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sChemNET: a deep learning framework for
predicting small molecules targeting
microRNA function

Diego Galeano 1,2 , Imrat3, Jeffrey Haltom2,4, Chaylen Andolino5,6,
Aliza Yousey2,7, Victoria Zaksas 2,8,9, Saswati Das2,10, Stephen B. Baylin 2,11,12,
Douglas C. Wallace 2,4,13, Frank J. Slack 14, Francisco J. Enguita 2,15,
Eve Syrkin Wurtele16, Dorothy Teegarden5,6, Robert Meller2,7,
Daniel Cifuentes 3,17 & Afshin Beheshti 2,18,19,20

MicroRNAs (miRNAs) have been implicated in human disorders, from cancers
to infectious diseases. Targeting miRNAs or their target genes with small
molecules offers opportunities to modulate dysregulated cellular processes
linked to diseases. Yet, predicting small molecules associated with miRNAs
remains challenging due to the small size of small molecule-miRNA datasets.
Herein, we develop a generalized deep learning framework, sChemNET, for
predicting small molecules affecting miRNA bioactivity based on chemical
structure and sequence information. sChemNET overcomes the limitation of
sparse chemical information by an objective function that allows the neural
network to learn chemical space from a large body of chemical structures yet
unknown to affect miRNAs. We experimentally validated small molecules
predicted to act on miR-451 or its targets and tested their role in erythrocyte
maturation during zebrafish embryogenesis. We also tested small molecules
targeting the miR-181 network and other miRNAs using in-vitro and in-vivo
experiments. We demonstrate that our machine-learning framework can pre-
dict bioactive small molecules targeting miRNAs or their targets in humans
and other mammalian organisms.

RNA molecules, essential to cellular function, are required for cel-
lular information transfer, cell structure, and gene regulation and
have been implicated in many human diseases1–3. One primary class
of small non-coding regulatory RNAs, the microRNAs (miRNAs), are
central to post-transcriptional gene regulation, modulating the
levels of more than half of the human transcripts4. Dysregulated
miRNAs have been implicated in the pathology of metabolic and
cardiovascular disorders, cancers, hepatitis, and emergent infec-
tious diseases such as COVID-195–8. Evidence also indicates that
highly stable circulating miRNAs can be present in the blood of
diseased individuals8–10, which implies that miRNAs could be helpful
as biomarkers and therapeutic targets.

miRNAs have also been validated as therapeutic targets11,12. Com-
plementary oligonucleotides are being developed to inhibit miRNAs13.
For instance, mimics of miR-34 have been designed to repress onco-
gene expression and block tumor growth14; oligonucleotides com-
plementary to miR-122 are being developed to treat hepatitis C virus15,
and an antisense oligonucleotide to miR-2392 is being explored for
treating COVID-198. However, the development of therapeutic oligo-
nucleotides to target miRNA has proven challenging due to the
requirements of delivery technology, stability, and potentially high
toxicity16.

An attractive alternative is to target miRNAs or their gene targets
with smallmolecules17,18. Numerous studies (see reviewbyChen et al.19)
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have demonstrated that miRNA levels or their targets can be modu-
lated by small molecules20, and systematic principles for targeting
RNAswith smallmolecules are under development12,21–23. However, this
avenue of research is hindered by a lack of ability to infer which small
molecules will be bioactive against which miRNAs19. The major chal-
lenge in identifying bioactive smallmolecules that interactwith a given
miRNA or its function is the limited predictive understanding of the
chemical principles by which molecules are bioactive against
miRNAs21.

To assist researchers in developing small molecule modulators of
miRNAs or their downstream effectors, we proposed and developed a
deep-learning framework called sChemNET. sChemNET predicts
scores that a given smallmolecule canmodulate a givenmiRNA, or the
expression of its mRNA targets, based on its chemical features. Pre-
vious machine-learning models for predicting small molecules tar-
geting miRNAs could be applied only to a small set of small molecules
that had been experimentally identified24–26. In contrast, our approach
can be applied to infer novel bioactive chemicals from any chemical
library with information about the 2D chemical structure of the
compounds.

sChemNET’s ability to integrate chemical structure information of
small molecules with previously unknown interactions with miRNAs is
critical to achieving good prediction performance for the bioactivities
of a broader set of small molecules. Furthermore, sChemNET can be
helpful for smaller chemical datasets available formodel organisms by
integrating cross-species data and modeling miRNAs sequence
information.

We used sChemNET’s predictions to create a mapping between
pharmacological classes of small molecules and miRNAs and exploit
this map to designmachine learning-guided in-vitro and in-vivo assays
that validate sChemNET-predicted small molecules for miR-451, an
erythrocyte-specific miRNA whose demise leads to profound anemia
under oxidative stress, and also, to experimentally validate the pre-
dicted effects of vitamin D on other miRNAs relevant to breast cancer
and the mitochondria.

Results
sChemNET: a deep learning framework for predicting drug tar-
gets in the presence of sparse and small-size chemical datasets
We developed a deep-learning predictive model that incorporates
information about small molecules with known and yet-unknown
biological activity on miRNAs in a neural network model to predict
small molecules targeting miRNAs (or their downstream targets) on
the basis of their chemical structure alone. We combined ~2400 such
“unlabeled” small molecules with a small number of “labeled” small
molecules (i.e., known to affect miRNA expression levels or the
expression of its targets) to build a two-layered neural network for
small chemical datasets (sChemNET) – see Fig. 1a. In sChemNET, the
chemical structure information of the labeled and unlabeled small
molecules is fed into the model and distributed over a set of hidden
layers of nodes (Fig. 1b). The output layer of the network represents
each of themiRNAs, and themodel outputs a predicted score for each
miRNA for a given small molecule’s chemical feature.

sChemNET’s key idea is to train a learning model using a large
amount of unlabeled chemical structure information. To learn the
probability ŷiu =pðyiujxiÞ that the ith small molecule, with chemical
feature xi, affects the uth miRNA, sChemNET aims to minimize the
following loss function:

L=
1
2

X

ði,vÞ is labeled
suvðŷiv � yivÞ2 +

α
2

X

ði,vÞ is unlabeled
ŷiv

2 ð1Þ

The first summation in our model applies a fitting constraint to the
labeled chemical information (smallmolecule-miRNAassociations (i,v)
with yiv = 1), designed to learn a high prediction score for known

associations between small molecules and miRNAs. To learn a model
for each miRNA u, sChemNET exploits the labeled information
available for all other miRNAs, such that their relative contribution
to the learning is weighted based on their sequence similarities to the
miRNA target u through suv 2 ½a, 1�, where 0≤a<1 (see “Methods”
section). The second summation in Eq. (1) is the fitting constraint on
the unlabeled chemical information (small molecule-miRNA associa-
tions (i,v) with yiv =0). Unlabeled small molecules are assigned low
prediction scores to each miRNA during learning, and their overall
relative importance is controlled with the hyperparameter α 2 ½0,1�.
Typically, α≪1 is used. Unlabeled small molecules have unknown
biological activity against targeted miRNA u, and they are introduced
here due to the small-size chemical dataset available for training the
model. The goal of the second term is to allow the neural network to
learn from a broader range of chemical space that is mapped to a low
probability score; our modeling was motivated by our recent work on
zero-driven regularization in non-negative matrix decomposition
models27,28.

Predicting small molecules targeting miRNAs or their targets in
Homo sapiens
We trained and tested sChemNET using small-size chemical datasets
with labeled information about the bioactivities of each smallmolecule
on miRNAs. We used the Small Molecule to miRNA (SM2miR)20 data-
base to obtain manually curated information on small molecules that
affect the expression levels of either specific miRNAs or their corre-
sponding mRNA targets (see “Methods” section). Our dataset only
provides positive label information, that is, true positives, or yiv = 1
(Eq. 1). There is not explicit source for negative labels and yiv =0 in Eq.
(1) represents unlabeled small molecule-miRNA associations. In
SM2miR, we found several small molecule-miRNA associations across
18 species (Supplementary Fig. 1). For Homo sapiens, we used 1102
associations between 131 small molecules and 126 miRNAs (see Sup-
plementary Fig. 2a). The number of bioactive small molecules for each
miRNA varies between 5 to 35, and its distribution follows a long-tailed
pattern (see Supplementary Fig. 2a). The average number of shared
bioactive small molecules for miRNAs is 1:77 ± 1:51 (mean ± std), indi-
cating that most miRNAs tend to share a small number of bioactive
small molecules (see distribution in Supplementary Fig. 3). To obtain a
large set of unlabeled small molecules, we used the Drug Repurposing
Hub database29, which contains structurally and therapeutically
diverse small molecules that have reached clinical trials; including
most FDA-approved drugs. We obtained 6,302 unlabeled small mole-
cules with unique PubChem CIDs that we used together with the
131 small molecules from SM2miR to build a set of 6,433 small mole-
cules. Chemical input feature information for each small molecule was
obtained from their MACCS chemical fingerprints calculated from
their SMILES representation. Sequence similarities between miRNAs
were obtained by re-scaling the Needleman-Wunsch score obtained
using miRNA mature sequences from the miRBase database30 (see
“Methods” section and Supplementary Fig. 4).

sChemNET’s ability to integrate large amounts of chemical
structure information in the presence of small bioactive chemical
datasets allows us to simulate a realistic scenario in which a small
molecule biologically active against a miRNA is recovered from a large
pool of chemicals. To this end, for each known bioactive small
molecule-miRNA association, we built a test set containing 4000 small
molecules, where only one was experimentally determined to be
bioactive, and 3999were randomly selected small molecules currently
unknown to affect miRNAs (see Fig. 2a). We then performed a sys-
tematic evaluation using leave-one-out cross-validation (LOOCV) for
all the miRNAs (see “Methods” section). For each miRNA, we trained
sChemNET with the remaining labeled and unlabeled small molecules
and used the trainedmodel to rank all the 4000 small molecules in the
test set by their predicted scores. Themodel’s prediction performance
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was assessed based on the percentage of known bioactive small
molecules that could be retrieved amongst the top 100, 300, 500, or
1000 predicted small molecules.

Following Stokes et al.31, to select the model hyperparameters-
number of hidden units (n), unlabeled regularization parameter (α),
number of epochs, learning rate, and dropout-, we used a Bayesian
optimization approach to hyperparameter search based on a LOOCV
of the small molecules known to target miR-224-5p. This miRNA was
randomly selected and excluded from further evaluation analysis.
sChemNET performedwell with n = 16, α =0:286, dropout = 0.174, and
learning rate = 0.0346.

Figure 2b (Left) shows sChemNET’s prediction performance at
retrieving bioactive small molecules for 125 miRNAs in Homo sapiens.
The recall is shown as a percentage (y-axis) as a function of the top-k

number of small molecules retrieved from the test set (x-axis). The
performance of sChemNET, shown with and without (suv = 1) inte-
grating sequence similarity information is compared with four
machine-learning baseline methods that were trained using the same
input feature information as sChemNET: XGBoost, Logistic Regression
(LR), Random Forest (RF), and a Feed-Forward Neural Network (FNN),
and two other baseline approaches that rank each of the 4000 small
molecules in the test set based on: (i) the maximum Tanimoto che-
mical similarity to the set of bioactive small molecules in the training
set (chemical similarity, green bars) or (ii) random scores assigned to
each small molecule when sampling from a uniform distribution
between 0 and 1 (random, brown bars) (see “Methods” section).
sChemNET outperforms the baselinemethods at different numbers of
predictions retrieved by 1–9% for the top 100 small molecules

up

small set of bioactive small molecules
               on miRNA A
                  (labeled)

     Thousands of small molecules 
    as-yet-unknown to affect miRNA A
                  (unlabeled) 

+

Training set

Input: 
chemical feature

 hidden 
  layer

Output: 
predicted scores 

miRNA A

miRNA B

miRNA C

a

b

Labeled small molecules
    (multiple miRNAs)

Unlabeled small molecules

up

down

down

SM2miR database Drug Repositioning Hub database

sChemNET model

Fig. 1 | Overview of our deep learning framework for predicting miRNA tar-
geted by small molecules in the presence of sparse and small-size chemical
datasets. a sChemNET integrates labeled and unlabeled chemical structure infor-
mation to predict bioactive small molecules againstmiRNAs or theirmRNA targets.
(Left) Labeled smallmolecules (sky-blue) are known to affect the expression level of
miRNAs or their mRNA targets, as curated in the SM2miR database. The dotted
arrow represents the experimentally verified small molecule-miRNA association
and the up and down-arrows (in green and red, respectively) represent whether
there is up-or down-regulation of the expression level (Right). The Drug Repur-
posing Hub database was used to obtain thousands of small molecules yet
unknown to affectmiRNAs (a.k.a. unlabeled) shown in green. b sChemNET is a two-

layered, fully connected neural network model that incorporates unlabeled che-
mical structure information during training to enhance prediction performance
when only a small set of bioactive small molecule-miRNA dataset is available for
training. The trained sChemNET model provides predicted scores for each miRNA
given a small molecule’s chemical fingerprint (obtained from its 2D chemical
structure representation). Nodes represent input chemical features (yellow), hid-
den units (gray), andmiRNAs’ predicted scores represent the output (purple). Solid
lines show the connection between the layers. Molecules with known bioactivity,
labeled, molecules without a bioactivity designation, unlabeled. Different miRNAs
are illustrated with different colors.
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Fig. 2 | sChemNET outperforms other methods at predicting small molecules
bioactive against 125 miRNAs in Homo sapiens. a Training and testing set with
labeled and unlabeled chemical structure information built in. Molecules and
activity data were selected from the SM2miR and the Drug Repurposing Hub
databases. We used these to assess the prediction performance of sChemNET and
other computational approachesunder a leave-one-out cross validation procedure.
(Left) The training set consists of labeled and unlabeled small molecules. The
labeled compounds are small molecules known to be bioactive against at least one
miRNA from Homo sapiens. The unlabeled set of compounds consists of ~2400
randomly selected small molecules without known activity against the set of miR-
NAs. (Right) The testing set consists of 4000 small molecules of which only a single
small molecule is known to be bioactive against the specific miRNA under evalua-
tion. b Prediction performance of eight computational methods obtained under
our leave-one-out cross-validation procedure. Notched boxplots show the

distribution around themedian of the percentage of recall obtained for 125miRNAs
(y-axis) when retrieving top-K (100, 300, 500, 1000) small molecules from the test
set. (Left) When considering all the 1102 instances; (Right) When considering only
chemically dissimilar instances between training and testing sets. sChemNET was
run with and without (suv = 1) miRNA sequence similarity information in its loss
function. FNN stands for Feed-Forward Neural Network and “random” for scores
sampled from a uniform distribution. The chemical similarity baseline ranks all the
smallmolecules in the test set based on themax2DTanimoto chemical similarity to
the bioactive small molecules in the training set. The distribution shows the var-
iation of recall across the n= 125 miRNAs for all the methods. For the boxplots the
center line represents the median and the lines extending from both ends of the
box indicate the quartile (Q) variability outside Q1 and Q3 to the minimum and
maximum values. The notch represents the 95% confidence interval of the median.
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retrieved from the test set, 7–21% (top 300), 5–33% (top 500), and 8-
29% in the top 1000. We found that the average improvement in pre-
diction performance of sChemNET over all the competitors is statis-
tically significant (Supplementary Fig. 5). sChemNET achieves good
prediction performance even without using sequence similarity
information in the loss function (see also Supplementary Fig. 6) but
with a slight reduction inprediction performance of ~1.81–3.62% across
the different top-K thresholds. In Supplementary Fig. 7, we also show
that sChemNET outperforms the competitors in terms of the area
under the receiver operating characteristic curve (AUROC) obtained
for three miRNAs with the largest number of positive labels.

A key question regarding the utility of our approach in practice
concerns its ability to predict bioactive small molecules chemically
dissimilar from those available for training themodel. Figure 2b (Right)
shows the prediction performance of sChemNET when considering
instances in which the bioactive small molecules in the test set were
chemically dissimilar from those available in the training set (Tanimoto
similarity <0.6, see “Methods” section). sChemNET significantly out-
performs the baselinemethods by 5-9% in the top 100 smallmolecules
retrieved from the test set, 10-24% (top 300), 10-40% (top 500), and 12-
34% in the top 1000. Our findings suggest that sChemNET could be
helpful in the discovery of novel smallmoleculemodulators ofmiRNAs
or their downstream targets.

The small size of the best-available labeled chemical dataset,
which we used for training sChemNET, prompted us to ask whether
sChemNET prediction performance varies with the number of bioac-
tive small molecules available for each miRNA target. Supplementary
Figure 8 shows the predicted rank of the active small molecules as a
function of the number of labels available for training. sChemNET
effectively retrieves bioactive smallmolecules evenwhen as few as four
or five bioactive small molecules are available for training the model.

We further performed a prospective evaluation in which we used
all our available data fromSM2miR 2015 as a training set, and 1180 new
associations between 120 smallmolecules and 123miRNAs as a test set
that we obtained from the RNAInter 2022 database32. This evaluation is
a realistic scenario that preserves the chronological order in which the
information becomes available. sChemNET outperforms all the base-
lines methods in the prospective evaluation (Supplementary Fig. 9).

Predicting small molecules targeting miRNAs or their targets in
model organisms
To understandwhether sChemNET can be helpful for chemical datasets
available for mammalian model organisms, we assessed its prediction
performance in small molecule-miRNA datasets available for Mus mus-
culus and Rattus norvergicus. Since fewer miRNA-small molecule asso-
ciations are known for these models than for Homo sapiens (see the
distribution of labeled information in Supplementary Fig. 2b, c), we
combined miRNA information from Homo sapiens to train sChemNET
for each model organism (see Fig. 3a and “Methods” section). Like our
evaluation forHomo sapiens, we combinedchemical data from theDrug
Repurposing Hub to obtain a broader range of unlabeled chemical
structures and performed a LOOCV procedure on the bioactive small
molecules against miRNA targets in Mus musculus and Rattus norvergi-
cus, respectively (see “Methods” section). For Mus musculus, we used
272 associations between 44 small molecules known to be bioactive
against 43 miRNAs, and for Rattus norvergicus, we used 78 associations
between 32 small molecules known to be bioactive against 13 miRNAs.

Figure 3b (Left) shows the prediction performance of sChemNET
in Mus musculus miRNA data when considering only chemically dis-
similar instances in the test set.We observed that sChemNETperforms
best without using sequence similarity information, and it can retrieve
more than 43% of bioactive small molecules within the top 25% of
prediction retrieved. Similarly, the prediction performance of the dif-
ferent methods for chemically dissimilar instances of bioactive small
molecules for miRNAs in Rattus norvergicus is shown in Fig. 3b (Right).

In this dataset, sChemNET outperforms the competitors by
6.18–24.67% in the top 300 (7.5%) of predictions retrieved and by
2.74–20.50% in the top 1000 (12.5%). Logistic regression performs
0.726% better than sChemNET in the top 100 (2.5%). The prediction
performance for mammalian organism when using all the small
molecule-miRNA instances (i.e. without controlling for chemical simi-
larities) is shown in Supplementary Fig. 11.

Mapping the effects of drugs on miRNAs and experimental
validations for miR-451
sChemNET’s effectiveness at computationally predicting small mole-
cules bioactive against miRNA activity prompted us to ask whether we
could generate a map between miRNAs and small molecules’ phar-
macological and chemical classes. To generate the mapping, we cal-
culated the enrichment of the drug mode of action (MoA) and drug
indications for ~127 out of ~6300 smallmolecules predicted in the 98th
percentile score for each miRNA belonging to Homo sapiens (see
“Methods” section). Figure 4b, c below shows a heatmap for the
enrichment obtained for drug MoA and indications for selected miR-
NAs. In the heatmaps, miRNAs are ordered based on their distance in
tissue-specific expression patterns using data from human donors
obtained from the miRNA Tissue Atlas database33 (Fig. 4a).

We investigated several compelling associations observed in Fig. 4
in more detail. We first focus our attention to miR-451, an erythrocyte-
specific miRNA. To experimentally validate if sChemNET-predicted
associations for miR-451 are phenotypically and physiologically rele-
vant, we incubated zebrafish embryos with different drug candidates
with the potential to modulate the miR-451 response. Zebrafish
embryos are an optimal model for validating small molecules as they
are transparent and enable testing the physiological effect of the drugs
in thewholeorganism. SincemiR-451 is expressedonly in erythrocytes,
we focused our analysis on the progress of erythrocyte maturation.
48 hours after fertilization, embryos display robust blood circulation.
At this stage, the accumulation of mature erythrocytes can be easily
assessed in transparent embryos using O-dianisidine, a hemoglobin-
specific stain34. All the drugs were tested in wild-type zebrafish
embryos in combination with phenyl-thiourea, a chemical known to
induce anemia due to oxidative stress when miR-451 activity is
impaired, but not in wild-type embryos35,36. In this PTU-sensitized
background, drugs impairing miR-451 activity induce anemia, while
miR-451 boosting drugs will increase erythrocyte production (Fig. 5a).

We selected three smallmolecules for the experimental validation
on miR-451 response: (i) the tubulin polymerization inhibitor doc-
etaxel, predicted in sChemNET’s top-3 position and also known to
target BCL2, a knowngene target ofmiR-451; (ii) the vitaminD receptor
agonist α-calcidol, predicted in sChemNET’s top-5 position; and (iii)
β-elemene, predicted in sChemNET’s top-71 position.

We treated the embryoswith docetaxel to experimentally validate
our first candidate drug. Figure 5b shows that consistent with the
predictions of sChemNET, docetaxel causes a higher accumulation of
blood in the ventral region of treated embryos compared to untreated
siblings. This finding confirms that docetaxel has a physiological effect
on miR-451-induced erythropoiesis. Higher doses of docetaxel (25 µM)
further induced erythrocyte production, and erythrocytes started to
pool in the tail region (Fig. 5c).

Our second candidate compound was α-calcidol, motivated by
sChemNET predictions formiR-451 in Fig. 4c, which shows enrichment
for vitamin D receptor agonists (adjusted significance p<8:40× 10�22).
To test this hypothesis, we treated zebrafish embryos with α-calcidol.
We observed blood accumulation associatedwith α-calcidol treatment
on the ventral region of embryos, even at concentrations as low as
10 nM (see Fig. 5b). Finally, our third candidate compound was β-ele-
mene due to its ability to bind tomiR-451 targetsMMP2 andMMP937,38.
Our experiments also confirm that β-elemene treatment also induces
excess blood in the ventral region of the embryos (Fig. 5b).
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To elucidate whether these compounds increased erythrocyte
maturation by stimulating miR-451 biogenesis or through modulation
of its network of mRNA targets, we analyzed the miR-451 and other
miRNA levels by Northern blot (see Fig. 5d, e and Supplementary
Fig. 12). Our analyses revealed that miR-451 expression levels did not
change upon drug treatment compared to untreated embryos. Con-
sistent with these results, we did not observe changes in miR-144,

another erythrocyte-specific miRNA expressed from the same primary
transcript as miR-45139. These results suggest that the drugs tested
elicit a transcriptional response that mimics the effect of miR-451-
mediated regulation.

Only accumulation of let-7 shown in Fig. 5e, expressed in the
hematopoietic tissue and elsewhere in the embryo, increased sig-
nificantly upon treatment with α-calcidol, a drug known to
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increase Dicer expression and hence miRNA processing. Since
miR-144 but not miR-451 is also processed by Dicer, we conclude
that α-calcidol affects Dicer expression outside the hematopoietic
tissue.

miRNAs, Vitamin D, and the example of the miRNA-181
isotype family
The most striking association between miRNAs and a drug proved to
be vitamin Dwhich was associated withmost of themiRNAs examined

or
ga

n/
tis

su
e

a

b

c

Fig. 4 | Heatmaps of miRNA tissue expression, enriched small molecules mode
of action and drug indications predicted by sChemNET for selected miRNAs
fromHomosapiens. amiRNAswereordered using hierarchical clustering basedon
their z-score expression levels on human tissues from the Tissue Atlas database;
Red areas indicate expression and the color is proportional to the z-score.
b Enrichment values of drug indications predicted by sChemNET for each miRNA.
The color is proportional to the� log10adjP, where adjP is the Benjamini-Hochberg

corrected p-value calculated using Fisher’s Exact Test to keep an overall sig-
nificance below 0.05.White areas indicate non-significant; (c) Enrichment values of
drug mode of action predicted by sChemNET for each miRNA. The color is pro-
portional to the, where adjP is the Benjamini–Hochberg corrected p-value calcu-
lated using Fisher’s Exact Test to keep an overall significance below 0.05. White
areas indicate non-significant.

Fig. 3 | sChemNET prediction performance evaluation on mouse and rat miR-
NAs. a Small molecule and miRNA set for mammalian model organisms (Mus
musculus and Rattus norvergicus) were combined with those available for Homo
sapiens for training sChemNET for predicting small molecule-miRNA associations
available for these organisms. Silhouettes of model organisms were obtained from
https://www.phylopic.org/. b The percentage of bioactive small molecules cor-
rectly retrieved from the test set for different numbers of smallmolecules retrieved
by eachmethod under a leave-one-out cross validation procedure. Only chemically

dissimilar instances were considered between training and testing sets (Tanimoto
chemical similarity <0.6). (Left) Recall obtained for 272 small molecule-miRNA
associations for n=43 miRNAs from Mus musculus; (Right) Recall obtained for
78 small molecule-miRNA associations for n= 13 miRNAs from Rattus norvergicus.
For theboxplots the center line represents themedian and the lines extending from
both ends of the box indicate the quartile (Q) variability outside Q1 and Q3 to the
minimum and maximum values. The notch represents the 95% confidence interval
of the median.
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(last row of Fig. 4c). Initially, this may seem anomalous, until it is
recognized that the active form of vitamin D, calcitriol or 1,25-dihy-
droxy vitamin D (1,25(OH)2D), is active in every tissue and recently
been discovered to be central in regulating mitochondrial function
which is essential for all tissues.

Our experiments in zebrafish embryos indicated that the VDR
agonist α-calcidol acts directly on miRNA processing. The observed
upregulation of mature let-7 most likely occurs by Dicer

overexpression. Since Dicer is a central component of the miRNA
processing pathway, we analyzed if other miRNAs are associated with
other VDR agonists. To experimentally assess the accuracy of miRNAs
predicted for calcitriol, we first investigated the correspondence of
miRNAs in human neuroblastoma cells (SH-SY5Y) treated with calci-
triol using miRNA sequencing. Following 24 h treatment, we observed
a small number of miRNAs were differentially expressed in SH-SY5Y
cells (Fig. 6a). Two of our predicted miRNAs hsa-miR-424-5p and hsa-
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miR-19a-3p were upregulated, and four predicted miRNAs were
reduced (hsa-miR-21-5p, hsa-miR-92a-3p, hsa-miR-323a-3p, and hsa-
miR-328-3p). The mean of sChemNET’s distribution of predicted rank
for calcitriol-miRNA interactions was lower for significant miRNAs
(mean rank 245) than for the non-significant ones (mean rank 288;
see Fig. 6b).

We further tested sChemNETpredictions onmodel organisms. To
assess the predictions for miRNAs from Rattus norvergicus, we used
previously published data on the expression of miRNAs between
calcitriol-treated endothelial progenitor cells and control cells derived
from the bone marrow of male Sprague-Dawley rats40 (Fig. 6c and
“Methods” section). Figure 6d shows the mean of sChemNET’s dis-
tribution of predicted rank for calcitriol-miRNA interactions was lower
for significant miRNAs (mean rank 192) than for the non-significant
ones (mean rank 434). Our analysis suggests that sChemNET’s pre-
dictions can also be helpful for small-sized miRNA chemical datasets
available for model organisms.

Vitamin D or its active form calcitriol have long been associated
with calcium and phosphate metabolism, which are directly
modulated by the mitochondrion, and vitamin D has been asso-
ciatedwith regulation ofmitochondrial respiration, reactive oxygen
specific (ROS) production, cell proliferation, and cell death. Vitamin
D acts through the Vitamin D Receptor (VDR) and silencing of the
VDR in a variety of cultured human cells not only modulated mito-
chondrial respiration, ROS production, and apoptosis, it down-
regulated the protein levels of critical oxidative phosphorylation
(OXPHOS) proteins coded in both the mtDNA (COX2 and ATP6) and
the nDNA (COX5 and ATP5B)41.

Regardless of the developmental target of a miRNA, it would be
essential that themiRNAalsomodulatemitochondrial bioenergetics to
have an integrated effect on the cellular and developmental function.
This is powerfully demonstrated by miR-2392 which not only enters
the mitochondrion to bind to the mtDNA but also has “seed” binding
sites in in 362 nDNA codedmRNAs8,42. miRNA-181 provides an example
of the critical importance for amiRNA to regulate both developmental
as well as mitochondrial functions. miRNA-181 is developmentally
regulated, predominantly expressed in the multiple areas of the brain
(Fig. 4a), though it is also active in immune, neuronal, and heart
tissues43–45. As predicted, miRNA-181 has been found to be a powerful
negative effector of mitochondrial biogenesis, mitophagy, and
apoptosis45,46.

There are four mature forms of miR-181 (miR-181a-5p, miR-181b-
5p, miR-181c-5p, miR-181d-5p). These are transcribed from three
chromosomal clusters: miR-181-a1 and miR-181-b1 on chromosome 1,
miR-181-a2 and miR-181-b2 on chromosome 9, and miR-181c and miR-
181d on chromosome 1945. In neuronal cells, miR-181a/b act within the
cytosol to reduce OXPHOS in favor of glycolysis through inhibition of
the mRNAs for the master mitochondrial biogenesis transcription
factor, peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α) gene PPARGC1A, themitochondrial nuclear regulator
factor 1 gene (NRF1), as well as the structural gene mRNAs COX11,
COQ10B, and PRDX344,45,47. In the heart, miR-181c enters the

mitochondrion and binds to the mtDNA COXI transcript resulting in
suppression of OXPHOS48.

Given that the four different isotypes of miR-181 all affect mito-
chondrial function, but have subtly different mRNA targets, if follows
that the clinical effects of vitamin D would differentially overlap with
the functional profiles of the different miR-181 isotypes. Since it is
established that miR-181 directly regulates mitochondrial biogenesis
and bioenergetics, and the requirement for mitochondrial function is
ubiquitous, it follows that predictions made from the function of a
wide range of miRNAs would also modulate mitochondrial function
and thus be related to vitamin D metabolism.

miR-181s have been shown to be overexpressed in several cancer
types49–51 including breast cancer, and has been demonstrated to be
involved with greater proliferation, invasiveness, and metastasis when
overexpressed52. There has been evidence of dysregulation of themiR-
181 family in a number of cancer types, including colorectal, breast,
lung, and prostate cancers45,53. Depending on the target genes
involved, studies have demonstrated that miR-181s can function as
tumor suppressors54. In addition, it has been reported that VDR ago-
nists have the ability to alter the expression ofmiR-181 in cancer cells55.
VDR agonists with the capacity to control miRNA expression has been
identified as possible cancer treatment drugs56.

To experimentally determine the impact of vitamin D receptor
agonist on miR-181 family (miR-181a, b, c and d) and breast cancer, we
utilized a non-metastatic MCF10CA1a and metastatic MCF10CA-ras
breast cancer cell line with and without calcitriol treatment (Fig. 6e).
We then quantified miRNA concentration for each condition using
droplet digital PCR (ddPCR; see “Methods” section). As expected, the
miR-181a-5p and miR-181c-5p increased in copies/μl when comparing
themetastatic to the non-metastatic cell line. On average, the calcitriol
treatment reduced the amounts of the miR-181 family for the meta-
static cell line. For the non-metastatic cell line, calcitriol caused an
increase in the amount of miR-181a-5p, with no difference in miR-181b-
5p and a decrease in miR-181c-5p and miR-181d-5p (Fig. 5e).

Discussion
Proteins remain the predominant class of pharmaceutical drug
targets21. Yet, many disease-related proteins remain undruggable to
date, thus hindering any possibilities for the development of treat-
ments for rare and/or complex human diseases. Targeting RNA
molecules, such asmicroRNAs or their downstream targets, have been
proposed as alternative treatment strategies due to the ability of
miRNAs to regulate pathway networks related to disease8,57. Despite
our growing knowledge of miRNA-disease associations, we lack
advances in miRNA-based therapeutics, as there are currently no
clinically approved miRNA-based drugs available for treatment. To
harness the potential of altering miRNA function to improve human
health, systematic principles and computational methods are needed
to support the development of RNA-based therapeutics. In this paper,
we introduced a deep learning approach, sChemNET, for predicting
small molecules that might affect miRNA function. Our model learns
non-linear relationships between chemical features of small molecules

Fig. 5 | Experimental validation on Zebrafish embryos of drugs predicted to
modulate the activity ofmiR-451 or the expression of its targets. aDepiction of
our experimental design. Zebrafish embryos were incubated with different drug
candidates predicted by sChemNET in combination with phenyl-thiourea (PTU), a
chemical known to induce anemia due to oxidative stress when miR-451 activity is
impaired, but not in wild-type embryos. 48hours after fertilization, embryos dis-
play robust blood circulation. At this stage, the accumulation of mature ery-
throcytes can be easily assessed in transparent embryos using O-dianisidine, a
hemoglobin-specific stain. Drugs impairing miR-451 activity induce anemia, while
miR-451 boosting drugs will increase erythrocyte production (blood circulation).
b Ventral images of 2-day-old embryos stained with O-dianisidine to reveal hemo-
globinized cells (brown staining) for wild-type embryos and those treated with

docetaxel, β-elemene and α-calcidol. Blood accumulates in the ventral region
(ducts of Cuvier). c Lateral view of another group of embryos to reveal accumu-
lation of the excess of blood in the tail region upon treatment with docetaxel.
d Northern blot quantification of miRNA expression in zebrafish embryos treated
with drug candidates. Total RNA extracted from 2-day-old embryos was analyzed
by Northern blot to reveal the expression of miR-451, miR-144, miR-15, and let-7
under different drug treatments. e Quantification of miRNA expression based on
the radioactive signal of miRNA probes after Northern blot assay. Bars represent
averaged normalized miRNA expression from three representative experiments
(white circles). Error bars indicate the standard error of the mean. **p-value =
0.0091 One-way ANOVA test.
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Fig. 6 | Experimental validation of miRNAs targeted by the vitamin D receptor
agonist calcitriol. a Enhanced volcano plot of miRNAs differentially expressed in
SH-SY5Y cell lines upon drug treatment. P-value was obtainedwith two-wayANOVA
test and contrasts were determined between control and treated using Fisher’s
Least Significant Difference (LSD); (b) sChemNET predicted rank for calcitriol for
the group of miRNAs found to be non-significant (NS) vs. the group found to be
significant in terms of p-value and log2FC (S) in SH-SY5Y cell lines (n=64 for NS and
n=6 for S). For the boxplots the center line represents the median and the lines
extending from both ends of the box indicate the quartile (Q) variability outside Q1
and Q3 to the minimum and maximum values; (c) Enhanced volcano plot of miR-
NAs differentially expressed under treatment with calcitriol on endothelial pro-
genitor cells and control cells derived from the bone marrow of male Sprague-
Dawley rats. P-values were obtained with DESeq2 by theWald test and adjusted for
multiple testing using the Benjamini–Hochberg method. d ChemNET predicted

rank for calcitriol for the group of miRNAs found to be non-significant (NS) vs. the
group found to be significant in terms of p-value and log2FC (S) in miRNAs from
Rattus Norvergicus (n= 7 for NS and n= 5 for S). For the boxplots the center line
represents the median and the lines extending from both ends of the box indicate
the quartile (Q) variability outsideQ1 andQ3 to theminimumandmaximumvalues.
e Box plots for the droplet digital PCR (ddPCR) quantification of the copies/ul of
miR-181a-5p, miR-181b-5p, miR-181c-5p, and miR-181d-5p in human non-metastatic
MCF10CA1a andmetastaticMCF10CA1a-ras breast cancer cell line with andwithout
calcitrol treatment determined by ddPCR. The significance between groups is
shownby the p-value. There aren= 3 replicates for each condition. For the boxplots
the center line represents the median and the lines extending from both ends of
the box indicate the quartile (Q) variability outside Q1 and Q3 to the minimum
and maximum values. The p-values were determined by two-side pairwise
comparison.
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and miRNAs by learning from small bioactive miRNA-chemical data-
sets and large corpus of chemical structures as-yet-unknown to affect
miRNAs. We show that sChemNET can be useful for predicting small
molecule-miRNA associations obtained from Homo sapiens and other
mammalian model organisms. We also show that sChemNET provides
predictive understanding of the chemical principles by which small
molecules are bioactive against a particular miRNA function (see
Fig. 4), and how this knowledge can be used as hypothesis generator
for the experimental design. To facilitate exploration of the predic-
tions, we provide them in Supplementary Datasets 1.

In our study, we used the Drug Repositioning Hub database29 to
obtain an unlabeled set of chemical structures. This chemical library is
known to contain therapeutically and chemically diverse compounds,
which includes most of the FDA-approved drugs. Hence, it is likely to
include already potential RNA binders58 which might also affect RNA
function. To understand whether our unlabeled set of small molecules
were already bias towards our labeled set of small molecules, we cal-
culated 46 different physicochemical properties of each small mole-
cule using SwissADME59 and compared the distribution of mean
between the Euclidean distances among the labeled small molecules
(intra-group) and between the labeled and unlabeled small molecules
(inter-group). We found that the mean of the distribution of physico-
chemical distances underlying the inter-group of small molecules is
significantly greater than the mean of the distribution of the intra-
group (One-sided Welch’s t-test Significance p-value < 1.10e-30). This
suggests that, in terms of physicochemical properties distances, there
are statistically significant differences between the labeled and unla-
beled small molecules, which indicates that our unlabeled set is not
biased towards our labeled set.

sChemNET has several limitations. First, it can only predict whe-
ther a small molecule might affect the transcriptional program of a
miRNA, but about the exact molecular mechanism of action is
unknown. Our experimental validations in zebrafish embryos and
human cells demonstrate that the small molecules predicted by
sChemNET can act either directly on the miRNAs, affecting their pro-
cessing or expression, or modulating the expression of genes in the
miRNA-target network. Either mechanism of action is valid, as both
pathways will allow the desired output, which complements miRNA
activity. One case is α-calcidol, which does not affect the levels of miR-
451 - or its cluster partner miR-144 -, but still boosts blood production.
The reason that α-calcidol does not affect the levels of the erythrocyte-
specific miR-144 is because Dicer and miR-144 are engaged in a nega-
tive feedback loop in erythrocytes. Dicer processesmiR-144, but at the
same time is a target of miR-14436, effectively canceling a potential
drug-induced increase in miR-144 output.

A second limitation of sChemNET is that the small molecule-
miRNA interaction data comes fromdifferent experimental conditions
and cell lines, so it could happen that sChemNET predictions gen-
eralize better to those cell lines, as miRNA expression is known to be
tissue-specific33 (see also Fig. 4). To assist researchers with this last
limitation, we manually curated the cell lines/tissues for each miRNA
from the dataset used for training (see Supplementary Datasets 2).

Figure 4 represents the final mapping generated with sChemNET
that connects drug molecular effects, miRNAs, drug indications, and
miRNA tissue expression. Strikingly, Fig. 4c reveals that most miRNAs
were significantly associatedwith vitaminD receptor agonists. This can
be attributed to the fact that vitamin D and its metabolites can exert a
pleiotropic effect over miRNA expression, as already described in
different physiological contexts, mediated by direct promoter activa-
tion ofmiRNAgenes60,61.ManymiRs, includingmiR-106a-5p,miR-106b,
miR-134, miR-135a, miR-141, miR-146a, miR-181, miR-1915, miR-20b,
miR-22,miR-224,miR-27b,miR-29a,miR-98miR-99b, and let-7a/b/d/e/
f are regulated by calcitriol or calcifediol in vitro60. Several miRNAs,
including miR-106b, miR-141, miR-146a, miR-221, miR-32, miR-424,
miR-99b-5p, and let-7a/b/d/f, are associatedwith serumor tissue levels

of vitamin D3 metabolites in patients60. The untranslated region of the
vitamin D receptor mRNA contains binding sites for miR-27 and miR-
12562. Other studies refer to the dysregulation ofmiR-125 in the context
of vitamin D62. miR-134, miR-663, and miR-125 were dysregulated in
relation to calcifediol status in adult acute myeloid leukemia patients,
although none of them remained significant after multiple test
corrections62. α-calcidiol is also known to be converted to calcitriol,
and thus functions equivalently to calcitriol in the dysregulation of
miRNAs63.

In addition to demonstrating the impact of targeting miR-181s
from our predictions for breast cancer (Fig. 6e), the predictions pro-
duced from this work can assist for future work with determining
alternative treatment strategies for many diseases such as different
cancer types (Fig. 4). For example, sChemNET also predicted thatmiR-
501-5p is significantly associatedwith colorectal cancer anddrugmode
of actions related to anticancer drugs (Fig. 4c). In a study by Ma Xiang
et al. it was observed that miR-501-5p promotes gastric cancer cell
proliferation and migration by targeting and downregulating LPAR164.
In another study, Zhang et al. discoveredmiR-501–3p restricts prostate
cancer cell growth by targeting CREPT to inhibit the expression of
cyclin D165. In their work, Zhao et al. note that miRNA-501-5p expres-
sion in prostate cancer cells was elevated while PINX1 expression was
decreased when compared to the normal prostate epithelial cells.
PINX1 was a target of miR-501-5p, which was downregulated to
encourageprostate cancer cell invasion,migration, andproliferation66.
This is another example of how sChemNET’s predictions can further be
utilized to generate novel hypotheses to develop therapies and treat-
ment for patients in the clinic. We believe that once the correct miR-
NAs are determined associatedwith the diseases, sChemNET canbe an
essential tool for rapid treatment response and potentially can also
assist with future pandemics, when it is important for rapid develop-
ment of repurposing existing small molecule drugs for treatment.

On the basis of the results of this pilot study, we propose that a
next step would be the generation of an expanded experimental
mapping based on sChemNET’s predictions between chemical families
of small molecules and miRNA bioactivity in-vitro and in-vivo, that is,
whether they up-or down-regulate predicted miRNAs and/or their
corresponding mRNA targets, including their effects on model
organisms related to specific human diseases. An initial step could be
to profile all FDA-approved drugs on miRNAs and their downstream
targets or to assess sChemNET in other chemical libraries to discover
novel compounds. These efforts will also allow us to expand sChem-
NET’s predictions capabilities to many other human miRNAs and
chemical families. In the meantime, even an incomplete mapping
generated by sChemNET in Fig. 4 will accelerate progress in char-
acterizing miRNAs targeted by small molecules, finding new uses for
existing drugs, and in understanding the miRNA alteration mechan-
isms of diseases.

It would be interesting to explore othermodernmachine-learning
approaches with low-dimensionality chemical fingerprint as input for
sChemNET. We have benchmarked the RDKit and ECFP4 and ECFP6
chemical fingerprints and found that MACCS outperforms them
(Supplementary Fig. 10). Although ECFP-based offers better chemical
representation, it is likely that MACCS outperform it due to overfitting
in thepresenceofour small and sparse labeleddataset. It wouldbe also
interesting to build datasets that contain true negative smallmolecule-
miRNA associations and to model its confidence with sChemNET with
an additional term in the loss function. Finally, future modeling
research also requires combining datasets about direct binding58 and
regulation between small molecules and miRNAs.

Methods
Chemical datasets
We used the SM2miR database20 version 27 April 2015, to obtain
manually curated associations between small molecules and miRNAs.
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In the database, each small molecule was mapped to its PubChem
identifier (CID), and eachmiRNAwasmapped to itsmiRbase identifier.
In total, we found 4244 small molecule-miRNA associations across
18 species. For each organism under study, we only kept miRNAs with
at least five small molecule associations. For Homo sapiens, we used
1102 associations between 131 small molecules and 126miRNA targets.
For Mus musculus, we used 272 associations between 44 small mole-
cules and 43 miRNAs. For Rattus norvergicus, we used 78 associations
between 32 small molecules and 13 miRNAs.

To obtain a prospective set, we mined the RNAInter database32

and found 1180 new associations for Homo sapiens between 123 miR-
NAs and 120 small molecules. These associations were not present in
our set from SM2miR.

We used the Drug Repurposing Hub29 to obtain a chemical library
of small molecules without known activity against miRNAs. The Drug
Repurposing Hub contains structurally and therapeutically diverse
smallmolecules that have reached clinical trials for diverse indications.
For each organism under study, we kept only the small molecules that
were not in our sets from SM2miR. In total, our final set of small
molecules for Homo sapiens, Mus musculus, and Rattus norvergicus,
was 6302, 6281, and 6294, respectively.

Canonical Simplified Molecular-Input Line-Entry System (SMILES)
of each small molecule was obtained from PubChem using CIDs
identifiers. To query PubChem, we used the https://pubchempy.
readthedocs.io/en/latest/ library in Python.

Chemical structure representation
Each small molecule was represented by its MACCS fingerprint67, a 127
binary feature vector inwhich each element contains a value of ‘1’ if the
chemical substructure is present in the small molecule or a value of ‘0’
otherwise. The MACCS chemical fingerprint was computed from the
SMILES chemical structure information using RDKit68.

miRNA sequence similarity and linear re-scaling for sChemNET
loss function
miRNA mature sequences were obtained from the miRBase
database30 using the miRNA identifiers. Following previous work69,70,
we computed miRNA sequence similarities using the mature miRNA
sequences using global alignment Needleman-Wunsch algorithm in
BioPython v1.76 (with a match score of 1, and mismatch and gap
scores of zero). To obtain the suv that we used in our loss function in
Eq.(1), raw sequence similarity scores from the Needleman-Wunsch
algorithm were linearly rescaled between a and 1, as follows:

su = m× zu + 1�m× max zu
� �� �

Where zu = ½zu1, zu2, . . . , zun� is the alignment score obtained between
miRNA u and all other miRNAs,m= 1�a

max zuð Þ�minðzuÞ
is the slope and a is

theminimum value of su. ForHomo sapiens, we found that a=0 works
best, and for model organisms we used a=0:7.

The sChemNET model training
We modeled the small molecule-miRNA interaction using a multi-task
two-layered feed-forward neural network that learns a score mapping
between the chemical features of a small molecule and a set of miR-
NAs. sChemNET is trained for each miRNA by integrating labeled and
unlabeled chemical structure information, and it canbe trainedwith or
without integrating miRNA sequence information. When sChemNET is
trained without sequence information, it amounts to setting suv = 1 for
any miRNA pair (u,v) in Eq. (1). The sChemNET model architecture
consisted of a set of input chemical features, a set of hidden units fully
connected to the input features (with a dropout parameter p,, batch
normalization, and Relu activation function), followed by a set of
output units, representing each of the miRNAs, fully connected to the

hidden units (with a dropout parameter p and sigmoid activation
function). To train the sChemNET model, the loss function in Eq. (1)
was minimized using an ADAM optimizer with default parameters in
Tensorflow/Keras v2.8.0 (beta1 = 0.9, beta2 = 0.999, epsilon=1e-7).

Notice that although sChemNET uses labeled information from
other miRNAs during the learning, sChemNET is not a global learning
model, that canbe learnedonly once. The sChemNET learningmodel is
optimized for each miRNA u of interest. A global model can be
obtained only for the case in which we ignore the sequence similarity
information, that is, suv = 1 for all the cases.

Hyperparameter search using Bayesian optimization
In the sChemNET architecture, the following hyperparameters were
optimized: number of hidden units (n), unlabeled regularization
parameter (α), number of epochs (e), learning rate (lr), and dropout
(p). We used a Bayesian optimization procedure (https://github.com/
fmfn/BayesianOptimization) for hyperparameter search in the fol-
lowing bounds e 2 100, 300½ �, lr 2 0:0001, 0:1½ �, p 2 ½0:1, 0:5�, α 2
0:001,0:3½ �: Number of hidden units were tested for a discrete set of
n 2 f8,16,32g. For every organism, the hyperparameter search was
performedona randomly selectedmiRNA thatwas then removed from
subsequent performance evaluation. The optimal set of hyperpara-
meters was selected based on the minimum mean rank of the pre-
dicted bioactive small molecules that was held out.

In-silico LOOCV evaluation procedure
Weused Leave-One-OutCross Validation (LOOCV)procedure to assess
the prediction performance of the model. In this procedure, for each
miRNA i, we removedoneof its bioactive smallmolecules andplaced it
on a test set. In total, the test set consisted of 4000 small molecules
where only one was known to be bioactive against miRNA target i, and
the remaining 3999 were randomly selected from the set of small
molecules without known activity against miRNA target i. We used the
remaining labeled and unlabeled small molecules to train sChemNET
for miRNA target i. The model then assigned a score to each of the
4000 small molecules in the test set that we stored. We repeated the
procedure for each association known for miRNA i. The prediction
performance was then obtained as the recall of active small molecules
amongst the top-k small molecules retrieved from the test set, for
k 2 ð100, 300, 500, 1000Þ. We repeated the whole procedure for each
miRNA target in each organism separately. The recall for a given
miRNA i at the top- k was computed as follows:

recall =
number of bioactive small molecules retrieved at top� k

number of positive instances assessed for miRNAi

Prospective evaluation
We used the RNAInter database to obtain a prospective evaluation set.
We found 1180 prospective associations between 123 miRNAs and
120 small molecules. Using this prospective evaluation set, for each
miRNA, we used our 2015 dataset (SM2miR database) to train the
models and the 2022 dataset (RNAInter database) as a test set. To
avoid information leakage from similar chemical structures, we only
kept in the test set chemically dissimilar compounds from those in
training (Tanimoto similarity < 0.6).We only considered cases inwhich
we had at least five associations in the test set. In the test set, we also
incorporated 4000 randomly selected small molecules that were
unknown to be bioactive against the miRNA under evaluation. The
remaining unlabeled small molecules were used for training. We then
framed a binary classification performance and used the area under
the receiver operating characteristic curve (AUROC) to calculate the
model’s prediction performance for each miRNA.
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Baseline methods
The followingmethodswere used to score each of the smallmolecules
in the test set:

• Chemical similarity baseline. Each small molecule in the test set
was scoredbasedon themaximumchemical similarity to an active
small molecule in the training set. Chemical similarities were
computed using the 2D Tanimoto chemical similarity based on
the binary fingerprints.

• Random baseline. Each small molecule in the test set was assigned
a random score sampled from a uniform distribution
between 0 and 1.

• Machine Learning baselines. We also implemented machine-
learning baselines using sklearn that work with the same dataset
as sChemNET.These includes Logistic Regression, RandomForest
(best hyperparameter set, ‘n_estimators’: 2, ‘min_samples_split’:10,
‘min_sample_leaf’: 3, ‘max_features’:2, ‘max_depth’: 50, ‘bootstrap’:
True), XGBoost (best hyperparameter set, ‘subsample’: 0.5,
‘n_estimators’: 1000, ‘min_samples_split’: 5, ‘min_samples_leaf’: 5,
‘max_depth’: 3, ‘learning_rate’: 0.02).

Enrichment analysis of drug mode of action and indication
We trained sChemNET for each miRNA using all the available labeled
small molecules and a randomly selected set of 2,400 unlabeled small
molecules. Then, sChemNET was used to rank the remaining set of
unlabeled smallmolecules based on the average prediction score of 20
random independent repetitions. Small molecules amongst the 98th

percentile score was then kept as predictions for the miRNA. We then
retrieved the mode of action and indication information of small
molecules from the Drug Repurposing Hub database. The enrichment
score was calculated based on p-values calculated using Fisher’s Exact
Test and adjusted with Benjamin-Hochberg correction for multiple
testing.

Samples collected on cancer cell lines treated with calcitriol
Human Harvey-ras transformed non-metastatic and metastatic
MCF10CA1a were cultured as previously described71,72. Cells were
treated for 72 h with 10 nM 1α,25-dihydroxyvitamin D (1,25(OH)2D,
Biomol, Plymouth Meeting, PA) in 100% ethanol vehicle (final con-
centration <0.1%), withmedia changed every 24 h and harvested at 70-
80% confluence for each dish.

miRNA concentration quantification on cancer cell lines with
droplet digital PCR
MiRNA extractions from frozen cell pellets were carried out using the
QIAGENmiRNeasy serum/plasma kit (#217184).Quantitation ofmiRNA
samples was done using a NanoDrop 2000 Spectrophotometer
(ThermoFisher Scientific). cDNAwas synthesized frommiRNA samples
using the QIAGEN miRCURY LNA RT Kit (Cat. 339340) using a con-
centration of 5 ng/ml for the miRNA per sample. Next, samples were
mixed with a 1:20 dilution of the generated cDNA with the BioRad
QX200 ddPCR Evagreen Supermix (Cat. 1864034) and the appropriate
miRNA primers from miRCURY LNA miRNA PCR Assays (QIAGEN.
BioRad QX200 Automated Droplet Generator (Cat. 1864101) was used
to create emulsion droplets. With the C1000 Touch Thermal Cycler
with 96–Deep Well Reaction Module (Bio-Rad) the following PCR
reaction was used for all the primers: 1 cycle 95 °C for 5min, 40 cycles
of 95 °C for 30 s, and 53 °C for 1min (the annealing temperature can
change depending on the primer), 1 cycle of 4 °C for 5min, and 1 cycle
of 90 °C for 5min. We have optimized the annealing temperature for
miR-181a-5p, miR-181b-5p, miR-181c-5p, and miR-181d-5p to be 53 °C.
Finally, theQX200DropletDigital PCRSystem (Bio-Rad) quantified the
amount ofmiRNA for each primer set per sample. QuantaSoft software
(Bio-Rad) generated the data for each primer set and sample. The same
threshold setting was used for all samples per primer set. These values
were used for allmiRNA analysis. The datawas plotted using ggplot2 in

R and Student’s t tests were performed to determine the overall sig-
nificance between the groups.

SH-SY5Y cell line experiments with calcitriol
The human neuroblastoma cell line SH-SY5Y was obtained from ATCC
(CRL-2266) and was cultured in Basic Growth Media (BGM) contain;
EMEM (Quality Biological) with 1% v/v GlutaMAX (Gibco), 1% v/v
penicillin–streptomycin (Gibco), and 15% v/v hiFBS (Gibco). Cells were
subcultured for 2-3 days, and then treatedwith Calcitrol 10μM(Sigma)
for 24 h. Cells were washed with ice cold PBS. RNAwas extracted using
themirNEasy extraction kit (Qiagen) and then librarieswere assembled
using the QiaSeq protocol for Ion Torrent (Qigen). Library barcodes
were called from raw data using cutadapt and uBam data uploaded to
Qigen GeneGlobe miRNA Software for processing (https://geneglobe.
qiagen.com/us/analyze). Resultant data sheets from 2 runs were
merged and processed in Partek Genomics studio. Differential
expression was determined using a linear model, with drug treatment
and batch ID as contrasts. Data from the results were input into an
enhanced volcano for visualization.

Zebrafish strains
Zebrafish strains were bred, handled, and maintained according
to the standard laboratory conditions under IACUC protocol
PROTO201800373 at Boston University. Experiments were performed
in hybridwild-type strain crosses obtained fromAB/TU and TL/NIHGRI
breeders.

Drug treatment
Dechorionated wild-type zebrafish embryos at 24 h post-fertilization
(hpf) examined under the brightfield microscope and collected for
drug treatment. Groups of 15 embryos were distributed in each well of
twelve-well plates after coating the wells in agarose. Next, each drug
was added to the water containing the embryos at concentrations lis-
ted below, and the embryos were incubated with the drugs for 24 h at
28°C. To induce oxidative stress, the embryos were kept in water
containing 0.003% phenylthiourea (PTU) (Sigma-Aldrich) from 8 hpf
until the end of the experiment. The control group was treated with
ethanol or DMSO. All the experiments were done in triplicate.
1. docetaxel (5 µM, 25 µM)
2. β-elemene (5 µM)
3. α-calcidol (10 nM,1 µM)

Small RNA northern blot
The endogenous miRNAs are detected by processing groups of 30
embryos, treated with drugs and collected at the 48 hpf. Using Trizol
(Invitrogen), the total RNA was extracted and resuspended in for-
mamide and 2X loading buffer (8M urea, 50mM EDTA, 0.2mg/ml
bromophenol blue, and 0.2mg/ml xylene cyanol). The extracted total
RNAs were separated in 15% denaturing urea polyacrylamide gel in 1X
TBE and transferred to a positively charged Zeta-Probe blotting
membrane (Bio-Rad) using a semi-dry Trans-Blot SD (Bio-Rad) for
35min at 20 V (0.68 A). Membranes were UV cross-linked and pre-
hybridized with ExpressHyb Hybridization Solution (Clontech) for 1 h
at 50 °C. Membranes were blotted with 32P-radiolabelled DNA oligo-
nucleotide probes (StarFire probes, IDT) at 30oC overnight. The oli-
gonucleotide DNA probes hybridized membranes were washed twice
with 2X SSC/0.1% SDS followed by 1X SSC/0.1% SDS for 15min at room
temperature. The blots were exposed to a phosphor imaging screen
for 1 day and the signal intensity was detected using the Typhoon FLA
7000phosphor imager (GEHealthcare Life technologies) and analyzed
using the ImageQuant TL software (GE Healthcare).

Quantification of miRNA by northern blot
Employing northern blot, the estimate amount of endogenous miR-
144, miR-451, miR-15 and let-7 was quantified from 2-day-old zebrafish

Article https://doi.org/10.1038/s41467-024-49813-w

Nature Communications |         (2024) 15:9149 13

https://geneglobe.qiagen.com/us/analyze
https://geneglobe.qiagen.com/us/analyze


embryos. The valueof eachmiRNAwas normalizedwithU1 snRNA. The
experiments were performed in triplicate. Graphs were generated and
statistical analysis was performed using GraphPad Prism.

Preparation of radiolabeled probes
Following StarFiremethod the radiolabeledDNAprobeswereprepared.
The oligos specific to the targetedmiRNAwere annealed with universal
oligo (5′- TTTTTTTTTT666G6(ddC)-3′ from IDT, where “6” corresponds
to a propyne dC modification) via complementary hexamer sequence.
Annealed duplexes are then labeled with a-32P-dATP (6 µL of 10mCi/mL
stock) using the 3′−5′ exo- Klenow fragment of DNA polymerase. To
stop the reaction 40 µL of 10mM EDTA solution was added to 10 µL of
reaction. The labeled oligos were purified using Micro-Spin G25 col-
umns (GE Health Care) at 3000×g for 3min. The membranes were
probed with 3,000,000 cpm of the P32 labeled Star-Fire probes. Probe
sequences used in this study are listed in Supplementary Table 1.

O-dianisidine staining
Hemoglobin content in zebrafish embryos at 48 hpf was performed as
previouslydescribed byKretov et al.36. In briefly, embryoswere stained
in O-dianisidine staining solution (2mL of water, 2mL of 0.7 mg/mL
O-dianisidine (Sigma-Aldrich), dissolved in 96% ethanol and protected
from light, 0.5mL of 100mM sodium acetate (pH 4.5), 100mL of 30%
hydrogen peroxide) for 15minutes at room temperature. After that the
embryos were washed 2 times with 1X PBS (pH 7.4) then transferred
into 1XPBS. To induceoxidative stress, the embryoswere kept inwater
containing 0.003% phenylthiourea (PTU) (Sigma-Aldrich) from 8 hpf
and collected at 48 hpf. The control group was treated with ethanol or
DMSO. All the experiments were done in triplicate. Images were cap-
tured using a Zeiss Discovery v.12 microscope. Images were processed
with ZEN software (Zeiss) and Adobe Photoshop and Illustrator 2021.

Rattus norvegicus miRNA-Seq
Raw miRNA-Seq reads from study PRJNA545400 were downloaded
from the sequencing read archive and were trimmed for quality and
adapters via pyrpipe73. miRDeep274 was used to process and quantity
the reads using themature and precursormiRNA sequences for Rattus
norvegicus from miRBase30. Mature miRNA’s with more than 1 pre-
cursor were average across precursors. The subsequent counts were
rounded to the nearest integer and ran through DESeq275 for differ-
ential expression analysis. This pipeline can be found https://github.
com/jahaltom/miRNA-Seq/tree/main.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SH-SY5Y data generated in this study have been deposited in the
Bioproject NCBI database under accession code PRJNA1115227 [http://
www.ncbi.nlm.nih.gov/bioproject/1115227]. The northern blot data
andmiR-181 quantification data generated in this study are provided in
the Supplementary Information/Source Data file. The miRNA-Seq
vitamin D treatment data used in this study are available in the Bio-
project database under accession code PRJNA545400. Source data are
provided with this paper.

Code availability
The sChemNET code is available on https://github.com/diegogalpy/
sChemNET/.
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