfluidic system, in order to achieve a
desirable theoretical multiplet rate (Supplementary Fig. 1b). Each ali-
quot receives a unique secondary index integrated to each cDNA
molecule that already carries primary indexes coming from droplets
(Fig. 1a). A desired number of aliquots are then converted into sub-
libraries for sequencing (see “Methods”). In the sequencing data, the
combination of the initial droplet index and the secondary index is
used to identify single cells.

First, to assess the impact of cell overloading, we performed
parallel experiments where channels on the microfluidic chip were
loaded with 150,000 and 450,000 methanol-fixed cells respectively
(Fig. 1c). After sequencing a subset of cells from each experiment, we
projected that by sequencing all aliquots we could potentially recover
87,864 cells fromthe 150,000-cell loading (59% recovery), and223,680
cells from the 450,000-cell loading (50% recovery) (Fig. 1c, Supple-
mentary Table 1). This represents a high efficiency of cell recovery
compared to previously published ultra-high throughputmethods11,13,15

(Supplementary Fig. 1c). At the same sequencing depth per cell, more
genes per cell were detected when 150,000 cells were loaded com-
pared to 450,000 cells (Figs. 1d, e). The input cells consisted of a 1:1
mixtureof amouse (NIH/3T3) and ahuman (K562) cell line, enablingus
to identify collision events when a mouse and a human cell share the
same combinatorial indices. When loading 150,000 cells, we detected
3.3% cells to be mix-species multiplets, indicating an overall multiplet
rate of 6.6% to include the unobservable multiplets within the same
species (Supplementary Fig. 1d). This overall multiplet rate closely
aligns with the theoretical expected collision rate for the number of

secondary indexing aliquots (n = 12) generated (Supplementary Fig. 1b,
Supplementary Table1). At the higher loading of 450,000 cells, while
we recovered a higher number of cells (Fig. 1c), the overall multiplet
rate was 10.6% (Supplementary Fig. 1d). In summary, OAK is flexible to
operate with a broad spectrumof loaded cell quantities. The choice on
the number of cells to load should be guided by research objectives,
balancing between detection sensitivity and cell yield.

Next, we benchmarked OAK to the widely used 10x Genomics’
Chromium NextGEM 3’ v3.1 scRNA-Seq procedure (standard
Chromium)7. From the 150,000 cells loaded, OAKdemonstrated an over
eightfold increase in throughput (Fig.1c) compared to the standard
Chromium procedure, which recovers up to 10,000 cells per channel.
With a matched sequencing depth of ~15,000 reads per cell, OAK
detected a mean of 3014 genes per cell for the K562 cell line, while the
standardChromiumdetected 3,905 genes indicating amild reduction in
sensitivity by OAK (Fig. 1f). Further investigation into the gene detection
difference revealed that reduced detection primarily occurred for the
lowly expressed genes (Supplementary Fig. 1e). In addition, OAK
exhibited a lower percentage of reads that map to mitochondrial DNA
(Supplementary Fig. 1f), which is likely attributed to the methanol-
fixation and itsmembrane permeabilization effect that led to partial loss
of mitochondria as well as cytoplasmic RNA. This was supported by the
higher percentage of readsmapping to intronic regions (Supplementary
Fig. 1g), which is a feature shared by snRNA-Seq and combinatorial
indexing methods12,16. Such intronic molecules are also indicative of
transcript abundance, since their counts, quantified using unique
molecular identifiers (UMIs), are highly correlated with the counts of
exonic molecules from the same gene (spearman correlation =0.65,
Supplementary Fig. 1h). Overall, a strong correlation between OAK and
the standard Chromium method was observed in terms of mean num-
ber of UMIs across cells for each gene (Spearman correlation coeffi-
cient =0.92, Supplementary Fig. 1i). We also compared OAK with
previously published ultra-high throughput single-cell methods,
including sci-RNA-seq9, SPLiT-seq11, sci-CAR10, Paired-seq13, and scifi-RNA-
seq15. OAK outperformed these methods by providing higher sensitivity
as measured by number of genes (Figs. 1f, g) and transcripts (UMIs)
detected per cell (Supplementary Figs. 1j, k).

Leveraging ultra-high throughput for sample multiplexing
Since OAK enables profiling of hundreds of thousands of cells, it is
suitable for experiments that aim to process many different samples,
donors and conditions. In such experiments, cell hashing with bar-
coded antibodies is frequently used for sample multiplexing as it
enables pooling of cells from different sources for single-cell profiling,
streamlining workflows and reducing experimental cost17. Cell hashing
by itself enables moderate overloading, asmultiplets can be identified
by themix of hashing antibodies present; however, unlike inOAK, data
from thesemultiplet droplets is not usable. To take advantageofOAK’s
ultra-high throughput combined with sample multiplexing, we eval-
uated antibody hashing using human bronchial epithelial cells differ-
entiated in transwell plates. We used the same sample of antibody
stained cells and processed it with OAK and standard Chromium, and
asked whether cell assignment was comparable. In the OAK workflow,
cells were fixed in methanol after staining, whereas in the standard
Chromiumworkflow the cells were notfixed.We sequenced4out of 22
aliquots obtaining 8096 cells, and projected that the total recovery
from OAK would be 44,528 cells if all aliquots were sequenced (Sup-
plementary Table1). We found that 80% of cells were assigned a
hashtag identity in OAK, compared to 81% in the standard Chromium.
Furthermore, we found a strong correlation (Pearson correlation
coefficient = 0.98, Fig. 1h) in the abundance of each hashtag between
OAK and standard Chromium. We then clustered cells based on gene
expression (Supplementary Fig. 1l). After cell annotation, all expected
cell types were present in both data sets at very similar proportions
(Supplementary Fig. 1m). Therefore, OAK was compatible with the cell
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Fig. 1 | Principle and performance of OAK in single cell profiling of multiple
molecular modalities. a Schematic of OAK’s scRNA-Seq workflow. mRNA hybri-
dizes with poly-dT oligos within droplets in fixed cells or nuclei. Following reverse
transcription and emulsion break, cells/nuclei are pooled and re-distributed into
aliquots for secondary indexing via PCR. TSO: template switch oligo. pR1: primer
binding sequence for TrueSeq Read 1. Schematic created in BioRender. Darmanis,
S. (2023) BioRender.com/w63n572b Simulation of droplets containing zero (blue),
one (magenta), andmore than one (yellow) cell, at various cell numbers loaded per
channel. Pink and green indicate cell number ranges in regular ChromiumandOAK,
respectively. c OAK results at different cells per channel. Image scale bars: 75 µm.
Mean cells per droplet with 95% confidence margins of error are presented. d-e,
Number of genes inK562 (d) andNIH/3T3 cells (e) vs. readsper cell. Green: 150,000
cells loaded; yellow: 450,000 cells loaded, same as in c. f-g, Number of genes in
K562 (f) and NIH/3T3 cells (g). ~15000 reads per cell. Boxplots: center lines are

medians; limits denote Q1 (lower) and Q3 (higher) quartiles; whiskers extend to 1.5
times the interquartile range (IQR) or last data points if within limits. K562: regular
Chromium NextGEM 3’ RNA-Seq, n = 6022; OAK scRNA-Seq with 150,000 cells
loaded, n = 3647; scifi-RNA-seq15, n = 1617. NIH/3T3: OAK scRNA-Seq with 150,000
cells loaded, n = 691; sci-RNA-seq9, SPLiT-seq11, sci-CAR10, and Paired-seq13, n = 868
each. h Percentage of human bronchial epithelial cells assigned to each sample
hashtag (n = 9) by standard Chromium and OAK. Each dot is a sample hashtag.
i Percentage of fragments overlapping TSS. Chromium: Chromium’s standard
Multiome ATAC + Gene Expression, n = 4484; OAK_FA: OAK’s multiome with for-
maldehyde (FA), n = 1835; OAK_MeOH: OAK’smultiome with methanol (MeOH),
n = 2903. Boxplots: center lines are medians; limits denote Q1 and Q3; whiskers
extend to 1.5 times IQR or last data points if within limits. j–k, Number of genes (j)
and ATAC fragments (k) using OAK with FA or MeOH, or Chromium’s standard
multiome. Source data are provided as a Source Data file.
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hashing approach for sample multiplexing, and furthermore did not
introduce any biases in cellular composition.

Flexibility in multimodal single cell profiling
We next investigated whether OAK can perform paired profiling of
transcriptome and chromatin accessibility. Since the beads from the
Chromium Next GEM Single Cell Multiome kit readily provide bar-
coding capacity for both mRNA and ATAC fragments, only adjust-
ments in secondary indexing primers were necessary to make OAK
compatible with the Chromium multiome workflow (Supplementary
Fig. 1n). In order to identify a suitablefixative for paired snRNA-Seq and
snATAC-Seq, we evaluated methanol and formaldehyde fixation with
K562 cells. Compared to formaldehyde fixation, methanol fixation led
to a lower transcription start site (TSS) fragment percentage in the
sequencing data (Fig. 1i), likely due to methanol’s chromatin denatur-
ing effect. Formaldehyde fixation generated high quality gene
expression data (Fig. 1j) and chromatin accessibility data for K562 cells
(Figs. 1i, k). These results underscore OAK’s adaptability in supporting
multiple molecular modalities.

Paired snRNA-Seq and snATAC-Seq for human retinal cells
Acommon scenario in collecting single-cell data from tissue, is that the
most abundant cell types are orders of magnitude higher than the
rarest cell types. A couple of examples include recovering neurons
from the enteric nervous system, where they represent less than 1% of
colon cells18, or tuft cells which represent 0.2% of dissociated lung
cells19. The human retina is another example of a primary tissue with
high cellular heterogeneity and disproportionate representation of
various cell types. Effectively capturing all cellular subtypes is key to
understanding the health and disease of the eye; however, the over-
whelming presence of rod photoreceptors (around 60% of cells) often
impedes the efficient recovery of other cells, such as retinal ganglion
cells (less than 1%). Some techniques can be employed for depleting
rod cells, however this adds experimental complexity and may unin-
tentionally affect representation of other cell types, for example
depletion of bipolar cells20. Utilizing amethod such as OAK to perform
paired snRNA-Seq and snATAC-Seq on retinal samples enables gen-
eration of large-scale high-resolution data from these precious sam-
ples, which are obtained only from careful dissection of post-mortem
donations.

We transposed 100,000 formaldehyde-fixed peripheral retinal
nuclei for overloading (see “Methods”). We recovered snATAC-Seq
data from 42,632 nuclei, and snRNA-Seq data from 46,487 nuclei, with
an overlap for 40,691 nuclei (Supplementary Table2). In parallel we ran
a standard Chromium multiome workflow on unfixed nuclei from the
same sample and retrieved snATAC-Seqdata from5,655nuclei, snRNA-
Seq from6510nuclei, with anoverlap of 5551 nuclei. InOAK snRNA-Seq
data we observed a mean of 1,666 genes per cell, compared to 2029
genes in the standard Chromium data (Supplementary Fig. 2a). In OAK
snATAC-Seq data we observed a mean of 12,539 fragments per cell
compared to 14,217 in standard Chromium data (Supplementary
Fig. 2b). In the snATAC-Seq data we observed a mean transcription
start site (TSS) enrichment of 14.71 (Supplementary Fig. 2c) and an
expected fragment distribution pattern (Supplementary Fig. 2d).

Using the snRNA-Seq data we clustered and annotated the main
cell types of the retina based on knownmarker genes (Supplementary
Fig. 2e, Fig. 2a). With a single donor sample, we obtained thousands of
rod, cone, Müller glia, amacrine and bipolar cells, as well as hundreds
of horizontal cells, astrocytes and retinal ganglion cells, representing
the major cell types of the retina20–22. We used the snRNA-Seq anno-
tations with the OAK snATAC-Seq data (Supplementary Fig. 2f) to call
open chromatin regions (OCRs) in each cell subtype (Fig. 2b, Supple-
mentary Fig. 2g). We found unique OCR signatures even for the least
abundant cell types, including retinal ganglion cells and astrocytes23.
Peaks called were primarily in intronic and promoter regions as

expected (Supplementary Fig. 2h). Looking in more detail at the
chromatin peaks in specific cell types we observed differential chro-
matin accessibility in ARR3 in cone cells (Fig. 2c), and DOK5 in DB5
bipolar cells (Fig. 2d), consistent with previous findings21.

Utilizing paired snRNA-Seq and snATAC-Seq data, we identified
putative candidates for master regulators in the different cell types
using Epiregulon24 (Fig. 2e). Epiregulon infers regulatory elements to
target genes based on correlated gene expression and chromatin
accessibility in clustered cells, matching these elements to known
transcription factor binding sites from repositories of public CHIP-Seq
data. As a proxy for the strength of the interaction, Epiregulon uses the
correlation between transcription factor expression and target gene
expression. We plotted the activity for each transcription factor based
on the expression of target genes combined with the strength of reg-
ulation. We identified elevated BLIMP1/PRDM1 regulation activity in
cone cells (Fig. 2e), previously found to be transiently expressed in
developing photoreceptors, likely preventing bipolar cell fate25.
Another example of expected transcription factor activity is of the
ONECUT1 and ONECUT2 paralogs activated downstream of PAX6
(Fig. 2e), previously found to be important in the differentiation and
maintenance of horizontal cells26. Many functional roles of transcrip-
tion factors in the human retina have been identified by studying early
development in analogous animalmodels or in organoids27. Multiomic
data generated from post-mitotic cells, as obtained from this retinal
sample, offers an intriguing window into ongoing regulation of gene
activity decades after initial differentiation events. Obtaining this type
of data is especially valuable when considering potential treatments
for age-related eye diseases.

Melanoma resistance to RAF inhibitor belvarafenib
Understanding therapy response and resistance in cancer is crucial for
improving treatment outcomes. Belvarafenib is a pan-RAF inhibitor
with clinical activity in melanoma28. Resistance to belvarafenib arises
spontaneously in IPC-298 cells at low frequency28. To track emergence
of these rare events that could be as infrequent as 0.1%, processing a
substantial cell population is necessary to ensure sufficient repre-
sentation of the resistant lineages at baseline. By leveraging the high-
throughput capabilities of OAK and a lineage tracing technique29, we
examined the transcriptomic response of IPC-298melanoma cells to a
90-day treatment course with vemurafenib at multiple time points
including Day 0, Day 10, Day 20, and Day 90.

We transduced IPC-298 cells with a lentivirus-based library con-
taining 100,000 unique barcode sequences for lineage tracing29. A
subsample of 1000 transduced cells, each expected to carry a unique
lineage barcode, was expanded. Prior to belvarafenib treatment (Day
0), we collected transcriptomic profiles and lineage barcodes from
144,300 methanol-fixed cells (Fig. 3a). The representation of each
lineage within the single-cell data displayed a strong correlation with
the quantity of reads in bulk sequencing data (Spearman correlation
coefficient = 0.93, Supplementary Fig. 3a), confirming accurate lineage
recovery with OAK. Furthermore, as the sequenced population of cells
increased, the extent of correlation between the single cell data and
bulk data also increased (Supplementary Fig. 3b), emphasizing the
benefit of sampling a high number of cells in systems with such a high
lineage diversity.

Next, we collected samples on Day 10 and Day 20 of belvarafenib
treatment (Fig. 3a). Five lineages demonstrated over tenfold increase
in their relative abundance from Day 0 to Day 20, and therefore were
categorized as enriched lineages that are drug tolerant (Fig. 3b).
Conversely, 61 lineages, each representing less than 1%ofDay20’s total
cells, were defined as depleted lineages (Fig. 3b). After Day 20, as the
number of cells continued to decrease, we observed the emergence of
a belvarafenib-resistant clone among the five enriched lineages (Sup-
plementary Fig. 3c). This clone underwent expansion from a single
colony on the plate, and accounted for all of the captured cells on Day
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Fig. 2 | OAK paired snRNA-Seq and snATAC-Seq on the human peripheral
retina. a Uniform Manifold Approximation and Projection (UMAP) of snRNA-Seq
data with table of number and percentage of each cell type. The color of the dot in
the table indicates the position in the UMAP. b Heatmap displaying OCRs in each
cell type. c Chromatin tracks in major cell types for the genomic region spanning
the ARR3 gene with a Ridge plot (expression values are normalized and log

transformed) indicating gene expression of ARR3 from snRNA-Seq data.
dChromatin tracks in bipolar cell types for the genomic region including the TSS of
DOK5, with a Ridge plot indicating DOK5 expression level. e Significant transcrip-
tion factors by weighted gene activity for each major cell type. Differential activity
was determined using a one-sided t-test adjusted formultiple comparisons. Source
data are provided as a Source Data file.
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90 (Fig. 3a). Consistent with previous characterization of belvarafenib
resistance28, this resistant clone only accounted for 0.12% of the cells
on Day 0 (Fig. 3a). Thus, cells of that lineage could only be captured
with sufficient representation through massive-scale sampling tech-
niques such as OAK. Specifically, for Day 0, we performed stepwise
sequencing of sub-libraries, until enough cells from this lineage were

recovered for downstream analysis (Supplementary Fig. 3d), and suf-
ficient lineage diversity was achieved (Supplementary Fig. 3e).

To interrogate the transcriptional features associated with drug-
tolerance, we looked for marker genes that distinguish the enriched
and the depleted lineages on Day 20. We found Fibronectin 1 (FN1)
among the overexpressed genes in the enriched lineages (Fig. 3c).

Fig. 3 | OAK single-cell lineage tracing and transcriptome profiling for mela-
noma cells during belvarafenib treatment. a Diagram of lineage tracing experi-
ment. IPC-298 cells labeled with lineage barcodes were sampled for scRNA-Seq on
Days 0, 10, 20, and 90. Belvarafenib treatment commenced following Day 0 sub-
culture collection. Schematic created in BioRender. Darmanis, S. (2023) BioRender.
com/l09z998 b Fold change in cell count for each lineage at each time point. Cell
counts from Day 0 served as the baseline. Enriched (yellow) includes lineages with
over tenfold increase from Day 0 to Day 20. Resistant (enriched) refers to the
lineage enriched on Day 20 and resistant on Day 90. Stable refers to lineages
neither depleted nor enriched. c Volcano plot depicting differentially expressed
genes on Day 20 between depleted and enriched lineages. P values are calculated
by the Wilcoxon rank-sum method (two-sided) with the benjamini-hochberg

correction method. Genes with adjusted p values lower than 1e-8 and log2 fold
changes beyond ±0.5 are labeled. d Violin plots for FN1 expression level (normal-
ized and log-transformed) in cells within depleted and enriched lineages. e Fold
changes between the depleted and the enriched lineages, with specific genes
labeled the same as in (d). Green dashed lines denote ±1.5-fold changes. f PROGENy
pathway scores for each cell at Day0 (n = 42), Day 10 (n = 59), Day 20 (n = 275), and
Day 90 (n = 4827) within the resistant lineage. P values are calculated using the
Mann-Whitney-Wilcoxon test (two-sided) with Bonferroni adjustment. Boxplots’
center lines representmedians. Boxplots: center lines aremedians; limits denoteQ1
and Q3; whiskers extend to 1.5 times IQR or last data points if within limits. g De-
differentiation and differentiation scores for cells within the resistant lineage.
Source data are provided as a Source Data file.
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Fibronectin-rich extracellular matrix has been shown to provide
tolerance for melanoma cells in BRAF inhibition30. Moreover, FN1 has
been shown to be associated with a mesenchymal phenotype31 in
melanoma cells. Interestingly, the epithelial mesenchymal transition
(EMT) hallmark gene set32 emerged as one of the features for Day 90
within the resistant lineage (Supplementary Fig. 3f). In addition, in
the depleted lineages FN1 levels remained stable along the course of
belvarafenib treatment, while in the enriched lineages the gain of this
mesenchymal marker was already observed on Day 20 (Fig. 3d).
Moreover, the longitudinal nature of our experiment enabled us to
probe for potential pre-existing transcriptional differences between
the enriched and depleted lineages. We observed that many of the
differentially expressed genes on Day 20 showed differences in
expression levels as early as Day 0 (Fig. 3e). This indicates that dis-
tinct lineages may possess inherent transcriptional programs for
responding to belvarafenib treatment. Furthermore, sustained
exposure to belvarafenib led to amplification of selective pre-
existing differences, as exemplified by increased fold changes on
Day 20 in some of the most differentially expressed genes, such as
FN1 and NRG3 (Fig. 3e).

Belvarafenib directly inhibits kinase activity of the RAF kinases,
which are responsible for MAPK pathway activation downstream of an
oncogenic NRAS mutation in the IPC-298 cells28. To assess how the
resistant clone adapted to belvarafenib treatment, we specifically
compared the activity of the MAPK pathway and other related path-
ways within the resistant lineage across different time points. We
observed an initial downregulation of MAPK, PI3K, and EGFR pathway
signatures at early time points, which suggested an initial response to
belvarafenib. However, on Day 20 we noticed a rebound of EGFR
pathway activity (Fig. 3f). During the same time frame, we observed
activation of the transforming growth factor-β (TGF-β) pathway
(Fig. 3f), which is a known driver of resistance against MAPK pathway
inhibitors inmelanoma cells33. Furthermore, fromDay 20 toDay 90we
observed significant rebound of MAPK and PI3K pathway activities
(Fig. 3f), suggesting that reactivation of these pathways may be
essential for the establishment of the resistant phenotype.

TGF-β is known to induce EMT34 and de-differentiation in
melanoma33,35. Given a mesenchymal-like state suggested by FN1 upre-
gulation (Fig. 3c), increased TGF-β signaling (Fig. 3f) as early as Day 20,
and the enrichment of EMT hallmark genes on Day 90 (Supplementary
Fig. 3f), we examined whether the resistant cells switched to a less dif-
ferentiated state in response to belvarafenib. Despite the initial shift
towards a more differentiated melanocyte-like state on Day 10 (Fig. 3g),
the resistant cells ultimately reverted to an undifferentiated state
(Fig. 3g), resembling the state transitions seen in patient-derived BRAF
mutantmelanoma cell lines that accompany RAF inhibitor resistance36,37.

In summary, our data suggest a progression of transcriptomic
alterations along the development of belvarafenib resistance. Initial
tolerance is associatedwith activation of EGFR and TGF-β signaling as
well as FN1 upregulation. This is followed byMAPK and PI3K pathway
reactivation and a shift towards an undifferentiated state, thereby
promoting the expansion of the resistant cells. OAK’s ultra-high
throughput and stepwise sequencing capability render it an excep-
tionally suitable tool for investigating transcriptomic signatures
within rare cell populations that lead to drug resistance in cancer.

Discussion
OAK combines droplet microfluidics with combinatorial indexing,
enabling ultra-high throughput and multimodal single-cell profiling.
Our study underscores OAK’s versatility across diverse experimental
designs and modalities, including scRNA-Seq, sample multiplexing,
and paired profiling of snRNA-Seq and snATAC-Seq. Moreover, with
minor adjustments in the secondary indexing primers and library
preparation, broad compatibility can be expected within the full
spectrum of applications offered by the Chromium platform,

encompassing immune profiling, cell surface protein detection and
CRISPR perturbations. In addition, the experimental feature of dis-
tributing a large number of cells into multiple aliquots enables
sequencing of each sub-library separately. Such stepwise sequencing
allows the sequencing of a smaller number of cells for quality assess-
ment prior to embarking on large-scale sequencing. Furthermore, sub-
libraries provide the opportunity to sequence the number of cells
desired for analysis, while preserving unprocessed ones for future data
acquisition. Finally, OAK data processing is compatible with analysis
pipelines that have been developed for the prevailing commercial
Chromium platform. This aspect facilitates a seamless integration of
OAK into researchers’ existing data processing workflows.

OAK presents multiple opportunities for reducing cost. First,
overloading a single microfluidic channel enables more efficient utili-
zation of costly reagents, including the barcoding beads. Secondly, in
contrast to other combinatorial indexingmethods8–12,15,38, OAK avoids a
substantial upfront investment in synthesizing plates of indexing oli-
gos or assembling pre-indexed transposome for the ATAC modality -
thereby also streamlining benchwork. Thirdly, unlike some over-
loading methods that identify and discard multi-cell droplets without
being able to recover single cells encapsulatedwithin17,39–41, OAK is able
to resolve single cells in multi-cell droplets, maximizing the usage of
sequencing data. In summary ultra-high throughput, extensive versa-
tility across differentmolecularmodalities, experimental convenience,
and cost efficiency distinguish OAK from alternative technologies in
the field.

The single-cell sequencing field is undergoing rapid transforma-
tion and growth. Recent examples include innovations like 10x Geno-
mics’ GEM-X and Flex products, both exhibiting superior throughput
compared to the regular Chromium products. However, these pro-
ducts are currently unable to perform paired snRNA-Seq and snATAC-
Seq. Nevertheless, it is expected that OAK will be adaptable to these
evolving platforms, thereby leveraging improvements in droplet gen-
eration technologies to deliver even higher throughput. Although in
this study, our focus rests primarily on validating OAK on the Chro-
mium platform, we expect OAK to be also compatible with other
droplet systems that make use of releasable barcoding primers from
microspheres, such as the inDrops system6 and Hydrop system14.

In addition to various cell lines and primary tissues analyzed in
this study, we have also tested OAK with human brain samples and
human peripheral blood mononuclear cells (PBMCs). While OAK suc-
cessfully generates high-quality data for joint scRNA-Seq and scATAC-
Seq from brain samples, the current protocol faces limitations in
generating high-complexity libraries for PBMCs. This may arise from
the fact that more fragile cells are more sensitive to the strong deter-
gents present in droplets. As such, optimizing the fixation and deter-
gent usage presents a future direction for technological development,
in order to broaden OAK’s applicability to a wider array of
sample types.

In summary, we developed a single-cell multiomic profiling
method, OAK, which empowers extensive characterization of complex
tissues and cellular systems, while maintaining a streamlined and cost-
efficient experimental approach. We anticipate that OAK will readily
scale with ongoing advances in droplet generation platforms, and will
be flexible to accommodate measurement of additional molecular
modalities.

Methods
Ethical statement
The described studies comply with ethical regulations of Genentech.
Institutional approval and the written, informed consent for the col-
lection of donor eyes to be used for research purposes was obtained
from the University of Utah, and conformed to the tenets of the
Declaration of Helsinki. All tissue was de-identified in accordance with
HIPPA privacy rules.
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Cell culture and single-cell suspension preparation
K562 cells (ATCC number CCL-243) were cultured in Iscove’s Mod-
ified Dulbecco’s Medium (IMDM) with 10% fetal bovine serum (FBS).
NIH/3T3 cells (ATCC number CRL-1658) were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) with 10% FBS. IPC-298 cells (DSMZ
number ACC 251) were cultured in RPMImediumwith 10% FBS, 2mM
L-glutamine, and 1% penicillin/streptomycin. Cells were incubated at
37 °C with 95% Air and 5% CO2. TrypLE™ Express (Thermo Fisher
Scientific 12604013) was used to detach adherent cells from culture
flasks. Harvested cells were washed twice with phosphate-buffered
saline (PBS) with 0.04% Bovine albumin Fraction V (Thermo Fisher
Scientific 15260037), and resuspendedwith PBS to achieve single-cell
suspensions.

Culture and staining of normal human bronchial epithelial cells
Normal human bronchial epithelial cells (Lonza CC-2540, Epithelix)
were differentiated in transwell plates at an air-liquid interface. Cells
were dissociated with accutase and then washed twice with PBS/1%
Bovine Serum Albumin (BSA). Nine sample wells of cells were resus-
pended in 50 µL PBS/1% BSA and each stained with 1 µL of TotalSeq-A
antibody (Biolegend, Clone LNH-94; 2M2. TotalSeq™-A0251 anti-
human Hashtag 1 Antibody, Catalog number: 394601; TotalSeq™-
A0252 anti-human Hashtag 2 Antibody, Catalog number: 394603;
TotalSeq™-A0253 anti-human Hashtag 3 Antibody, Catalog number:
394605; TotalSeq™-A0254 anti-human Hashtag 4 Antibody, Catalog
number: 394607; TotalSeq™-A0256 anti-human Hashtag 6 Antibody,
Catalog number: 394611; TotalSeq™-A0257 anti-human Hashtag 7
Antibody, Catalog number: 394613; TotalSeq™-A0259 anti-human
Hashtag 9 Antibody, Catalog number: 394617; TotalSeq™-A0262 anti-
human Hashtag 12 Antibody, Catalog number: 394623; TotalSeq™-
A0263 anti-human Hashtag 13 Antibody, Catalog number: 394625).
Incubation was at 4 °C for 20minutes. Cells were washed 3x in PBS/1%
BSA and then all wells were pooled together. Pooled cells were stained
with SytoxGreen for 5minutes at room temperature before sorting for
live cells on a Sony SH800S into PBS.

Retinal tissue nuclei preparation
Human donor eye collection was followed according to a standardized
protocol42. In brief, the isolated peripheral retinal sample from an 80-
year old male was obtained within a 6-hour post-mortem interval,
defined as death-to-preservation time, in collaboration with the Utah
Lions Eye Bank. The sample was placed in a cryotube and flash frozen
in liquid nitrogen prior to storage at −80 °C. The sample was dis-
sociated by douncing ten times in a glass homogenizer in 1mL ice cold
NIM4 buffer (9.9mL NIM1 [250mM sucrose, 25mM KCl, 5mMMgCl2,
10mM Tris Buffer in nuclease-free water], 10 µL 100mM DTT, 1 cOm-
plete Mini protease inhibitor cocktail tablet (11836153001, Roche),
100 µL 10% Triton X-100, 100 µL RNAseIN, 100 µL SUPERasin) and
incubated on ice for 10min. Tissue homogenate was centrifuged at
450G for 5min 4 °C. Supernatant was removed and 500 µL ice-cold
wash buffer (400 µL salt buffer [200 µL 1M Tris pH 7.4, 40 µL 5MNaCl,
40 µL 5M NaCl, 60 µL 1M MgCl2, 1.7mL nuclease-free water], 4 µL
100mMDTT, 40 µL 10% Tween 20, 800 µL 5% RNAse-free BSA, 100 µL
RNAse inhibitor, 2.66mL nuclease-free water) was added to the nuclei
and the sample pipetmixedfive times. The nuclei werepassed through
a 40 μm filter then counted.

OAK scRNA-Seq
Methanol-fixed cells were used to generate data in results sections:
Principles and performance of OAK, Leveraging ultra-high throughput
for sample multiplexing, and Melanoma resistance to RAF inhibitor
belvarafenib. Single-cell suspension in 400 µl PBS was transferred to a
2mL round-bottom tube and fixedby adding 1600 µL chilledmethanol
drop by drop with gentle stirring. Cells were then incubated at −20 °C

for 30min. After fixing, cells were placed on ice for 5min and then
pelleted at 1000G for 5min at 4 °C in a pre-cooled swinging bucket
centrifuge. Supernatant was removed and the pellet was resuspended
with appropriate volumeof resuspensionbuffer to target 30,000 cells/
µl or higher. Resuspension buffer is composed of 3X saline sodium
citrate (SSC) (Invitrogen, 115557044), 1-2% BSA, 0.2 U/µL Protector
RNAse inhibitor (Roche, 03335402001), and 1mM DTT in nuclease-
free water. Cells were counted and a desired number of cells (typically
150,000) were loaded per channel. Other reagents were used for
loading according to standard 10x Genomics’ Chromium 3’ RNA-Seq
protocol. After droplet generation, reactions were transferred to
microfuge tubes for reverse transcription at 53 °C for 45min. Imme-
diately after reverse transcription, the droplets were unpacked by
adding 125 µL recovery agent to break the emulsion. After phase
separation, the aqueous phase, containing recovered fixed cells, was
transferred to a 2mLmicrofuge tube. 800 µL 3X SSC was added to the
cell suspension. The cells were spun at 650G at 4 °C for 5min.
Supernatant was carefully removed. 1mL 3X SSC was added to the cell
pellet with gentle tapping on the tube to dislodge the pellet. Cells were
spun again at 650G at 4 °C for 5min. The pellet was resuspended in
215 µL 3X SSC with gentle pipette mixing. A 10 µl solution was used for
cell counting to estimate the number of cells per aliquot. The
remaining solution was evenly distributed into multiple aliquots by
PCR Strip Tubes (typically 20 aliquots per 150,000 cells loaded to aim
for 4000 cells per aliquot). The aliquots were immediately stored at
−80 °C until ready for the next step.

From the frozen aliquots, researchers can select how many of
them to process into sub-libraries for sequencing. This allows for an
increasing number of cells to be sequenced in a stepwise manner. To
prepare sequencing libraries, a desired number of aliquots were
heated to 80 °C for 5min to aid release of 1st strand cDNA.
DynabeadsTM Silane Viral NA kit (ThermoFisher, 37011D) was used to
purify 1st strand cDNA according to manufacturer’s instructions. The
cDNA was eluted in 35 µL of the elution buffer. For cDNA amplification
PCR, a TSO recognition primer (AAGCAGTGGTATCAACGCAGAGT)
and a primer that adds a secondary index (e.g., with barcode under-
lined: AATGATACGGCGACCACCGAGATCTACACAACGTGATACACTC
TTTCCCTACACGACGCTCTTCCGATCT) were used. For capturing
antibody-derived fragments in cell hashing experiments, a single
relevant primer can be added, for example, the HTOprimer in the case
of TotalSeqA hashing. cDNA from multiple aliquots (typically 2-4) can
be pooled for sub-library construction by following the standard
Chromium protocol, except in the library PCR where a partial P5 pri-
mer (AATGATACGGCGACCACCGAGA) is used alongside an i7 index
primer (e.g., with barcode underlined: CAAGCAGAAGACGGCATA
CGAGATCGCATGTTACGTGACTGGAGTTCAGACGTGT. 10x Genomics
library kits (Chromium Single Cell 3ʹ Library Kit v3, PN-1000095 and
Chromium Single Cell 3ʹ Feature Barcode Library Kit, PN-1000079) can
be purchased independently to provide enough reagents for con-
struction of the OAK sub-libraries. For a cost-effective alternative for
generating libraries from the antibody-derived fragment component,
cDNA and indexing primers can be ordered and used with KAPA HiFi
HotStart ReadyMix (Roche Diagnostics, KK2601).

After QC, sub-libraries with unique secondary index (i5) and i7
index were pooled for sequencing on Illumina platforms, with 28
cycles for Read 1, 10 cycles for i7 index, 8 cycles for i5 index, and 90
cycles for Read 2. Targeted sequencing depth was 20,000 read pairs
per cell. Cell counting at the aliquoting step was used to estimate the
number of cells expected to recover.

OAK paired snRNA-Seq and snATAC-Seq
Nuclei were centrifuged at 500G in a 2mL round-bottom microfuge
tube. After removing the supernatant, the pellet was resuspended in a
fixative solution of 1mL calcium-free PBS with 0.3% formaldehyde.
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During addition of fixative solution, it is important to pipette up and
down gently to disrupt the pellet and prevent clumping. Nuclei in
fixation solutionwereplacedon ice for 10minand then centrifuged for
5min at 500G at 4 °C. After supernatant was removed, 1.5mL wash
bufferwas added. Thewashbufferwas 10mMTris-HCl (pH7.4), 10mM
NaCl, 3mM MgCl2, 1% BSA, 0.1% Tween-20, 1mM DTT, 1 U/μL RNase
inhibitor (Roche, 03335402001) in nuclease-free water. After 5min
500G at 4 °C, the supernatant was removed and the nuclei were
resuspended in the appropriate volume of nuclei resuspension buffer
to target 2,400 nuclei/μL or more. The nuclei resuspension buffer was
1X Nuclei Buffer (from a 20X stock, 10x Genomics, PN2000207), 1mM
DTT, and 1 U/μL RNase inhibitor in nuclease-free water.

After fixation, we typically transpose 75,000-200,000nuclei, with
an expected cell recovery rate of 40%. This recovery rate may be
dependent on sample type and quality. We found that TDE1 enzyme
(Illumina Tagment DNA Enzyme and Buffer Small Kit, 20034197) could
be used for the additional tagmentation reactions required to support
processing large numbers of nuclei. Including this additional reagent
and the subsequent library preparation reagents, a cost analysis of the
OAK multiome protocol ran on the retinal sample came to $ 0.09 per
nuclei, versus $ 0.39 per nuclei for the regular Chromium multiome
protocol. Each transposition reaction was 15μL, which is composed of
12,000 nuclei in 5μL 1X nuclei buffer, 3μL TDE1 enzyme, and 7μL
ATAC Buffer B (10x Genomics, PN 2000193). To transpose 100,000
nuclei in the retinal profiling experiment, 8 such reactions were pre-
pared. Reactions were incubated at 37 °C for 1 hr. All transposition
reactions were combined to a single 2mL round-bottom microfuge
tube and spun at 500G in a pre-cooled centrifuge at 4 °C for 5min.
Most supernatant was removed, leaving the last 15μL to resuspend the
combined nuclei. All of the transposed nuclei in this 15μL were used
for loading 1 channel. Other reagents were used for loading according
to regular 10x Genomics’ Chromium Next GEM Single Cell Multiome
protocol. After GEM generation, barcoding, and quenching according
to the standard Chromium multiome protocol, 125μL recovery agent
(10x Genomics, PN 220016) was added to break the emulsion. The
aqueous layer containing fixed nuclei was carefully transferred to a
2mL round-bottom microfuge tube. 800 µL 3X SSC was added to the
nuclei suspension. The nuclei were spun at 650G at 4 °C for 5min. The
supernatant was carefully removed. 1mL 3X SSC was added to the
nuclei pellet with gentle tapping on the tube to dislodge the pellet.
Nuclei were spun again at 650G at 4 °C for 5min. The pellet was
resuspended in 215 µL 3X SSC with gentle pipette mixing. A 10 µl
solution was used for counting to estimate the number of nuclei per
aliquot. The remaining solution was evenly distributed into multiple
aliquots by PCR Strip Tubes to aim for 4,000 nuclei per aliquot. The
aliquots were immediately stored at −80 °C until ready for sequencing
library preparation.

To prepare sequencing libraries, a desired number of aliquots
were heated to 80 °C for 5min to aid the releaseof 1st strand cDNAand
ATAC fragments. DynabeadsTM Silane Viral NA kit (ThermoFisher,
37011D) was used to purify 1st strand cDNA and ATAC fragments
according tomanufacturer’s instructions. The resulting products were
pre-amplified in a 100μL reaction using 10 cycles with 4μL pre-amp
primers (10x Genomics PN 20002714) and 50 μL of NEBNext High-
Fidelity 2X PCR Master Mix (NEB, M0541S). Reactions were cleaned
with 1.6X SPRI andeluted in40μL EB. 10μLof theproductwasused for
constructing snATAC-Seq libraries. One PCR reaction was set up for
each aliquot, with 0.6μL of 100μM partial P5 primer, 50μL NEBNext
High-Fidelity 2X PCRMaster Mix (NEB, M0541S), 36.9μL nuclease-free
water and2.5μLof 10μMsample indexN (10xGenomics, PN 1000212).
The PCR programwas 98 °C 30 s, n cycles [98 °C 10 s, 67 °C 30 s, 72 °C
20 s], 72 °C 2min, held at 4 °C. N is typically recommended cycles for
standard Chromium protocol for the number of cells. Extra cycles can
be added if ATAC library yield is low. A double-sided size selection was

performed as instructed in the standard Chromium protocol. cDNA
library amplification, sequencing library construction and sequencer
operation were conducted in the same way as described in OAK
scRNA-Seq.

For snATAC-Seq libraries, sub-libraries with unique i7 index were
pooled for sequencing on Illumina platforms. Targeted sequencing
depthwas 25,000 readpairs per cell, with 50 cycles for Read 1, 8 cycles
for i7 index, 24 cycles for i5 index, and 49 cycles for Read 2. Cell
counting at the aliquoting step was used to estimate the number of
cells expected to recover.

Sequencing read processing
Illumina Miseq, Nextseq 2000, and NovaSeq 6000 were used for
sequencing. Raw sequencing data was demultiplexed by Illumina’s
Bcl2Fastq software (v2.20) to resolve reads per OAK sub-libraries.
Fastq files for each sub-library were processed with Cell Ranger soft-
ware v6 (single-cell RNAseq) or Cell Ranger ARC software v2 (paired
snRNA-Seq and snATAC-Seq) to generate gene and chromatin frag-
ment counts.

Simulation for cell distribution in droplets
The percentage of having k cells in a droplet is approximated by p(k,
λ) = e(-λ)× λk/(k)! based on Poisson distribution, where λ is the loading
rate approximated as the number of loaded cells divided by the
number of generated droplets.

Multiplet rate theoretical estimation
The expected number of events when more than one cell share the
same combinatorial barcodes is N-D +D× [(D − 1)/D]N based on the
closed form solution for expected number of collisions in the birthday
paradox12, where N is the number of cells loaded and D is the total
number of barcode combinations. We used 100,000 as the number of
droplets generated per channel on the Chromium microfluidic chip.
Hence D was calculated as 100000×n_aliquot, where n_aliquot is the
number of aliquots generated.

Cell recovery calculation
Cell recovery rate for each method is calculated by dividing the
number of cells obtained after all rounds of barcoding by the total
number of cells used for the first round of barcoding. All experiments
presented in this study are used to generate the range of recovery rates
forOAK. The rate range for scifi-RNA-seq is based on themultiplication
of the recovery rate from the first round of barcoding, as reported in
the publication15, with an assumed perfect (65%) cell recovery in the
second round by the droplet system. This could result in a slight
overestimationof its rates. The rate range for SPLiT-seq isderived from
the information regarding Parse Biosciences’ Evercode WT products,
which represent the commercial implementation of SPLiT-seq. The
rate range for Paired-seq is based on the data reported in the corre-
sponding publication13.

Species-mixing experiment and multiplet rate estimate
In the species-mixing experiment when 150,000 cells (Fig. 1c) were
loaded in one channel of the Chromium chip, all cells were unpacked
into 12 aliquots. In the experiment when 450,000 cells (Fig. 1c) were
loaded in one channel, all cells were unpacked into 40 aliquots. In each
experiment, one aliquot was processed to generate a sequencing
library. Reads were mapped to a hybrid Human-Mouse reference
genome that consists of GRCh38 and mm10. Cells were classified into
observedmultiplets (human+mouse), mouse cells, and human cells by
Cell Ranger software v6. Since the input cells consisted of a 1:1mixture
of a mouse and a human cell line, true multiplet rate was estimated as
(observed multiplet rate) × 2 to include those inferred human+human
and mouse+mouse multiplets.
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Hashtag assignment and cell annotation in human bronchial
epithelial cells
TheCell Ranger package v6was used todeterminehashtagassignment
rate for the human bronchial epithelial cell experiment using a
matching antibody-derived tag and gene expression library for each of
four (out of 22) OAK aliquots, and for standard comparison data
generated in parallel. We imported and merged the data from the
multipleOAK aliquots in Seurat, then integrated theOAK and standard
scRNA-Seq data with Harmony43 prior to clustering using the Seurat
FindClusters function (resolution =0.6) and assigning cluster identity
(Club/Goblet, Basal, Ciliated, Basal cycling, Neuroendocrine or
Unknown) based on gene scores for known markers.

Retinal paired snRNA-Seq and snATAC-Seq data analysis
snATAC-Seq and gene expression data from each sub-library were
combined using cell ranger-arc aggr with -normalize=none. Gene
expression data was first imported into a Seurat (Version 4.3.0.1)
object for assessment of snRNA-Seq quality and comprehensive
annotation. Cells with > 200 genes and < 10000 genes were retained.
Cells were clustered, then marker gene scores were used to validate
assignment of clusters to the major known cell types. For cones, hor-
izontal, amacrine and bipolar cells, further sub-clustering was per-
formed prior to annotation and propagation into the master Seurat
object. The snRNA-Seq annotations were added as metadata into an
ArchR project containing both snATAC-Seq and snRNA-Seq data,
based on cell barcodes. For further analysis of snATAC-Seq data, only
cells with data passing filters from both modalities were kept.

In ArchR (Version 1.0.2), hg38 was used as the reference genome
and barcodes were filtered for TSS enrichment > 4 and nFrags > 1000.
Peaks of open chromatin were identified by using ArchR tools. First
addReproduciblePeakSet was utilized with MACSr, which uses the
MACS3 algorithm for peak-calling44, on the snRNA-Seq annotation,
excluding chrMT and ‘chrY, followed by addPeakMatrix. Marker peaks
were called using thismatrix for each cell typewith getMarkerFeatures
with options bias = c(“TSSEnrichment”, “log10(nFrags)”) and test-
Method = “wilcoxon”. Peaks called were filtered for FDR cutOff of 0.01
and Log2FC ≥ 1. The plotMarkerHeatmap function was used to plot a
heatmap of the markers with FDR ≤0.001 and Log2FC ≥ 1. The plot-
BrowserTrack function in ArchR was used to plot example chromatin
tracks and peaks for each annotated cell group.

Epiregulon infers regulatory elements to target genes based on
correlated gene expression and chromatin accessibility in clustered
cells, matching these elements to known transcription factor binding
sites from repositories of public ChIP-Seq data. In Epiregulon (Version
1.0.34) we extracted the normalized gene expression counts and peak
matrices from the ArchR project, removing unannotated cells, and
calculated the peak to gene expression linkages using the LSI snRNA-
Seq and snATAC-Seq combineddimensions fromArchR.Weannotated
the linkages as regulons with knownmotifs from the humanChIP-Atlas
and Encode databases. We further pruned the regulons by setting a
correlation test cutoff for for all components (peaks, gene expression
and TFs in the same cells) using the following parameters to the pru-
neRegulon function (test = “chi.sq”, prune_value = “pval”, regulon_cut-
off = 0.05 and defined clusters by the major cell types). We used the
addWeights function to add anestimate andmultiplier for the strength
of regulation, using the parameters tf_re.merge = FALSE, method = “

corr”. We calculated a score for each regulon using calculateActivity to
combine weights with activity of linked genes (mode = “weight”,
method = “weightedMean”, exp_assay = “normalizedCounts”, normal-
ize = FALSE). To find the transcription factors with differential regula-
tion activity associated with each major cell type we used the
findDifferentialActivity function with parameters, pval.type = “some”,
direction = “up” and test.type = “t”). We filtered these by significant
transcription factors with an FDR cutoff of 0.05 and a logFC cutoff of
0.1. With this list in hand, we added information on the proportion of

cells that have expression of the identified transcription factor in the
significant group. We filtered the transcription factors to those that
have > 30% expression in the associated cell type. We took the top ten
transcription factors with the highest calculated activity in each cell
type andordered themby the proportion of cells expressingwithin the
cell type. We then used the plotBubble function to plot the top seven
transcription factors with the highest calculated activity for each
cell type.

TraCe-seq cell preparation and scRNA-Seq
TraCe-seq barcode lentivirus was produced inHEK293T cells, and cells
were infected at 0.05–0.1 ofmultiplicity of infection (MOI), and sorted
for eGFP expression on a BD Aria Fusion cell sorter to enrich for bar-
coded cells29. After sorting, 1000 IPC-298 cells were used to form the
starting population. This population was expanded for 17 doublings. A
subculture was used for the Day 0 experiment, while the rest of cells
were treatedwith 10 µMbelvarafenib.Mediumcontaining belvarafenib
was replenished twice a week. Subcultures of cells were taken for OAK
onDay0 andDay 10 as lineage diversitywashighest before and early in
treatment. For Day 0, 2 channels on the Chromium chip were loaded,
each with 138,000 cells. 39 aliquots were generated, each contained
3700 cells. 20 aliquots were processed into sub-libraries and
sequenced. For Day 10, 3 channels were loaded, each with 180,000
cells. 44 aliquots were generated, each contained 6000 cells. 12 ali-
quotswere processed into sub-libraries and sequenced. The remaining
aliquots were stocked in −80 °C for potential future data acquisition.
Standard Chromium scRNAseq was performed according to manu-
facturer’s instructions for cells collected on Day 20 and Day 90 of
treatment as lineage diversity dropped.

TraCe-seq single-cell lineage barcode library generation
OAK indexed cDNA libraries from multiple aliquots can be pooled for
the generation of lineage barcode libraries. Typically, 7.5 µl cDNA from
each aliquot is used and 2 aliquots were pooled for 1 reaction. A semi-
nested PCR strategy was used to ensure the specificity of the resulting
lineage barcode library. In the first round of PCR, the partial P5 primer
and GPF_F1_outer primer (GTGCACTTAGTAAGGACCCAAACG) were
used. In the second round of PCR, the partial P5 primer and an i7
indexed GFP_F2_inner primer (e.g., with index under-
lined:CAAGCAGAAGACGGCATACGAGATCCGCGGTTGTGACTGGAGT
TCAGACGTGTGCTCTTCCGATCTGATAACCCTCGGGATGGATGAACTG)
were used.

TraCe-seq bulk lineage library generation
Cells from Day 0 were used to amplify the lineage transcripts. The
reverse transcription mix was composed of 5 µL Maxima H minus
Reverse Transcriptase (Thermo Fisher Scientific EP0753), 20 µL 5X RT
buffer, 5 µL dNTP (10mM each), 1.5 µL TraCe_libABC_end_RT primer
(GTGGATCCACCGAACGCAACGCAC, 100 µM), 1.5 µL Protector RNase
Inhibitor (Sigma PN 3335399001), 5 µl methanol fixed cells, and 62 µl
water. The reaction was incubated at 50 °C for 30min, followed by
85 °C for 5min, and held at 4 °C briefly. The product was subsequently
amplified by PCR with P5 indexed primer (e.g., with index underlined:
AATGATACGGCGACCACCGAGATCTACACGATATCGACGAACGCAAC
GCACGCACACT) and i7 indexed GFP_F2_inner primer. The SPRISelect
beads were used to perform a 0.6X–1.6X double sided size selection
for the PCR product.

Drug response curve generation
Cells were seeded at 2000 cells per well in 96-well plate, and were
treated with belvarafenib 24 h after seeding. Cells were treated with a
9-point titration (1:3) and DMSO control using the HP D300 drug dis-
penser. Cell growth was assessed using CellTiter-Glo Luminescent Cell
Viability Assays (Promega G7570), and luminescence was read by a
2104 EnVision Multilabel Plate Reader (PerkinElmer) five days after
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treatment. All cell viability data was collected and calculated for 4
replicates per condition. Data from the DMSO control was set to 100%.
Nonlinear regression curves were generated by GraphPad Prism to fit
the viability data.

TraCe-seq data analysis
Cells were assigned to a lineage when the UMI count for one lineage
barcode was at least two-fold higher than the other ones detected in
the given cell. Single-cell gene expression matrix was analyzed with
Scanpy (v1.9.1)45. Gene set enrichment for MSigDB’s hallmark sets32

was performed with decoupleR (v1.8.0)46. MAPK, EGFR, PI3K, and
TGF-β pathway scores were generated with PROGENy (v1.18.0)47. P
values were calculated using the Mann-Whitney-Wilcoxon test (two-
sided) with Bonferroni adjustment. Genes representing differentia-
tion and dedifferentiation states were based on an established mel-
anoma four-stage differentiation model48. The melanocytic,
transitory-melanocytic, transitory, and neural crest-like-transitory
signatures were grouped as the differentiation signature. The
undifferentiated, undifferentiated-neural crest-like, and neural crest-
like signatures were grouped as the de-differentiation signature. The
signature scores were generated by Scanpy’s tl.score_genes function.

Statistics & Reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study have been deposited to NCBI
Sequence Read Archive under accession number PRJNA1046517.
External datasets are publicly available from GEO: scifi-RNA-seq
GSE168620, sci-RNA-seq GSE98561, SPLiT-seq GSE110823, Paired-seq
GSE130399, sci-CAR GSE117089. Source data are provided with
this paper.

Code availability
The code used to analyze data is available in the GitHub repository:
https://github.com/bingwu2017/OAK_manuscript.git49.
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