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transcriptome-widedifferentialA-to-I editing
in RNA-seq data
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RNA editing is a highly conserved process. Adenosine deaminase acting on
RNA (ADAR) mediated deamination of adenosine (A-to-I editing) is associated
with human disease and immune checkpoint control. Functional implications
of A-to-I editing are currently of broad interest to academic and industrial
research as underscored by the fast-growing number of clinical studies
applying base editors as therapeutic tools. Analyzing the dynamics of A-to-I
editing, in a biological or therapeutic context, requires the sensitive detection
of differential A-to-I editing, a currently unmet need. We introduce the local
differential editing index (LoDEI) to detect differential A-to-I editing in RNA-
seq datasets using a sliding-window approach coupled with an empirical q
value calculation that detects more A-to-I editing sites at the same false-
discovery rate compared to existingmethods. LoDEI is validatedon knownand
novel datasets revealing that the oncogeneMYCN increases and that a specific
small non-coding RNA reduces A-to-I editing.

About 170 modifications of ribonucleotides are known to affect bio-
logical functions significantly, and misregulation is associated with a
growing number of diseases1,2. RNA editing is an RNA modification
caused by proteins and can lead to changes in the RNA sequence3,4.
Engineering and manipulating RNA via guided RNA editing has
immense therapeutic value currently gaining momentum, and
demands precise identification of altered RNA editing signals5–8. The
most frequent RNA editing in animals is facilitated by genes of the
adenosine deaminase acting on the RNA (ADAR) family. ADAR1 and
ADAR2 are specific proteins known to convert adenosine to inosine (A-
to-I editing), interpreted as guanosine by the cellular machinery such
as the ribosome or spliceosome, and appear as guanosine in next-
generation sequencing (NGS)9–11.

Biological functions of ADAR-induced RNA-editing include the
editing of a specific position in a coding sequence, leading to an amino
acid substitution potentially affecting protein functionality, and A-to-I
editing can lead to alternative splicing, altered miRNA function,

changes in the stability of RNA folds, and nuclear retention of the
mRNA. Furthermore, most A-to-I editing occurs within double-
stranded RNA (dsRNA) caused by Alu and inverted Alu repeats loca-
ted primarily in 3’ untranslated regions (3’UTRs) and introns and this
widespread editing of adenosines in untranslated regions can coun-
teract an immune response caused by endogenous dsRNA9,12.

Besides the biological importance of A-to-I editing, the clinical
significancehasbeen recognizedmore recently. For example, inflamed
endothelial cells show a drastic change in ADAR2-mediated A-to-I
editing, in cancer altered regulation of A-to-I editing has been
observed, and down-regulation of ADAR triggers activation of the
dsRNA sensor, leading to translational activation of the interferon
systems, beneficial for immune therapies12–15. Moreover, the applica-
tion of designed base editors for site-specific RNA editing, the ther-
apeutic targeting of ADAR, and the identification of other A-to-I
regulatory factors require a robust and sensitive tool to compare the
editing between two conditions16–18.
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So far, bioinformatic software tools detect putative A-to-I editing
by aligning RNA-seq data to a corresponding reference genome, fol-
lowed by detecting A→G mismatches likely caused by A-to-I editing.
Herein, most tools focus on the detection of single edited A-to-I sites.
REDItools takes RNA-seq data as input and reports a table of single
genomic positions of G/A ratios that can be filtered for single
nucleotide polymorphisms (SNPs) if a corresponding DNA-seq file is
provided19,20. GIREMI focuses on detecting individual editing sites via a
mutual information approach without the need for a sequenced
genomic reference21. Other publications avoid de novo detection and
focus on single editing sites listed in A-to-I editing databases like
RADAR and REDIportal22–24. Since A-to-I editing is not limited to always
appearing at identical sites between different samples, reliable detec-
tion of single nucleotides is challenging for any single-site approach25.

To address the drawbacksof the detection of single sites probably
caused by the widespread binding of ADAR1 to dsRNA, alternative
approaches like RNAEditor, FLARE, and the Alu editing index (AEI)
have been proposed that share the common idea to detect A-to-I
editing by analyzing a larger genomic region rather than analyzing
single nucleotides25–27.

All tools focus on detecting putative RNA-editing but do not offer
methods for detecting differential RNA-editing. Differentially edited A-
to-I events are of great interest as these sites are a proxy for biologi-
cally relevant regions, especially in scenarios where different experi-
mental conditions are compared. To address the need, JACUSA2 and
REDIT introduced specific statistical models for differential A-to-I
editing detection at single nucleotides to replace general statistical
tests like the t-test or Mann–Whitney U-test28–32. By design, all single-
site-specific approaches suffer fromwidespread editing of ADAR1 that
may yield little information at an individual position, requiring many
samples to detect transcriptome-wide differential A-to-I editing at
single sites reliably and make certain modeling assumptions of the
underlying data. In contrast, global approaches like theAEI address the
widespread editing problem at the cost of losing all positional infor-
mation and lacking a proper statistical framework. Hence, tools for the
robust detection of differential A-to-I still remain to be a major open
task33.

In contrast to model-based approaches used in JACUSA2 and
REDIT, non-parametric approaches are an alternative that does not
make any assumptions about the observed data. Large-scale NGS
experiments contain millions of mismatch events, enabling non-
parametric approaches to estimate null distributions empirically and
thereby avoiding introducing any model constraints and allowing the
calculation of q values directly34–36.

Here, we present the local differential editing index (LoDEI) to
detect differential A-to-I editing in two sets of RNA-seq samples on a
transcriptome-wide scale using a non-parametric approach for q-value
calculation. Compared to other methods, LoDEI detects more differ-
ential A-to-I editing at the same false discovery rate (FDR) and finds
editing events that have remained undetected. Our window-based
approach addresses problems caused bywidespread editing but keeps
the high resolution of single-site approaches. Applying an empirical
approach, LoDEI can detect A-to-I editing even in the comparison of
single samples, an unfeasible scenario for site-specific, model-based
approaches.

Basic research on human disease and drug discovery projects will
benefit from LoDEI’s increased sensitivity and accuracy since global
values like theAEI are unable to recognize treatment effectswhendrug
candidates influenceA-to-I editing in bidirectionalways, and single-site
approaches often miss target sites and off-target effects or require a
high number of samples to detect editing signals.

Results
The goal of LoDEI is to detect biologically relevant differences in A-to-I
editing between two sets of RNA-seq samples (Fig. 1). To identify

differential A-to-I editing, the detection method of LoDEI can be
separated into two high-level steps:

1. A sliding window estimates the A-to-I editing signal for each set
and calculates the difference between the editing signals of the
two sets.

2. To separate calculated A-to-I editing signal differences caused by
true A-to-I events from noise, the same sliding window approach
is applied to non-A-to-I mismatches (all non-A →G mismatches),
generating the data to allow calculating q values empirically.

This paper proceeds with a precise description of the A-to-I edit-
ing signal calculation and q-value estimation used by LoDEI, followed
by an analysis of A-to-I and non-A-to-I signals in various datasets to
demonstrate the general applicability of an empirically q-value calcu-
lation for differential A-to-I signal detection. Finally, we first assess
LoDEI’s A-to-I editing detection performance by comparing findings
with results of the global A-to-I detection as provided by the AEI, and
second, we compare the differential A-to-I editing detection of LoDEI
with results from the site-specific differential A-to-I detection tools
REDIT and JACUSA2.

Calculating the A-to-I editing difference between two sets of
samples
The general idea to account for the editing behavior of ADAR1 and
keeping as much positional information as possible is addressed by
estimating A-to-I editing using a sliding window approach. Having two
sets of samples of RNA-seq data, LoDEI first estimates the A-to-I editing
signal for each sample within a window individually. The mean of the
estimated editing signals of a window of all samples of a set is calcu-
lated, and the difference between the means of the windows of two
sets defines the change in RNA-editing (Fig. 1).

More formally, let S and S0 be two sets of samples s of RNA-seq
data of two different conditions. The observedmismatch countsmx!y

i, s
of nucleotide x to y, and the sum of all matches and mismatches ci,s at
genomic position i in sample s define the editing ratio

rA!G
i, s =

mA!G
i, s

ci, s
: ð1Þ

We then define the editing signal es,w (Fig. 1b [1]) for a sample s and a
sliding window w with genomic start and end positions k and l as

eA!G
s,w =

Xl

i = k

rA!G
i, s : ð2Þ

Note, LoDEI uses non-overlapping windows with a default size of 51
nucleotides. Using the editing signals of all samples of a set S for a
given window w, we can calculate

zA!G
S,w =

1
jSj

X

s2S
eA!G
s,w , ð3Þ

where zA!G
S,w is themean of the editing signals of all samples of a set and

serves as an estimate for the A-to-I editing of set S (Fig. 1b, [2]).
After performing the same calculation for S0, the change of the

editing signal δS, S0 ,w (Fig. 1b, [3]) between sets S and S0 is given by

δA!G
S, S0 ,w = zA!G

S0 ,w � zA!G
S,w , ð4Þ

and describes the difference of the A-to-I editing between the sets S
and S0 for a given window w.

Next, weproposeanempiricalq-value estimation for δA!G
S, S0 ,w values

based on non-A→G differences to detect true editing events and dif-
ferentiate those from false positive events. A q value gives each δ value
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Differential Editing Calculation
Green/yellow bars symbolize A → G ratios at a genomic position, where green shows the amount of 
A and yellow the amount of G.
1) The purple region visualizes the sliding window    . All A → G ratios of a sample within the current 
    window      are summed up representing the editing signal           per sample.
2) The mean of the editing signals of a set            estimates the A-to-I editing of a specific set. 
3) The di erence of the two average signals gives the final di erential editing index            .

The primary output is a BED-like file containing differential editing signals for each window (wEI) 
and corresponding q-values. The output file can be filtered by q-value and further analyzed.

a

b

c

Fig. 1 | SchematicoverviewofdifferentialA-to-I editing indexcalculation. aTwo
sets of samples S and S0 with different conditions undergo RNA-sequencing fol-
lowedby standard RNA-seqdata analysis of QC checking and read alignment.b and

c Next, differential A-to-I editing signals are calculated by LoDEI's sliding window
approach (b) yielding the final output table (c).
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its own individual measure of significance, similar to a p value.
A p value is a measure in terms of the false positive rate, whereas the q
value is a measure in terms of the false discovery rate and the typical
quantity of interest in genome-wide testing34. The q value provides a
measure of significance for each window in such a way that filtering of
windows with a q value ≤ 10% yields an overall FDR of 10% among the
filtered windows.

For the q value estimation, we exploit that most non-A→G dif-
ferences are not generated by any editing processes and are likely to
derive from various sources like PCR or NGS-induced errors and SNPs.
The estimated q value of an A-to-I editing difference δA→G is the
expected proportion of false positives among all differences as or
more extreme than the current one. The key to estimating a q value for
an observed change of the editing signal is to approximate the number
of expected false positives.

Considering A→G mismatches as a mixture of A-to-I editing
events and noise, the eleven remaining non-A→G mismatches (e.g.
A→C, G→A, etc.) serve as the basis for approximating expected false
positives.

LetDx→y be the set of δx→y values calculated by LoDEI, where x and y
symbolize a non-A→G mismatch used to calculate the differences.
First, LoDEI generates an individual set Dx→y for each non-A→G mis-
match. Each set approximates the number of expected false positives
for a given value of δ and thus yields an individual q value estimate

q̂ðδ,DA!G,Dx!yÞ= #signals ≤ δ in Dx!y

#signals ≤ δ in DA!G , ð5Þ

for each non-A→G set. The median of the eleven estimated q values is
the final estimated q value for a given A-to-I difference δA→G. Note,
for δ <0 the number of signals ≤δ, and for δ > 0 the number of
signals ≥δ is used to estimate the number of false positives.

The stronger the calculated δ values by LoDEI, the smaller the
number of those observed differences. This negative correlation can
lead to strong variability of the estimated q values if the number of
observed δ values is small. Typically, the q value decreases the stronger
the values for δA→G get. For extreme values of δA→G, where the variability
of the q value estimate increases, situations can arise where higher
signals get higher q values again, while lower values of δA→G already had
lower q values (Supplementary Fig. 8). These situations are caused by a
limited number of available windows and not by underlying biology.
Consequently, we assume increasing q values for strong values of δ is
counterintuitive and avoid varying q value estimates by not allowing
those estimates to increase again.

Finally, LoDEI reports a BED-like output file including the differ-
ential editing signals of all windows, their genomic coordinates, and
corresponding q values (Fig. 1c).

LoDEI confirms known and reveals novel regulators of A-to-I
editing
To demonstrate the general applicability of LoDEI’s differential editing
index calculation and the empirical q value estimation, we analyzed
differential A-to-I editing in four different human RNA-seq datasets
with 27 samples produced by four different laboratories to cover a
broad spectrum of protocols. The first two of the four datasets are
known to show differential A-to-I editing and are used to show the
general applicability of LoDEI’s approach. All datasets show a sig-
nificant change in the gene expression in at least one of the genes of
the ADAR family (Supplementary Table 2).

The first analyzed RNA-seq dataset consisting of two samples
per set is known to show a strong reduction of A-to-I editing upon
siRNA-induced ADAR1 knockdown (KD) in the glioblastoma cell line
U87MG when compared to a control group16. Other RNA-binding
proteins are known to regulate A-to-I editing besides ADAR, and sev-
eral publications could show an increase in A-to-I editing upon the

reduction of RO60 (TROVE2)24,37,38. Hence, we used the RNA-seq
dataset consisting of two control and three knockout samples derived
from the RO60 knockout (KO) Lymphoblastoid cell line GM12878 as
the second dataset17.

After evaluating the general applicability of LoDEI on the ADAR
KD and RO60 KO datasets, we applied LoDEI to novel datasets to
search for differential A-to-I editing.

Across all datasets, a consistent contrast between A→G and non-
A→G differences can be observed. Non-A→G differences, such as
G→A, show a different pattern compared to A→G differences (Fig. 2
left-column (a, d, g, j) versusmiddle column (b, e, h, k)). Strong editing
differences are almost exclusively observed for A→G differences
(Fig. 2 middle column (b, e, h, k), orange), and the shape of weak A→G
differences resembles the shape of non-A→G differences represented
by G→A values, supporting the general applicability of LoDEI’s
window-based approach to describe differential A-to-I editing and the
usage of non-A→G differences for the estimation of false positive
signals.

To further support LoDEI’s general applicability, we analyzed
differential A-to-I editing in non-humandatasets.We analyzedRNA-seq
data from ADAR mutant and wildtype C. elegans worms and observed
the same consistent contrast between A→G and non-A→G differences
as in the human datasets (Supplementary Fig. 12). Strong editing dif-
ferences are almost exclusively observed for A→G differences.

LoDEI confirms known regulators of A-to-I editing
In the ADAR1 KD dataset, A→G differences calculated by LoDEI show a
unidirectional, reducedA-to-I editing in ADAR1KDcells. Concordantly,
q values ≤0.1 only appear for negative δA → G values (Fig. 2c, orange
line). Besides A→G differences, LoDEI detects a small number of T→C
mismatches (Supplementary Table 1).

Taken together, LoDEI can calculate differential A-to-I editing and
confirms data showing a reduction of A-to-I editing upon ADAR1
knockdown.

Applying LoDEI on the RO60 KO dataset reveals that all A→G
differences with a q value ≤0.1 are exclusively detected with a positive
sign (Fig. 2e, f; orange line/points), indicating that A-to-I editing is
increased in RO60 KO cells. No other significant changes caused by
other types of mismatches are found in this dataset. LoDEI confirms
that RO60 represses A-to-I editing and that LoDEI is applicable for
identifying factors or conditions regulating A-to-I editing.

To demonstrate potential novel discoveries facilitated by LoDEI’s
results, we selected a LoDEI window with differential A-to-I editing in
the open reading frame of the SRP9 gene in the RO60 dataset. The
analysis of the window in the IGV genome browser revealed two
potential silent mutations and one differentially edited site potentially
leading in about 30% of the mRNAs to a serine to glycine mutation
resulting in an expression of an SRP9 protein isoform (Supplemen-
tary Fig. 9).

LoDEI reveals novel regulators of A-to-I editing
LoDEI reported expected negative as well as positive differential A-to-I
editing from published datasets with known negative (ADAR1 KD) and
positive effects on A-to-I editing (RO60 KO).

Next, we applied LoDEI on a third dataset using previously pub-
lished RNA-seq data of different neuroblastoma cell lines, a more
challenging scenario compared to the analysis of data from the same
cell line39. The eight samples were grouped into MYCN-amplified
(SK-N-BE(1), LAN-1, IMR-5, CHP-212) andMYCN-non-amplified cell lines
(SK-N-AS, SK-N-SH, SH-SY-5Y, SK-N-F1) to analyze the impact ofMYCN-
amplification (MYCN-amp) on A-to-I editing. First, similar to the ADAR1
KDandRO60KOdatasets, non-A→Gdifferences, such asG→A, showa
different pattern compared to A→G differences (Fig. 2g, h). All A→G
differences with a q value ≤ 0.1 are exclusively detected with a positive
sign (Fig. 2h, i; orange line/points), highlighting an increased A-to-I
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Fig. 2 | Observed signal differences and empirically derived q values. Rows
correspond to the ADAR1 KD (a–c), RO60 KO (d–f), MYCN-amp (g–i), and
sncRNA7SL OE (j–l) datasets. The left and middle columns show Bland–Altman
plots51 of δG→A values considered as noise (left column), and δA→G values considered

as amixtureof signal andnoise (middle column). The third columnshows empirical
q values. Orange lines show the signal cutoffs derived by LoDEI corresponding to a
q value ≤0.1 in columns 1 and 2 and a q value of 0.1 in column 3.
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editing in MYCN-amp cells. To confirm these findings, we manually
inspected detected differential A-to-I edited windows in the IGV gen-
ome browser verifying increased A-to-I editing in MYCN-amp cells
(Supplementary Fig. 1). Another analysis of a LoDEI window in the
MYCN-amp dataset, located in the open reading frame of the CHAF1A
(Chromatin Assembly Factor 1 Subunit A) gene shows a differential
editing site that is also a 3’ splice acceptor site. The editing of this site
could affect the splicing of the CHAF1AmRNA and further suggest that
the increase in A-to-I editing associated with MYCN-amplification
could have an impact on CHAF1A expression (Supplementary Fig. 10).
By applying LoDEI, we show for the first time that A-to-I editing is
positively regulated in MYCN-amp cell lines.

In the fourth dataset, comprised of 5 replicates per set, we tested
the hypothesis that a small non-coding RNA with complementarity to
reverse Alu elements modulates A-to-I editing40. The neuroblastoma
cell line Kelly was transfected with a control RNA or the small non-
coding RNA sncRNA7SL (piR-hsa-1254, DQ571003, piR31115) yielding
an overexpression of sncRNA7SL (sncRNA7SL OE). A→G differences
with a q value ≤0.1 are exclusively detected in the negative direction,
demonstrating a unidirectional and reduced A-to-I editing in
sncRNA7SL OE cells compared to control-treated cells (Fig. 2k, l;
orange line/points, Supplementary Fig. 2). Besides unidirectional A→G
differences, LoDEI detects more G→C differences compared to the
number of A→G differences in the sncRNA7SL OE dataset (Supple-
mentary Table 1). Taken together, reduced A-to-I editing is detected by
LoDEI upon sncRNA7SL transfection.

Global changes in A-to-I editing identified by LoDEI are sup-
ported by the Alu Editing Index
Froma global perspective, A-to-I editing differences with q values ≤0.1
as identified by LoDEI show a unidirectional change in all four datasets
(Fig. 2). All windows with a q value ≤0.1 in the ADAR1 KD and
sncRNA7SL OE cells show a decrease, and the RO60 KO and MYCN-
ampcells show an increase of A-to-I editing, underscoring the complex
and dynamic regulation of A-to-I editing.

Here, we compare these global trends detected by LoDEI with the
results of the Alu Editing Index (AEI). The AEI reports a single value for
each sample that summarizes the global amount of A-to-I editing of a
sample and thus does not keep any positional information of the A-to-I
editing events.We calculate the AEI for each sample and take themean
of all AEI values of a set as a representative of theA-to-I editing (Table 1,
Supplementary Fig. 3).

The means of the AEI values are smaller for ADAR1 KD cells and
sncRNA7SL OE cells compared to their control counterparts and sup-
port the global characteristics of a decrease of the A-to-I editing as
detected by LoDEI (Table 1 rows 1 and 2). Both tools report a strong
reduction in A-to-I editing in the ADAR1 KD cells and a small reduction
in the sncRNA7SLOE cells. Similarly, both tools calculate an increase in
A-to-I editing in RO60 KO and MYCN-amp cells (Table 1 rows 3 and 4).

In the ADAR1 KD dataset, the observed difference of −1.17 of the
average AEI values is much stronger compared to the change of −0.06
in the sncRNA7SL OE dataset (p values < 0.01). Consistently, LoDEI

detects more windows with decreased A-to-I editing in the ADAR1 KD
dataset (1624 windows with q ≤0.1, Table 1) compared to the
sncRNA7SL OE dataset (64 windows with q ≤0.1).

In contrast, the AEI differences of 0.09 and 0.18 indicate an
increase—though not statistically significant—of the A-to-I editing for
the RO60KO andMYCN-ampcells. Likewise, LoDEI detects 114 and 217
differential A-to-I windows with increased (δA→G >0) A-to-I editing and
q values ≤0.1 in these datasets.

In summary, the global trendsdetectedbyLoDEI are supportedby
the AEI. The number of foundwindows by LoDEI and the differences in
the AEI values show a Pearson correlation of 0.99. Both tools identify
an overall decrease of A-to-I editing in ADAR1 KD and sncRNA7SL OE
cells and an increase in RO60 KO and MYCN-amp cells.

LoDEI detects more A-to-I editing at the same FDR compared to
alternative methods while maintaining signals found by single-
site approaches
To the best of our knowledge, no window-based approach, including a
statistical framework for differential A-to-I editing detection, exists
besides LoDEI. Due to the lack of a window-based competitor, we used
the single-site detections offered by REDIT and JACUSA2 to assess and
compare the differential A-to-I editing detection performance. To
obtain q values from REDIT and JACUSA2 for a direct comparison with
results from LoDEI, we used a similar procedure as utilized in LoDEI.
Therefore, REDIT and JACUSA2 were applied on G/A mismatches to
approximate the number of false positives to finally calculate q values
for detected differential A-to-I editing.

Overall, LoDEI detects more A-to-I editing sites at any q value
threshold for all datasets compared to REDIT and JACUSA2 (Fig. 3).
REDIT and JACUSA2 only detect differential A-to-I editing in the ADAR1
KD dataset (Fig. 3a) and could not detect any differential A-to-I editing
in the other three datasets at reasonable q values (Fig. 3b–d). LoDEI’s
detectedwindows can containboth single and clusters of A-to-I editing
sites (Supplementary Figs. 4 and 14).

At a q value threshold of 0.05, LoDEI detects 1231 differentially
edited non-overlapping windows containing 79% (959) of the 1219
single sites found by REDIT in the ADAR1 KD dataset, demonstrating
that LoDEI detects the majority of single sites detected by REDIT. In
contrast, 52% (639) out of the 1231 windows detected by LoDEI contain
1795 single sites that are exclusively found by LoDEI and missed by
REDIT (Supplementary Figs. 5 and 6).

With 2276 found sites at the same q value of 0.05, JACUSA2
detects more A-to-I sites than REDIT, and less than LoDEI. Of those
2276 JACUSA2 sites, 78% (1784) are overlapping with the 1231 win-
dows detected by LoDEI showing that the majority of JACUSA2 sites
are detected by LoDEI (Supplementary Fig. 5). The 26% (322) of
windows uniquely found by LoDEI correspond to 818 sites missed by
JACUSA2.

Overall, more sites are found by LoDEI at the same FDR compared
to REDIT and JACUSA2 in all datasets (Fig. 3). In experiments with
strong A-to-I editing changes, LoDEI can detect differential A-to-I
editing between single samples (Supplementary Figs. 15 and 16).

Table 1 | Comparison of global trends of LoDEI and the Alu editing index

Dataset AEI condition AEI control AEI difference Adjusted p-value LoDEI #+ LoDEI #−

ADAR1 KD 0.31 (2) 1.48 (2) −1.17 [−1.20, −1.14] 0.0006 0 1624

sncRNA7SL OE 1.00 (5) 1.06 (5) −0.06 [−0.07, −0.05] 0.00006 0 64

RO60 KO 1.16 (3) 1.07 (2) 0.09 [−0.06, 0.22] 0.46 114 0

MYCN-amp 1.13 (4) 0.95 (4) 0.18 [0.03, 0.36] 0.14 217 0

Columns 1 and 2 show the mean of the AEI values of all samples of a set for all four datasets and the number of RNA-seq samples (n) per set. Column 3 shows the difference between the mean AEI
values of columns 1 and 2 and the corresponding 95% confidence interval, and column 4 shows the Benjamini–Hochberg corrected two-sided t-test derived p values for the comparisons of the AEI
means. Columns 5 and 6 show the number of detected windows by LoDEI with q values ≤0.1 with increased (#+) and decreased (#−) A-to-I signal. The column ’condition’ refers to the ADAR1 KD,
sncRNA7SL OE, RO60 KO, and MYCN-amp samples.
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LoDEI detects A-to-I editing at different genomic locations
In the ADAR1 KD datasets the majority of all detected differential A-
to-I sites by LoDEI, REDIT, and JACUSA2 are located in 3’UTRs for all
datasets (Fig. 4). However, whereas LoDEI detects A-to-I editing in all
genomic regions of the RO60 KO, MYCN-amp and sncRNA7SL OE
datasets, REDIT and JACUSA2 do not detect any editing, suggesting a
high sensitivity for A-to-I editing by LoDEI. Most differential
edited sites detected by LoDEI are located in the 3’UTR, followed by
sites in introns, exons, and in 5’UTRs. This order of detected
locations remains identical for all datasets, but the relative occur-
rences differ slightly between the datasets (compare Fig. 4a, b vs.
Fig. 4c, d).

Taken together, we demonstrate that LoDEI detects differential A-
to-I editing with higher sensitivity in all regions of mRNAs when
compared to REDIT and JACUSA2.

Differential A-to-I events detected by LoDEI overlap with known
editing sites in the REDIportal
We tested whether A-to-I events detected by LoDEI are listed in the
REDIportal database to provide further evidence for real differential
editing events. As of this writing, the REDIportal consists of around 16
million A-to-I sites based on 9642 human RNAseq samples from 31
tissues of the GTEx project23.

In general, for small q value thresholds, most detected A-to-I
events by LoDEI overlap with editing sites listed in the REDIportal, and
the percent of overlap decreases with increasing q value thresholds
(Fig. 5). At a q value threshold of 0.05, 75.9%, 78.1%, 65.3%, and 93.8% of
A-to-I events detected by LoDEI in the ADAR1 KD, RO60 KO, MYCN-
amp, and sncRNA7SL OE datasets respectively, are overlapping with
the REDIportal database. Of note, since REDIT and JACUSA2 did not
detect differential A-to-I editing in all but the ADAR KD dataset, only

Fig. 3 | Performance comparison of differential A-to-I site detection. Shown are the number of detected differentially edited A-to-I sites as a function of the q value
threshold for the ADAR1 KD (a), RO60 KO (b), MYCN-amp (c), and sncRNA7SL OE (d) datasets.

Fig. 4 | Genomic locations of detected differentially edited A-to-sites. The number of differentially edited A-to-I sites found by LoDEI (red), REDIT (blue), and JACUSA2
(light blue) at a q value threshold of 0.1 at different genomic locations are shown for the ADAR1 KD (a), RO60 KO (b), MYCN-amp (c), and sncRNA7SL OE (d) datasets.

Fig. 5 | Overlap of detected differentially edited A-to-I events with REDIportal
A-to-I sites as a function of the q value. The percent of overlap of detected
differentially edited A-to-I events found by LoDEI (red), REDIT (blue), and JACUSA2

(light blue) with REDIportal A-to-I sites are shown for the ADAR1 KD (a), RO60 KO
(b), MYCN-amp (c), and sncRNA7SL OE (d) datasets.
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minor or no overlap of the REDIT and JACUSA2 datasets with the
REDIportal database was found, except for the ADAR KD dataset.

Next, we performed the REDIportal overlap analysis for the dif-
ferent genomic locations (Fig. 6). Again, only in the ADAR KD dataset a
strong overlap with A-to-I sites available in the REDIportal database
was found for all tools, however, in the RO60, MYCN, and sncRNA7SL
datasets, with moderate changes in A-to-I editing (Fig. 2), only differ-
ential A-to-I editing sites detected by LoDEI are also found in
REDIportal.

Taken together, the majority of A-to-I sites detected by LoDEI are
also found in REDIportal. Even sites detected by LoDEI but not
detected by REDIT or JACUSA2 were found in REDIportal, supporting
the high sensitivity and robustness of LoDEI.

Discussion
In this study, we present the local differential editing index (LoDEI) to
detect differential A-to-I editing in two sets of RNA-seq samples by
utilizing an empirical q value calculation to separate signal from noise.
LoDEI detects more differential A-to-I editing at the same FDR while
maintaining the majority of editing sites found by currently available
methods. Previously, two broad strategies existed to detect differ-
ences inA-to-I editing: thedetectionof single editing sites as suggested
by REDIT and JACUSA2 and an overall comparison of whole samples as
provided by the AEI. Since the editing characteristics of ADAR1 are a
challenging scenario for any single-site detection software and the
overall comparison provided by the AEI does not keep any positional
information, LoDEI introduces a sliding window approach. A sliding
window can handle ubiquitous editing and retains positional infor-
mation compared to the global AEI. The choice of window size affects
the resolution and number of the detected windows (Supplementary
Figs. 7 and 11). Our analysis shows that LoDEI’s empirical q value cal-
culation is applicable for A-to-I detection in RNA-seq data and out-
performs current approaches.

We decided to use six different datasets to cover a broad range of
protocols and experiments with different levels of difficulty for eval-
uating the general applicability and robustness of the testedprograms.
Since ADAR1 is known to be the primary protein for A-to-I editing and
the reduction of editing upon knockdown of ADAR1 could be shown in
multiple studies, we consider the ADAR1 KD dataset as the easiest of
the four datasets16,37. As expected, LoDEI could detect significant dif-
ferential A-to-I editing in the ADAR1 KD dataset and was the most
sensitive approach detecting more differential A-to-I editing events
compared to JACUSA2 and REDIT. Besides A-to-I sites, LoDEI also
detected a small number of T→Cmismatches that have recently been
described as being caused by ADAR RNA editing on antisense RNAs
overlapping with sense transcripts41.

Since it was shown in multiple studies that the knockout of
RO60 results in an increase of the A-to-I editing, but at a lesser

extent as the decrease of editing as detected upon ADAR1 KD, we
expected to find differential A-to-I editing in the RO60 KO dataset
while considering this dataset to be more challenging due to the
weaker effects of the RO60 knockout on A-to-I editing24,37,38.
Interestingly, only LoDEI could detect significant differential
editing in this dataset, whereas the other editing detection pro-
grams failed to identify significant changes.

Taken together, LoDEI’s outcomes are in agreement with the
previously published results that the ADAR1 KD reduces and that the
RO60 KO increases A-to-I editing.

In contrast to all other datasets, the MYCN-amp dataset consists
of RNA-seqdata of different cell lines, andwe show that A-to-I editing is
positively regulated inMYCN-amp cells. To the best of our knowledge,
this is thefirst report demonstrating the roleofMYCN in the regulation
of A-to-I editing. The AEI results support LoDEI’s findings and show
differences even within identical conditions (Supplementary Fig. 3).
Hence, A-to-I editing is a highly dynamic and diverse process even in
related cells, suggesting that A-to-I detection in heterogeneous
cohorts is a challenging scenario successfully addressed by LoDEI.
Besides A-to-I editing signals, LoDEI detected a small number of G→A
differences. Other studies analyzing A-to-I editing data also made
similar observations that significant non-A→G mismatches can occur
in RNA-seq datasets42.

The MYCN-amp dataset, as a representative of a dataset where
different cell lines are compared, is challenging for any differential
editing detection. Any software that utilizes observed mismatches
from NGS data can be affected by SNPs. Note that in experiments
where cell lines are compared against each other (e.g., the ADAR KD,
RO60 KO, and sncRNA7SL datasets), SNPs do not affect LoDEI’s δA→G

values, since SNPs are part of every sample in both sets and do not
impact the differencebetween the sets (Eq. (3), Supplementary Fig. 17).
However, in scenarios where the compared sets consist of different
types of cells, SNPs can have an effect that is correctly reflected by the
empirical q value estimation. The non-A→G mismatches used for the
empirical q value estimation are affected in the sameway and thus also
contain a similar amount of SNPs. As a consequence, empiricalq values
will start to increase and correctly inform the user about the expected
number of false positives in the analysis. In cases where SNPs start
affecting the data heavily (i.e., haven’t been removed), the empirical
q values correctly reflect this situation in the provided results and
indicate that SNPs should be treated explicitly upfront in the analysis
pipeline.

sncRNA7SL was tested as a potential modulator for A-to-I editing
because this 32 nts long small RNA has high complementarity to spe-
cific reverse Alu elements and might be able to disturb the folding
of Alu and inverted repeated Alu (IRAlu) into long double-stranded
RNAs. In the sncRNA7SL OE dataset, LoDEI detects a decrease in A-to-I
editing after sncRNA7SL transfection, supporting this assumption.

Fig. 6 | Overlap of detected differentially edited A-to-I events with REDIportal
A-to-I sites for different genomic locations. The percent of overlap of detected
differentially edited A-to-I events found by LoDEI (red), REDIT (blue) and JACUSA2

(light blue) at a q value threshold of 0.1 at different genomic locations with REDI-
portalA-to-I sites are shown for theADAR1KD (a), RO60KO (b),MYCN-amp (c), and
sncRNA7SL OE (d) datasets.
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Interestingly, most differential signals are detected for G→C mis-
matches, an observation not beingmade in any other analyzed dataset
in this study. How the observed G→C transversion is induced upon
sncRNA7SL OE is currently unknown.

LoDEI is the only program that detected differential A-to-I
editing in all tested datasets, demonstrating general applicability
and robustness across various experimental settings and in differ-
ent organisms. The correlation of the general trends of the AEI and
LoDEI supports LoDEI’s findings. The genomic locations of the
detected differential A-to-I editing by LoDEI further support the
found windows and our results are in agreement with the current
literature that A-to-I editing primarily takes place in 3’UTRs. The
large overlap of detected differential A-to-I events with editing sites
listed in the REDIportal further supports our results. Of note,
detected differential A-to-I editing not overlapping with REDIportal
data does not indicate false positive detection as exemplified
(Supplementary Fig. 10). Since the data offered by the REDIportal
does not concentrate on differentially edited sites, the comparison
might be limited in that way. From a theoretical perspective, dif-
ferentially edited sites should be a subset of generally edited A-to-
I sites.

For the empirical q value calculation, we decided to use all non-
A→G-mismatches, even knowing that some non-A→Gmismatches like
C→ T mismatches can be valid editing caused by other proteins than
ADAR. With keeping all non-A→G based q value estimates, the final
q values for A→Gmismatches will tend to be rather higher than lower
q values and thus are conservative estimates.

In conclusion, LoDEI’s empirical approach detects differential A-
to-I editing in RNA-seq data in a robust fashion across different
experimental protocols and offers a more sensitive method to find
differential A-to-I editing even in challenging conditions and any
organism. We are convinced that the high sensitivity and deep posi-
tional resolution provided by LoDEI will advance our understanding of
the dynamics and regulation of A-to-I editing in basic research. In
addition, LoDEI should be of high value for addressing clinical ques-
tions such as the role of differential A-to-I editing in disease, the
detection of off-target effects in drug development, and the use of
designed base editors.

Methods
Cell culture growth and splitting
Cell culture media and their ingredients were stored at 4 °C or
−20 °C and warmed up to 37 °C in a water bath before use. All
work was performed under sterile conditions, and the neuro-
blastoma Kelly cell line (Leibniz Institute DSMZ) was cultivated in
tissue-culture-treated culture dishes (Sarstedt), in a 5% CO2

atmosphere and at an environmental temperature of 37 °C. Rou-
tinely, Kelly cells were tested for mycoplasma contamination by
applying the PCR Mycoplasma Test Kit I/C from PromoCell. Kelly
cells were cultured in RPMI 1640 (Thermo Fisher) containing 10%
FBS (Thermo Fisher), 1% Penicillin–Streptomycin (Sigma-Aldrich),
and 2mM L-Glutamine (Thermo Fisher).

Reverse transient transfection
The transfection was performed with lipofectamine RNAiMAX
(Thermo Fisher). For this, 6μl of RNAiMAX was diluted in 125μl
OptiMEM (Thermo Fisher). Seven microliters of RNA oligonucleotides
(sncRNA7SL or sncRNACtrl; stock = 10μM; Horizon Discovery) were
also diluted in 125 μl OptiMEM (dilution 1:22) in OptiMEM. The two
reactions were mixed (ratio 1:1) by pipetting up and down, incubated
for 5min at room temperature, and 250μl was distributed in eachwell
of a six-well plate (Omnilab). In parallel Kelly cells grown to 75% con-
fluence were detached and 1.0 million cells were resuspended in 2ml
medium. The 2ml cell suspension was added to the transfection

reaction of one well, leading to a final concentration of 25 nM RNA
oligonucleotides per well.

RNA oligonucleotides used:
RNA modifications:
* = Phosphorothioate bond,
m = 2'-O-methylation of RNA bases,
sncRNA7SL (32 nts):
5'-P-rA*rG*rC*rC*rU*rG*rA*rG*rC*rA*rA*rC*rA*rU*r
A*rG*rC*rG*rA*rG
*rA*rC*rC*rC*rC*rG*rU*rC*rU*rC*rU*mA-3'
sncRNActrl (32 nts):
5'-P-rA*rU*rC*rU*rC*rU*rG*rC*rC*rC*rC*rA*r
G*rA*rG*rC*rG*rA*rU*rA
*rC*rA*rA*rC*rG*rA*rG*rU*rC*rC*rG*mA-3'

RNA purification and total RNAseq
48h after transfection, the cells were harvested by trypsinization, pel-
leted (300×g; 4 °C, 5min), the supernatant removed, and the pellets
were resuspended in PBS (Thermo Fisher) for washing. After another
centrifugation (300×g; 4 °C, 5min), total RNA was prepared from the
cell pellet using theRNAeasymini kit (Qiagen)with an integratedDNAse
digestion step according to the manufacturer’s protocol. The RNA was
eluted from the column with RNase-free water and stored at −20 °C.
250 ng of total RNA was used for RNA seq analysis. RNA quality control
library preparation and RNAseq were performed at the Genomics
Core Facility “KFB-Center of Excellence for Fluorescent Bioanalytics"
(University of Regensburg, Germany). Library preparation and RNAseq
were carried out as described in the Illumina “Stranded mRNA Prep
Ligation" Reference Guide, the Illumina NextSeq 2000 Sequencing
SystemGuide (Illumina, Inc., SanDiego, CA, USA), and the KAPA Library
Quantification Kit-Illumina/ABI Prism (Roche Sequencing Solutions,
Inc., Pleasanton, CA, USA). Equimolar amounts of each library were
sequenced on an Illumina NextSeq 2000 instrument controlled by the
NextSeq 2000 Control Software (NCS), using one 100 cycles P2 Flow
Cell with the dual index, single-read (SR) runparameters. Image analysis
and base calling were done by Real Time Analysis Software (RTA)
v3.9.25. The resulting. cbcl files were converted into. fastq files with the
bcl2fastq v2.20 software.

Datasets and annotations
The human genome (GRCh38.p14) and corresponding annotations
(release 44) were downloaded from GENCODE and used for all
analysis43. The ADAR1 knockdown dataset was previously published by
Bahn et al. and is accessible via Gene ExpressionOmnibus (GEO) under
the accession number GSE2804016. The RO60 knockout dataset has
the GEO accession number GSE72501, and the MYCN-amp dataset is
available via GSE14507517,39. The sncRNA7SL OE dataset was generated
for this publication and is available via the GEO accession number
GSE263010. The C. elegans dataset is available via the GEO accession
number GSE8313344.

RNA-seq analysis
Raw sequencing data was downloaded from the NCBI Sequence Read
Archive via fastq-dump. Snakemake was used for analysis workflows
for all datasets45. If not stated otherwise, programs were run with
default parameters.

Fastq files were quality filtered using cutadapt with the para-
meters-minimum-length 25 –cut 5 -q 2046. To reduce the chanceof
false positives, we recommend proper quality filtering of the sequen-
cing reads prior to differential A-to-I detection. Filtered reads were
aligned to the human reference genome using STAR with default
parameters47. Sorted BAM files served as input for the A-to-I editing
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analysis by LoDEI, REDIT, JACUSA2, and the AEI index27–29. LoDEI,
REDIT, and JACUSA2 were used to detect differential A-to-I editing in
protein-coding genes. The AEI was run with the default annotation
provided in the AEI container image (see below).

If applicable, a minimum coverage of 10 was used for all A-to-I
editing detection software. LoDEI was run with default parameters
except for the MYCN-amp dataset, where the –rm_snps flag was used
to activate SNP removal. As an ad-hocfilter to removepotential SNPs, a
position is excluded from the calculation, if a single position in any of
the samples of a set shows a mismatch frequency ≥80%.

As recommended by the AEI documentation, a Docker container
was built from the providedDockerfile (https://github.com/a2iEditing/
RNAEditingIndexer), and the analysis was performed according to the
authors’ documentation on GitHub.

REDIT was downloaded from the corresponding GitHub reposi-
tory (https://github.com/gxiaolab/REDITs) and p-value calculation was
performed according to the authors’ documentation.

Q-values for REDIT and JACUSA2 were computed using a similar
empirical approach as used in LoDEI. REDIT and JACUSA2were used to
calculate results for G/A mismatches that were used to approximate
the number of false positives to calculate q values for detected A/G
mismatches.

The RNA-seq data for the ADAR1 KD and RO60 KO datasets is
unstranded. To assign the location of A-to-I sites unambiguously only
those sites andwindows reportedby all compared toolswere used that
overlap uniquely to gene annotations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheADAR1 knockdowndatasetwas previously published by Bahn et al.
and is accessible via Gene Expression Omnibus (GEO) under the
accession number GSE28040. The RO60 knockout dataset has the
GEO accession number GSE72501 and MYCN-amp dataset is available
via GSE145075. The sncRNA7SL OE dataset is available via the GEO
accession number GSE263010. The C. elegans data is available via the
GEO accession number GSE83133. For the reproducibility of the paper,
the complete software stack used to generate the analysis shown in
this paper is available as a Podman/Docker image together with addi-
tional information, all result files and a manual at Zenodo https://doi.
org/10.5281/zenodo.1274806948.

Code availability
LoDEI is GPLv3-licensed free software. The source code, as well as a
detailed manual, is available at GitHub (https://github.com/rna-
editing1/lodei), and a corresponding Podman/Docker image of the
latest version is available at DockerHub (https://hub.docker.com/r/
lodei/lodei)49. A small test dataset for LoDEI is available via Zenodo at
https://doi.org/10.5281/zenodo.1274886450.
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