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INTRODUCTION

| Jennifer Bowen

Abstract

Marine animals often harbour complex microbial communities that influence
their physiology. However, strong evidence for resident microbiomes in
marine bivalves is lacking, despite their contribution to estuarine habitats
and coastal economies. We investigated whether marine bivalves harbour
stable, resident microorganisms in specific tissues or if their microbiomes
primarily consist of transient members reflecting the environmental microbial
pool. Conducting a latitudinal study of wild eastern oysters (Crassostrea vir-
ginica) along the East Coast of the United States, we aimed to identify resi-
dent microorganisms that persist across a wide geographical range. Our
results revealed that microbial communities in seawater and sediment sam-
ples followed latitudinal diversity patterns driven by geographic location. In
contrast, oyster-associated microbiomes were distinct from their surround-
ing environments and exhibited tissue-specific compositions. Notably, oys-
ter microbiomes showed greater similarity within the same tissue type
across different geographic locations than among different tissue types
within the same location. This indicates the presence of tissue-specific resi-
dent microbes that persist across large geographical ranges. We identified
a persistent set of resident microbiome members for each tissue type, with
key microbial members consistent across all locations. These findings
underscore the oyster host’s role in selecting its microbiome and highlight
the importance of tissue-specific microbial communities in understanding
bivalve-associated microbiomes.

in that they reproduce within a host at a rate higher than
their loss due to death or excretion creating stable pat-

Many animals have associated microbiomes that are
made up of a variety of eukaryotic and prokaryotic
organisms, including bacteria, archaea, viruses, fungi,
and protozoans that can reside on or within the host.
The term ‘microbiome’ (Lederberg & McCray, 2001) is
broad and encompasses different kinds of microbial
associations with their host. Hammer et al. (2019) pro-
posed to use residency, the extent to which a microbial
population is stably associated with a host, to tease
apart members of the microbiome that may be relevant
to host physiology from those that are inconsequential.
Resident microbes are distinct from transient microbes

terns of abundance and membership (Harris, 1993).
Ecologists and microbiologists have long emphasized
the importance of distinguishing between resident and
transient members of communities (Berg, 1996;
Harris, 1993; Snell Taylor et al., 2018). More recently,
animal microbiome studies also focused on differentiat-
ing resident from transient microbes (Auchtung
et al., 2018; David et al., 2014; Hammer et al., 2017;
Lee et al, 2016; Unzueta-Martinez, Welch, &
Bowen, 2022). It is essential to apply these concepts to
non-model organisms to better understand broad pat-
terns in host-associated microbial community ecology.
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Historically, microbes associated with marine
bivalves were of interest to biologists, for example, the
prokaryotes associated with oysters have been studied
for over a century (Round, 1914). Bivalves, particularly
oysters, attract significant attention because they pro-
vide essential ecosystem services, as well as suste-
nance and income to coastal communities across the
globe. For example, the eastern oyster (Crassostrea
virginica) fishery generates over $196 million dollars
annually in the United States alone (NMFS, 2015).
Thus, understanding factors that influence the health of
bivalves has important environmental and economic
implications. However, most research focuses on bac-
teria pathogenic to humans (Rippey, 1994), rather than
bacteria that may be relevant to the host bivalve itself.
Additionally, homogenization of the whole animal was
routine, and the use of culture-dependent methods lim-
ited the evaluation of bivalve microbiota
(Murcherlano & Brown, 1968). Bivalve-associated
microbial community ecology studies are now possible
using molecular techniques (e.g., next-generation
sequencing), which allows for the characterization of
tissue-specific bivalve microbiomes across spatial and
temporal scales.

Investigations of marine bivalve microbiomes lead
to mixed results. Some studies report highly consistent,
species-specific bacterial communities associated with
bivalve hosts, regardless of geography (Roterman
et al.,, 2015; Zurel et al., 2011), a characteristic that
may indicate an important association with the host.
Other studies report high intraspecific variability in
microbial community composition between geographic
locations (King et al., 2012) and higher interspecific
microbiome similarity at the same site than to conspe-
cifics at different sites (Trabal et al., 2012), patterns that
may indicate loose associations with the animal host.
These inconsistencies may be due to methodological
artefacts such as contamination of low-biomass sam-
ples (Eisenhofer et al., 2019), seasonal differences at
the time of sampling, starvation or feeding of the
bivalve before sampling (Harris, 1993), sequencing of
extracellular DNA, or the sampling of hatchery-raised
animals (Ishaq et al., 2023). Additionally, many bivalve
microbiome surveys do not distinguish between
loosely-associated (‘transient’) from the stably associ-
ated (‘resident’) microbes. While specific microbes
have been known to have intimate symbiotic associa-
tions (reviewed in Hughes & Girguis, 2023) and cause
disease in bivalves (Andrews, 1979), the potential
importance of the microbial communities residing on
bivalve mucosal surfaces as mutualists remains
unclear.

To investigate whether marine bivalves have stable,
resident microorganisms inhabiting specific tissues or if
their microbiomes mostly consist of transient members
that reflect the environmental pool of microbes, we con-
ducted a latitudinal study of wild eastern oysters to
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determine whether there are resident microorganisms
that persist across a wide geographical range. We col-
lected seawater, sediment, and oyster tissues (gill,
mantle, and stomach), for microbial community analysis
from six oyster reefs across the East Coast of the
United States. First, we assessed the free-living micro-
biomes in the six oyster reefs by determining if (1) sedi-
ment and (2) seawater microbial communities were
distinct depending on geographic location. Second, we
assessed the contribution of the environmental pool of
microbes to oyster microbiomes by (3) testing whether
oyster microbiomes were distinct from the microbiomes
of their surrounding environment. Then, we determined
whether (4) tissue type was a stronger predictor of
microbial community composition than geographic
location, and (5) identified tissue-specific resident
microbial members that persisted across geographic
locations.

EXPERIMENTAL PROCEDURES

Oyster, seawater, and sediment field
collections

At low tide, we collected adult Eastern Oysters
(C. virginica) from six different intertidal oyster reefs
along the East Coast of the United States (Figure 1A)
in the summer of 2018 over the span of 2 weeks. Our
sampling sites were at Damariscotta River
(44°01'38.1” N 69°32/35.7” W) in Maine (ME), Barnsta-
ble (41°42'37.6” N 70°18’18.5” W) in Massachusetts
(MA), Green Hill Pond (41°22'16.1” N 71°37'13.4" W)
in Rhode Island (RI), Horse Island (37°17'15.5" N
75°55'02.0” W) in Virginia (VA), Atlantic Beach
(34°42'24.9" N 76°45’05.7” W) in North Carolina (NC),
and St. Augustine (29°40'17.7" N 81°12'53.5” W) in
Florida (FL) (Figure 1A). Our goal was to characterize
the oyster microbiome as close to as possible to in situ,
so at each sampling location we immediately dissected
five oysters to collect ~0.25 g of gill (the full set of gill
filaments, both inner and outer demibranchs on the
ventral side were collected and homogenized), mantle
(near the gills opposite to the hinge), and stomach
(consisting of stomach and digestive gland tissue,
which we refer to as simply ‘stomach’ throughout the
rest of the article) from each specimen. We sterilized
our dissecting tools using ethanol and rinsed the tissue
samples with autoclave-sterilized water to dislodge any
loosely associated microbes. Additionally, we filtered
1L of site seawater through a 0.22 um Sterivex filter.
Separately, we collected ~0.25g wet sediments
directly adjacent to the oyster reefs by scooping them
with a spatula into cryovials. All tissue (n = 5 per tissue
type), water (n =3), and sediment (n =5) samples
were flash frozen in liquid nitrogen and stored at —80°C
until DNA extraction.
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Map of sampling sites and principal component analysis (PCoA) plots of Bray—Curtis dissimilarities of environmental samples.

(A) Map of geographic locations of the six oyster reefs sampled on the East Coast of the United States. From North to South: Damariscotta River
(44°01'38.1” N 69°32/35.7” W) in Maine (ME), Barnstable (41°42'37.6” N 70°18'18.5” W) in Massachusetts (MA), Green Hill Pond

(41°22'16.1” N 71°37'13.4” W) in Rhode Island (RI), Horse Island (37°17’15.5” N 75°55’02.0” W) in Virginia (VA), Atlantic Beach (34°42'24.9" N
76°45'05.7” W) in North Carolina (NC), and St. Augustine (29°40'17.7” N 81°12/53.5” W) in Florida (FL). PCoA of Bray—Curtis Dissimilarity
distances of microbial communities in (B) seawater and (C) sediment samples. Sampling geographic locations are indicated across all plots with

dots coloured coded in a rainbow gradient based on latitude.

DNA preparation and sequencing

We used the DNeasy PowerlLyzer PowerSoil kit
(Qiagen, Valencia, CA, USA), following the manufac-
turer’'s protocol, to extract DNA from tissue, water, and
sediment samples. Sterivex filter casings were cracked
open with a sterilized PVC pipe cutter, and filters were
cut into strips with sterile razor blades to fit them into
the bead beading tubes of the DNA extraction kit. Next,
we amplified the V4 region of the 16S rRNA gene using
the primers 515FY: 5 TATGGTAATTGTGTGYCAG
CMGCCGCGGTAA 3 (Parada et al.,, 2016) and
806RB: 3 AGTCAGTCAGCCGGACTACNVGGGT
WTCTAAT 5’ (Apprill et al., 2015) and the 5 PRIME Hot
Master Mix (Quanta Bio, Beverly, MA, USA) in tripli-
cate 25 uL polymerase chain reactions (PCR) as pre-
viously  described (Unzueta-Martinez, = Scanes,
et al., 2022). After running the triplicate PCR product
and negative controls on a gel to ensure the product
matched the target size of ~390 bp and that there
was no contamination, we purified and size selected
the PCR products using Agencourt AMPure Magnetic
Beads (Beckman Coulter, Brea, CA, USA), and resus-
pended them in 20 puL of nuclease-free water. We
prepared sequencing libraries using lllumina paired-
end adapters with unique Nextera XT v2 indexes as
previously described (Unzueta-Martinez, Scanes,

et al., 2022) and purified and once again size selected
the PCR products using Agencourt AMPure Magnetic
Beads. To quantify our libraries, we used the Quant-iT
PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad,
CA, USA) and pooled samples for sequencing at equi-
molar concentrations. We also used an Agilent 4200
TapeStation (Agilent Technologies, Santa Clara, CA,
USA) and a KAPA library quantification kit (Roche
Sequencing Solutions Inc., Pleasanton, CA, USA) to
confirm library size and quantify our libraries. We
sequenced our library on an lllumina MiSeq with
2 x 250 V2 sequencing chemistry at the Tufts Univer-
sity Core Sequencing Facility.

Procedural controls

We included DNA extraction negative controls with
every extraction batch, and PCR amplification negative
controls that were carried through library preparation
and sequencing. Additionally, we sequenced three rep-
licates of a mock community (ZymoBIOMICS™ Micro-
bial Community DNA Standard, Zymo Research, USA),
with known theoretical relative abundances of 10 spe-
cies, as a positive control. Figure S1 illustrates that our
mock community replicates were highly consistent with
their expected composition.
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Sequence analysis

We used DADA2 (v1.7.0) with default settings
(Callahan et al., 2016), implemented in R Studio
(v4.0.0), to quality-filter, merge paired-end reads,
remove chimeric sequences, group the sequences into
amplicon sequence variants (ASVs), and assign taxon-
omy against the Silva database (version 132; Quast
et al., 2012). We used the Decontam package to iden-
tify potential procedural and reagent contaminants
based on either the frequency of each ASV as a func-
tion of the input DNA concentration or the prevalence of
each ASV in true samples compared with the preva-
lence in negative controls (Davis et al., 2018). We
assessed the composition of the mock communities to
ensure they agreed with the theoretical composition
(Figure S1). We wused the Phyloseq package
(McMurdie & Holmes, 2013) to filter out ASVs identified
as mitochondria, chloroplasts, Eukaryota, and Archaea,
which in total accounted for <3% of our dataset. We
removed samples that had <1000 reads after quality fil-
tering (n =12 of 138). Rarefaction analyses confirm
that the sequencing coverage was sufficient to capture
representative bacterial diversity in sediment, seawater,
and oyster tissue samples (Figure S2). We used two
approaches to account for uneven sequencing depths
across samples, we (1) transformed our data to propor-
tions by dividing the reads for each ASV in a sample by
the total number of reads in that sample, as previously
recommended (Bullard et al., 2010; Dillies et al., 2013;
McKnight et al., 2019; McMurdie & Holmes, 2014;
Weiss et al., 2017) to conduct B diversity analyses, and
(2) normalized reads by converting ASV abundances to
Z-scores before running Random Forrest classification
models. The rest of our statistical analyses relied on
presence/absence data of samples that were
sequenced deeply enough to have representative
diversity (Figure S2).

Statistical analyses

To test our first two hypotheses of whether (1) sediment
and (2) seawater microbial communities were distinct
depending on geographic location, we focused on
diversity and computed Bray—Curtis dissimilarity using
the vegdist function in vegan (Oksanen et al., 2020).
We ran permutational multivariate analysis of variance
(PERMANOVA) with 999 permutations using adonis?2
independently for the sediment and seawater samples
and tested for homogeneity of group dispersions using
the betadisper function in vegan (Oksanen
et al., 2020). We visualized the Bray—Curtis dissimilar-
ities of sediment and water samples using principal
component analysis (PCoA) plots using the ordinate
function in Phyloseq. Additionally, we calculated a
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linear regression and correlation between the first
PCoA axis and latitude using the Im function in base R.

To test whether (3) oyster microbiomes were dis-
tinct from the microbiomes of their surrounding environ-
ment, we analysed the [ diversity of seawater,
sediment, and tissue samples. We computed Bray—
Curtis dissimilarity using the vegdist function in vegan
(Oksanen et al., 2020) and used this dissimilarity matrix
to run a single-factor (with three levels: seawater,
sediment, and tissue) PERMANOVA with geographic
location as blocks with 999 permutations using
adonis2 function in vegan (Oksanen et al.,, 2020).
Permutations were constrained to geographic location
using the how function in the permute R package
(Simpson, 2022). We ran post hoc pairwise compari-
sons, with Bonferroni-corrected p-values, using the
custom function pairwise.adonis (https://github.com/
pmartinezarbizu/pairwiseAdonis). We tested for homo-
geneity of group dispersions using the betadisper func-
tion in Vegan (Oksanen et al., 2020) and visualized the
Bray—Curtis dissimilarities by making a PCoA plot using
the ordinate function in Phyloseq (McMurdie &
Holmes, 2013).

For testing whether (4) tissue type was a stronger
predictor of microbial community composition than geo-
graphic location, we continued to analyse the (3 diver-
sity of oyster tissue samples. We filtered out
environmental samples (sediment and seawater sam-
ples) from our Bray—Curtis dissimilarity matrix to run a
PERMANOVA of only the tissue samples, with individ-
uals as block with 999 permutations using the adonis2
function in vegan (Oksanen et al., 2020) with two fac-
tors, geographic location (six levels: ME, MA, RI, NC,
GA, and FL) and tissue type (three levels: mantle, gill,
stomach). To account for the individual oyster as a level
of variability, permutations were constrained to individ-
uals using the how function in the permute R package
(Simpson, 2022). We ran post hoc pairwise compari-
sons, tested for homogeneity of group dispersions, and
visualized tissue microbiomes with PCoAs as
described above, one coloured by geographic location
and a second coloured by tissue type. To further
assess whether tissue microbiomes had geographical
patterns, we replicated the analysis we did with seawa-
ter and sediment samples, we did a correlation analysis
between the first PCoA axis and latitude using the Im
function in base R. We compared means of Bray—
Curtis dissimilarities for comparisons between samples
of the same tissue type across all geographic locations
(e.g., gill from ME compared with gill from FL) and
between samples of different tissue types within the
same geographic location (e.g., gill form ME compared
with stomach from ME) using a non-parametric two-
sample Wilcoxon test in the ggpubr R package () and
visualized these comparisons with a violin plot in
ggplot2 (Wickham, 2016).
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To test (5) whether each tissue type had persistent
resident members of the microbiome across geo-
graphic locations, we ran a Random Forest Classifica-
tion model using 10,001 trees on a feature table
containing ASVs (n = 151) that were present in more
than 10% of the samples (RandomForest R package;
Liaw & Wiener, 2002). Model performance was con-
firmed by examining the out-of-bag error rate and we
performed leave-one-out cross-validation with 999 per-
mutations in the caret R package (Kuhn, 2008). We
visualized the results of the Random Forest model
using a heatmap made with the heatmap package in
R. Additionally, we performed a core analysis with a rel-
ative abundance >0.01 and prevalence >0.5, as
defined in previous studies (Miller et al., 2020;
Unzueta-Martinez, Welch, & Bowen, 2022), using the
core_members function, which uses abundance and
prevalence thresholds to identify core ASVs, in the
microbiome R package (Lahti & Shetty, 2017). We
used set theory functions in R to perform list compari-
sons to test if any of the core ASVs were detected in
the microbiomes of their surrounding environment (sea-
water and sediment). We visualized core ASVs with a
stacked bar plot in ggplot2.

RESULTS

We found that the B diversity of sediment and seawater
microbial communities were different depending on
geographic location and followed a latitudinal pattern
(Figures 1B,C and 2A,B). PCoA plots of Bray—Curtis
dissimilarities showed seawater (Figure 1B) and sedi-
ment (Figure 1C) microbial communities clustered
according to geographic location. PERMANOVA
models showed a significant effect of geographic loca-
tion on microbial community composition of seawater
(p = 1.00e—04, R?=10.91) and sediment
(p = 1.00e—04, R? = 0.62) communities (Table S1). In
addition to finding compositionally distinct microbial
communities according to geographic location, we
found strong latitudinal diversity gradients in both sea-
water and sediment communities. The first PCoA axis
of both seawater and sediment ordination plots, was
significantly correlated with the latitude of our geo-
graphic sampling sites (Figure 2A,B).
Oyster-associated microbiomes, in contrast, were
different from the microbiomes in their immediate envi-
ronment (seawater and sediment). A PERMANOVA
model of Bray—Curtis dissimilarities, with geographic
location as blocks, showed that microbial communities
on oyster tissues were significantly different from those
in seawater and sediments within the same geographic
location (p = 1.00E-04; R? = 0.14; Table S2). A PCoA
plot of the same Bray—Curtis dissimilarities showed
microbial communities clustered by sample type, with
tight clusters for the seawater (Figure 3A, triangles) and
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FIGURE 2 Scatter plot showing the relationship between Bray—
Curtis dissimilarity distances along the first principal coordinates axis
and latitude of (A) seawater and (B) sediment microbial communities
in the sampled geographic locations.

sediment (Figure 3A, squares), whereas tissue sam-
ples (Figure 3A, circles) clustered more loosely.

A PCoA plot with colours representing geographic
location showed that the microbial communities in RI
oysters clustered together, whereas the other sites
where interspersed (Figure 3B). We found no relation-
ship between the first PCoA axis of the tissue ordina-
tion plot against the latitude of the sampled geographic
locations (p = 0.94; R <0.01; Figures 3C and S3). A
PCoA plot with colours representing tissue type
showed that the communities were organized accord-
ing to tissue type (Figure 3D). We found that oyster
tissue-associated microbial communities were signifi-
cantly more similar to other samples of the same tissue
across geographic locations, than to different
tissue types within the same geographic location
(p = 0.001; Figure 3E; Table S3). We found a signifi-
cant effect of tissue type (p=0.001; R?=0.10;
Table S4), geographic location (p = 0.001; R? = 0.18;
Table S4) and an interaction between the two factors
(p = 0.001; R?=0.15; Table S4). Post hoc pairwise
comparisons revealed that all tissue-type microbiomes
were significantly different from each other (p = 0.003;
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plot indicate group means.

Table S3), but not all geographic locations were differ-
ent from each other.

To identify resident member of the microbiome, we
ran a Random Forest classification model as well as a
‘core’ microbiomes analysis. The Random Forest classi-
fication model correctly classified 72% of tissue samples
as belonging to gill, mantle, and stomach with a 28%
out-of-bag error rate. Some tissue types were predicted
more easily than others based on their microbial com-
munities, 90% of stomachs, 68.97% of mantles, and
56.67% of gills were classified correctly. We confirmed

model performance with leave-one-out cross-validation,
with a Cohen’s kappa statistic of 61.26%. The top
30 ASV that best describe each tissue type, represented
nine different classes of bacteria, Mollicutes, Gamma-
proteobacteria, Campylobacteria, Deltaproteobacteria,
Spirochaetia, Gracilibacteria, Alphaproteobacteria, Clos-
tridia, and Bacteroidia (Figure 4).

The core microbiome analysis (Figure 5) identified
ASVs that were present in the same tissue type across
geographic locations. We found six core ASVs in the
gill microbiomes, in the orders Mycoplasmatales,
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Fusobacteriales, Oceanospirillales, Campylobacter-
ales, and JGI_0000069-P22. Among the mantle micro-
biomes, we identified one core ASV, ASV_93,
belonging to the order Myxococcales. Among the stom-
ach microbiomes, we identified six core ASVs, five of
which belong to the order Mycoplasmatales and one to
Spirochaetales. One ASV, ASV_7 in the order Myco-
plasmatales, was identified as core of both the gill and
stomach microbiomes. When comparing the identified
core ASVs to environmental microbiomes (seawater
and sediment), we found that only one ASV, ASV_9 in
the order Fusobacteriales, was also detected in seawa-
ter samples, the rest of the 12 ASVs identified as core
were not detected in either the seawater or sediment
microbiomes. Additionally, nine out of the 12 ASVs
identified as core members were also identified with the
random forest model as being important taxa in defining
tissue-specific microbiomes.

DISCUSSION

We investigated whether marine bivalves have stable,
resident microorganisms inhabiting specific tissues or if
their microbiomes mostly contain transient members
that reflect the environmental pool of microbes. To do
this, we conducted a latitudinal study of wild eastern
oysters to determine whether there are resident micro-
organisms that persist across a wide geographical
range. We characterized the microbial communities of
six oyster reefs on the East Coast of the United States.
We found that communities in (1) seawater and (2) sedi-
ment samples were driven by geographic location and
followed latitudinal patterns of diversity, (3) oyster-
associated communities were overall distinct from
seawater and sediment microbiomes, (4) microbial
communities on oyster tissues of the same tissue type
were more similar to each other across all geographic
locations, than they were to other tissue types within
the same geographic location, and (5) we identified
tissue-specific resident microbial members that per-
sisted across geographic locations.

Oyster-reef seawater and sediment
microbiomes differed by geographic
location

Describing the biogeography of microbial communities
inhabiting the surrounding environment of animals is
key to understanding animal-microbiome interactions
and community assembly. Free-living microorganisms
typically exhibit non-random distribution patterns
throughout space. Sediment (Green et al.,, 2004;
Martiny et al., 2006) and seawater (Ma et al., 2022)
microbial assemblages differ by geographic location
and decrease in similarity with spatial separation. Our
results are consistent with these geographic patterns,
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where site and latitude both had an effect on sediment
and seawater microbial community 3 diversity. The
geographic differentiation we observed in sediment and
seawater microbiomes could be attributed to the differ-
ent physical conditions in our sites along the East
Coast of the United States. The oyster reefs we charac-
terized are located within the three major current sys-
tems in the North Atlantic; the Gulf of Maine (ME and
MA), the Mid-Atlantic Bight (Rl and VA), and the South-
Atlantic Bight (NC and FL), which have different geo-
physical characteristics like seawater temperatures
(Stegmann & Yoder, 1996; Sutcliffe et al., 1976) and
nutrient availability (Fennel et al., 2006) that can drive
sediment (Alsterberg et al., 2011) and seawater (Moran
et al., 2015) microbial community dynamics. Oyster-
reef seawater and sediment microbiomes showed dis-
tinctive biogeographic patterns that, surprisingly, didn’t
translate to the oyster-associated microbiomes.

Oyster microbiomes were different from
the microbiome in their environment

Adult oyster-associated microbial communities were dis-
tinct from the microbial assemblages in their surrounding
sediment and seawater across all our sites. Previous
studies reported similar findings, where oyster (Arfken
et al, 2017; Diner et al., 2023) and coral (Glasl
et al., 2016; Lima et al., 2023) microbiomes were distinct
from their surrounding seawater and sediment micro-
biomes. This is particularly interesting as adult Eastern
oysters play a major role in benthic-pelagic coupling by
removing suspended organic and inorganic particles
from the water column and transferring them to the sedi-
ments in the form of biodeposits (Murphy et al., 2019;
Newell & Jordan, 1983), or pseudofeces. Thus, oysters
are intermediaries between particles suspended in sea-
water and the sediment, yet their gill and stomach micro-
biomes are highly dissimilar from the microbiomes found
in reef seawater and sediments (Figure 3A; Table S2).
Divergence from seawater and sediment microbial com-
munities suggests that adult oyster tissues select for a
large portion of their associated microbial communities,
instead of merely reflecting the communities present in
their surroundings, as seen in some invertebrates, such
as caterpillars (Hammer et al., 2017). Not only were oys-
ter microbiomes distinct from the microbiomes present in
their surrounding environment, but each tissue type also
had their own unique microbial composition.

Oyster microbiomes had higher within-
tissue similarity across geographic
locations than among-tissue similarity
within geographic location

Oyster microbiomes were more similar to microbiomes
of the same tissue type at different geographic
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locations, than to other tissue types within the same
geographic location. That is, a gill microbiome from
Maine, for example, was more similar to a Florida gill
microbiome than to either Maine mantle or stomach
microbiomes. This indicates that there are tissue-
specific resident microbes that persist across a wide
geographical range. Our findings are consistent with
other studies that show host—species-specific bacterial
communities that persist regardless of geography
(Roterman et al., 2015; Zurel et al., 2011). This pattern
indicates the presence of resident members of the
microbiome that may be relevant to host physiology.

Oyster microbiomes were dictated by
tissue type and geographic location

We found that oyster gill, mantle, and stomach micro-
biomes were significantly different depending on tissue
type, despite high inter-individual variability. It is com-
mon to find microbial community variability across tis-
sue types (Ainsworth et al., 2015; Brodersen
et al.,, 2018; Lokmer, Kuenzel, et al., 2016). Different
tissues have distinct morphological and functional spe-
cializations which can provide unique environments for
microbial colonization. Our findings are consistent with
what has been previously observed in Pacific oysters
(Lokmer, Kuenzel, et al.,, 2016) corals (Ainsworth
et al., 2015), and sea grasses (Brodersen et al., 2018).
In our study, this is particularly surprising because of
the wide geographical range we sampled, which spans
three different current systems in the North Atlantic with
distinct physical and chemical characteristics, yet
oyster-associated microbial communities showed more
robust differences by tissue type than by geographic
location.

In addition to the strong influence of tissue type, we
also observed a significant, albeit less strong effect of
geographic location on oyster-associated microbial
communities. This finding supports previous studies
that found relationships between geography and oyster
microbiomes (King et al., 2012; Nguyen et al., 2020). It
is possible that different physical characteristics of each
geographic location could have influenced the oyster-
associated microbial communities, since environmental
factors like temperature (Lokmer & Mathias
Wegner, 2015) and pH (Scanes et al., 2021; Unzueta-
Martinez et al., 2021) also influence oyster tissue
microbial communities. While oyster-associated micro-
biomes were significantly different depending on geo-
graphic location, not all pairwise comparisons among
locations were significant and differences by tissue type
were more robust.

The interaction between tissue type and geographic
location could be related to the oyster host genetics.
We selected our geographic locations based on prior
studies indicating substantial genetic divergence
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among oyster populations throughout the East Coast of
the United States (Hoover & Gaffney, 2005; Hughes
et al.,, 2017). Host genetics can influence microbial
community composition and structure (Bonder
et al., 2016; Goodrich et al., 2016; McKnite et al., 2012;
Turnbaugh et al., 2009), so it is possible that the inter-
action between tissue type and geographic location
were driven by the genetic differences among oyster
populations. This genetic differentiation among sites
may help explain why tissue samples from Rl were par-
ticularly different from the rest (Figure 3B). At our RI
site, there are extensive oyster restoration projects that
use hatchery-reared stocks (Jaris et al., 2019). It is pos-
sible that the wild reefs we sampled were colonized by
escapees from the restoration projects, making the
genetics of the RI oysters particularly different from
those that came from the rest of our sampling sites.
Additionally, the interaction between tissue type and
geographic location could indicate the presence of tran-
sient members of the oyster microbiome. Though we
did not aim to identify the transient members of the oys-
ter microbiomes in this study, we acknowledge that
they may contribute to the between-site and between-
individual variability observed.

Oyster tissues had resident members of
the microbiome that persisted across
geographic locations

We identified key microbial ASVs that differentiated
oyster-associated microbiomes by tissue type
(Figure 4) and core ASVs specific to each tissue
type that persisted across all geographic locations
(Figure 5). Notably, the majority of identified core ASVs
(11 of 12) were not detected in either the seawater or
sediment microbiomes. It is possible that these ASVs
were present in such low abundances in seawater and
sediment samples that we did not detect them using
our sampling methods. However, the microbial commu-
nity composition specificity and prevalence across the
large-scale geographical range of our study indicate
that these ASVs represent resident members of the
oyster microbiome.

Among the gill microbiomes, four ASVs (ASV_18,
ASV_20, ASV_50, ASV_32) were identified indepen-
dently by both the Random Forest model (Figure 4) and
core analysis (Figure 5) as key players in differentiating
gill microbial communities from other tissues and hav-
ing prevalent abundance patterns across all geographic
locations. Two of the ASVs (ASV_18 and ASV_32)
belong to the order Campylobacterales. Members of
this order have been previously found associated to
clams (Offret et al., 2023), urchins (Hakim et al., 2015),
and Eastern oyster gills (Unzueta-Martinez
et al., 2021). Interestingly, most species of this order
thrive in CO, rich environments (Al-Haideri et al., 2016;
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Waite et al., 2017), it is possible that CO, rich microen-
vironments form on oyster gills as organic and inor-
ganic particles identified as non-edible are
accumulated and embedded in mucus to be discarded
as pseudofeces. Another ASV (ASV_20) belongs to the
order Oceanospirillales, genus Endozoicomonas
(Figure 5). Members of this genus are associated with
a diversity of marine organisms including invertebrates
like poriferans, cnidarians, molluscs, annelids, and tuni-
cates, and vertebrates such as fish (reviewed in Neave
et al., 2016). Proposed functions include nutrient acqui-
sition and provision to their animal host (Forget & Kim
Juniper, 2013; Morrow et al., 2015) and structuring of
the host microbiome via secondary metabolites and
probiotic mechanisms (e.g., competitive exclusion of
pathogenic bacteria. Bayer et al., 2013; Jessen
et al., 2013; Morrow et al., 2015). The potential nutri-
tional and protective properties of this genus may con-
fer benefits to the oyster host, especially when found
on gill tissues. Gills are constantly in contact with the
surrounding seawater and seawater-associated micro-
organisms and are thought to provide an entry point for
pathogens to the oyster (King et al., 2019).

Mantle microbial communities were the most vari-
able out of all the tissues. We identified only one ASV
(ASV_93 in the class Deltaproteobacteria, order Myxo-
coccales) as being core among the mantle tissues that
was also identified by the Random Forest model. Myxo-
coccales can produce a variety of secondary metabo-
lites and are considered one of the most important
bacterial resources for the discovery of new antibiotics
(Landwehr et al., 2016). Species in this order are widely
distributed across environments, having been found in
terrestrial sediments, freshwater lakes, marine sedi-
ments, seawater, and rarely in host-associated environ-
ments (reviewed in Wang et al., 2021). Members of this
order are micropredators that prey on other bacteria
and fungi, resulting in the regulation of bacterial com-
munities on agricultural land (Wang et al., 2020). Some
can prevent and control cucumber Fusarium wilt by reg-
ulating the soil microbial community (Ye et al., 2020). It
is possible that the Myxococcales ASVs found associ-
ated with oyster mantles in our study served as preda-
tors grazing on other microbes in the mantle tissue. To
the extent that this grazing is haphazard, it could
provide one explanation for the variability in the mantle
tissue microbiome. There are few reports of host-
associated Myxococcales, but their ability to regulate
microbial community structure through predation and
production of biologically active compounds indicate
that they may play a substantial role in animal micro-
biome composition. This variability and limited core
membership of mantle tissue could be a result of the
frequent exposure of the mantle to environmental
microbes when feeding. Unlike gills, which use mucus
to trap microorganisms and particulate matter for selec-
tive filtration (Beninger et al., 1991), mantle tissues lack
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this feature, leading to a broader and less selective
interaction with surrounding microorganisms.

Out of six ASVs identified as core for stomach
microbiomes (Figure 5), five of them (ASV_411,
ASV_280, ASV_84, ASV_39, ASV_54) were also inde-
pendently identified by the Random Forest model as
key in differentiating stomach microbiomes from other
tissue types (Figure 4). Of these, the majority (4/5) were
in the class Mollicutes, order Mycoplasmatales, genus
Mycoplasma. Members of the class Mollicutes are com-
monly found in association with animal guts as para-
sites, commensals, or symbionts (Clark, 1984;
Razin, 1978; Regassa & Gasparich, 2006). Symbiotic
species of the genus Mycoplasma play key roles in
nutrition of their host by degrading recalcitrant carbon
in the stomach and pancreas of marine (Wang
et al., 2016) and terrestrial (Wang et al., 2004) isopods.
Previous studies have found species of the genus
Mycoplasma in high abundances in healthy oysters
(Stevick et al.,, 2021) and abalone (Villasante
et al., 2020) guts. The high prevalence and abundance
of Mycoplasma in oyster guts across the East coast of
the United States found in our study, highlights the
need to investigate their functional capacity to deter-
mine if the nature of the association with oyster guts is
detrimental, beneficial, or non-consequential. One ASV
(ASV_411) was identified as core for stomach micro-
biomes but was not identified by the Random Forest
model. However, ASV_411 belongs to the Order Spiro-
chaetales which have long been associated with the
bivalve gut, in particular with the crystalline style of oys-
ters (Husmann et al., 2010). Given this association, the
identification of a Spirochete ASV in the ‘core’ group is
intriguing and warrants further investigation.

CONCLUSIONS

Our study provides compelling evidence that marine
bivalves, specifically wild eastern oysters, host stable,
resident microbial communities that are tissue-specific
and persist across a broad geographical range. By
characterizing the microbial communities of oyster
reefs along the East Coast of the United States, we
found that oyster-associated microbiomes are distinct
from their surrounding seawater and sediment micro-
biomes. They exhibit higher within-tissue similarity
across geographic locations than among-tissue similar-
ity within the same location. This pattern indicates that
oyster tissues select for specific resident microbes,
resulting in a persistent set of resident microbiome
members unique to each tissue type. These findings
underscore the significant role of the oyster host in
shaping its microbiome and highlight the importance of
considering tissue-specific microbial communities in
future studies of bivalve-associated microbiomes.
While our results indicate distinct, tissue-specific
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microbiomes that are consistent across geographic
locations, the small sample size means these conclu-
sions should be interpreted with caution. Future studies
should aim to increase the number of samples to better
capture the full extent of variability within and between
tissue types and environmental sources. Additionally,
future research should focus on exploring the functional
roles of these resident microbes and their contributions
to oyster health and resilience in varying environmental
conditions.
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