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Abstract

We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography 

(PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or 

incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz 

equation to constrain two networks, responsible for the denoising and completion of the transmit 

fields, and the estimation of the object’s EP, respectively. We embed a random Fourier features 

mapping into our networks to enable efficient learning of high-frequency details encoded in 

the transmit fields. We demonstrated the efficacy of PIFON-EPT through several simulated 

experiments at 3 and 7 tesla(T) MR imaging, and showed that our method can reconstruct 

physically consistent EP and transmit fields. Specifically, when only 20% of the noisy measured 
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fields were used as inputs, PIFON-EPT reconstructed the EP of a phantom with ≤ 5% error, 

and denoised and completed the measurements with ≤ 1% error. Additionally, we adapted 

PIFON-EPT to solve the generalized Helmholtz equation that accounts for gradients of EP 

between inhomogeneities. This yielded improved results at interfaces between different materials 

without explicit knowledge of boundary conditions. PIFON-EPT is the first method that can 

simultaneously reconstruct EP and transmit fields from incomplete noisy MR measurements, 

providing new opportunities for EPT research.

Keywords

Electrical Property Mapping; Fourier Features Mapping; Magnetic Resonance Imaging; Physics 
Informed Neural Networks

I. INTRODUCTION

Electrical properties (EP), namely relative permittivity and electric conductivity, determine 

the interactions between electromagnetic waves and biological tissue [1], [2]. EP have 

the potential to be employed as biomarkers for pathologies such as cerebral ischemia [3], 

[4] and cancer [5]–[8]. EP could also be used to improve the effectiveness of existing 

therapeutic modalities such as radiofrequency hyperthermia [9]–[11].

Several EP tomography (EPT) methods have been proposed that are based on MR 

measurements, such as the magnetic transmit (B1
+) or receive (B1

−) field maps [12]–[22]. 

These techniques can be classified based on the form of Maxwell’s equations (differential or 

integral) they use to fit the MR measurements. Differential methods, such as the Helmholtz 

EPT (H-EPT) [14] or the Convection-Reaction EPT (CR-EPT) [16], require the calculations 

of spatial derivatives of noisy measured B1
+ maps, which lead to errors and artifacts in the 

reconstructions [23]. On the other hand, integral equation-based methods [19], [20] are 

robust to noise, but require computationally expensive iterative optimizations that rely on an 

accurate model of the transmit coils [24], [25] and fine-tuned regularization parameters.

Recently, data-driven deep learning-based methods have been introduced for EP 

reconstruction [26]–[29] to mitigate the noise amplifications and high computational cost 

of standard methods. These methods treat MR measurements and EP distributions as 2D 

images or 3D volumes, and train regression convolution neural networks as surrogate 

EP reconstruction models from simulated training data. These supervised learning-based 

techniques perform well in simulation, but they are not reliable in vivo due to the necessarily 

limited number of different cases included in the training data. To improve the generalization 

to in-vivo data, hybrid techniques that embed deep learning into conventional EP mapping 

methods were proposed [30], [31]. These hybrid methods use neural networks to generate 

initial guesses of EP for iterative reconstruction schemes [30], or diffusion and convection 

coefficients for the convection-reaction equation [31]. While these approaches improve 

generalization, several electromagnetic simulations are still required to generate training 

data, which can be very expensive and time-consuming, thus there is only a limited amount 

of available datasets. A recent hybrid technique directly reconstructs conductivity from 
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input transceive phases [32]. In such a method, a neural network is trained to represent the 

input transceive phase map, where the gradients of the phase are computed by automatic 

differentiation [33] and then used to solve the phase-only convection-reaction EPT. The 

reconstructed conductivity is compared with ground-truth values at the boundary, as a 

regularization for the neural network that represents the phase. Since this method retains 

the physics of EPT, it does not require a comprehensive set of electromagnetic simulations. 

However, learning a single neural network that can simultaneously represent the ground-

truth phase and provide accurate gradient approximations directly from noisy measured 

phase maps is challenging, which is shown by the fact that they yielded highly inaccurate EP 

reconstructions in most cases.

Following our preliminary study [34], here we propose the Physics-Informed Fourier 

Networks (PIFONs) Electrical Properties Tomography (PIFON-EPT) framework, which 

leverages recent developments on physics-informed deep learning [35]–[38], and Fourier 

features mapping [39] to learn both the EP distribution and the B1
+ field globally from noisy 

and/or incomplete B1
+
 measurements. The proposed framework can efficiently de-noise the 

B1
+
 measurements. Once trained, PIFONs can accurately predict the EP and B1

+ field at any 

location within the PDE domain, enhancing high-resolution imaging capabilities. In contrast 

to integral equation-based methods [19], [20], which necessitate repeated simulations of 

forward equations, PIFONs tackle the inverse problem directly. This approach has the 

computational cost equivalent to solving a single forward equation. Differently from other 

supervised learning-based EPT methods [26]–[29], our proposed PIFON-EPT technique 

can reconstruct EP directly, without being trained on known B1
+ and EP distribution pairs. 

Compared with recent physics-aware hybrid EPT methods [31], [32] in which EP are still 

solved numerically from convection-reaction equation with boundary condition, our method 

represents EP as a neural network constrained by the Helmholtz equations and does not 

require any prior EP information.

The rest of the paper is organized as follows: In Section II, we provide a brief overview 

of standard EPT methods. In Section III, we describe the proposed novel PIFON-EPT 

framework. In Section IV, we demonstrate the effectiveness of our PIFON-EPT with four 

representative numerical experiments. Further discussion is provided in Section V, whereas 

Section VI summarizes the main points of this work.

II. TECHNICAL BACKGROUND

A. Fundamental Helmholtz Equations in MRI

The relation between the magnetic field (B) and the EP of a medium can be described by the 

Helmholtz equation:

∇2B + k0
2εcB + ∇εc × ∇ × B

εc
= 0,

(1)

where k0 is the wave number in vacuum and
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εc = εr − iσ
ωε0

,

(2)

is the relative complex permittivity. Here, εr is the relative permittivity and σ is the electric 

conductivity, i denotes the imaginary unit, ω denotes the angular frequency, and ε0 denotes 

the vacuum permittivity. Since the full transmit B1 cannot be measured in an MRI scanner, 

but only its positively rotating component B1
+ = Bx + iBy /2, we can re-write equation (1) 

with the help of Gauss’ law (∇ ⋅ B = 0) as:

∇2B1
+ + k0

2εcB1
+ = ∂B1

+

∂x − i∂B1
+

∂y + 1
2

∂Bz
∂z gx + igy

+ ∂B1
+

∂z − 1
2

∂Bz
∂x − i1

2
∂Bz
∂y gz .

(3)

Here, g: = gx, gy, gz : = ∇ lnεc. If we assume a smooth distribution of the EP, their gradient g
can be ignored, and equation (3) becomes the homogeneous Helmholtz equation:

∇2B1
+ + k0

2εcB1
+ = 0.

(4)

B. Standard Differential EPT Methods

One can solve equations (3) and (4) for the EP, starting from measured B1
+ maps. There 

are several methods based on such approach (here is a non-exhaustive list [14]–[21]). 

Next, we provide a brief overview of two popular ones: the Helmholtz EPT [14] and the 

Convection-Reaction EPT [16]. Both techniques require the knowledge of absolute phase 

of B1
+, which, for birdcage coils, can be estimated with the transceive assumption [14]. 

Open-source software implementations of these methods can be found in EPTlib [40].

1) Helmholtz EPT: Assuming a homogeneous distribution of the EP and access to 

measured complex B1
+
 maps, one can directly invert the homogeneous Helmholtz equation 

(4) to estimate the EP:

εc = − ∇2B1
+

k0
2B1

+ .

(5)

The second-order spatial derivatives of the measured B1
+
 can be computed via finite 

difference approaches. If the measured fields are noisy, smoothing filters such as the 2nd 

order Savitzky-Golay filter [41] can be applied to improve the numerical derivatives.
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2) Convection-Reaction EPT: High-field MRI scanners (< 7 T) utilize birdcage-based 

body coils [42] for transmission. In these cases, the Bz component of the coil’s magnetic 

field can be assumed negligible near the mid-plane of the scanner bore. As a result, the 

generalized Helmholtz equation (3) can be simplified as:

∇2B1
+ + k0

2εcB1
+ = ∂B1

+

∂x − i∂B1
+

∂y gx + igy

+ ∂B1
+

∂z ⋅ gz .

(6)

If we let γ = 1/εc, equation (6) can be rewritten as the convection-reaction equation with a 

zero diffusion term with respect to γ [16]:

∇2B1
+ ⋅ γ + k0

2B1
+ = − ∂B1

+

∂x − i∂B1
+

∂y
∂γ
∂x + i ∂γ

∂y

− ∂B1
+

∂z ⋅ ∂γ
∂z .

(7)

By imposing appropriate boundary conditions (for example, the value of γ at the boundary 

of the domain), the convection-reaction equation (7) can be solved with a mesh-based 

finite difference scheme for γ. As for Helmholts EPT, also in this case the gradients of the 

measured B1
+
 can be estimated using the Savitzky-Golay filter [41]. Since at MRI frequencies 

below 3 T, the absolute phase of B1
+ is almost independent from the permittivity [13], it 

is possible to perform conductivity-only reconstructions using only the absolute phase of 

B1
+
 [22]. It is also possible to include an artificial diffusion term to the convection-reaction 

equation to stabilize and improve the reconstruction results [43].

III. METHODS

Our proposed PIFON-EPT is a deep learning-based framework for robust EP estimation 

using noisy and/or incomplete complex-valued MR measurements. Note that since in MRI 

we do not have direct access to the absolute phase of B1
+, we can rely on symmetry 

assumptions to estimate the complex-valued field in actual experiments. Specifically, at 

1.5 and 3 tesla (T), when RF birdcage coils are used for transmission and reception in 

quadrature, the B1
+ and B1

− phases are approximately equal [13], [14]. Therefore, since the 

transceive phase is measurable [44], we can approximate the absolute phase of B1
+ as half the 

transceive phase. The goal of PIFON-EPT is to learn the EP distributions globally that best 

describe the complex-valued B1
+ at any spatial location (x, y, z), given ri, B1

+ ri i = 1

N
 only for 

a limited N locations ri = xi, yi, zi . The workflow of PIFON-EPT is summarized in Fig. 1.

A. PIFON-EPT workflow

Traditional EPT methods based on finite difference approximation of derivatives of B1
+ (5), 

(7) can lead to noise amplifications in the reconstructed EP distributions. To prevent this, we 
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seek to solve an optimization problem constrained by the measured data and physical laws 

using physics-informed deep learning [35]. We denote the Helmholtz equation that describes 

the physical laws that must be satisfied by B1
+ in the general form on a d-dimension domain 

Ω ∈ ℝd:

Nr B1
+; ε(r) (r) = 0,

(8)

where r ∈ ℝd is a spatial coordinate and Nr[ ⋅ ; ε] is a symbolic representation of the 

Helmholtz equation (4) or (6). ε(r) denotes the complex-valued EP at the location r and 

B1
+(r) describes the hidden B1

+ field solution governed by equation (8). Given N noisy and/or 

incomplete measurements ri, B1
+ ri i = 1

N
, we aim to learn the EP distributions ε as well as 

the B1
+ for all r. To do so, we define a Fourier neural network ℬ1

+ r; θ1 , constructed by 

Gaussian random Fourier features [39] followed by a fully-connected neural network with a 

set of weights and biases θ1, to represent the complex B1
+ field. The Gaussian random Fourier 

features mapping is defined as:

γ(r) = cos(Br)
sin(Br) ,

(9)

where each entry in B ∈ Rm × 3 is sampled from a Gaussian distribution N 0, s2 . 2m equals 

the width of the fully-connected neural network following the defined Fourier features and 

s > 0 is a task-specific hyperparameter. We use an additional fully-connected neural network 

εc r; θ2  with independent weights and biases θ2 to estimate the distribution of EP. Hereinafter, 

we refer to ℬ1
+ r; θ1  and ℰc r; θ2  as B1

+ net and EP net, respectively. The PDE residual of (8) 

is transformed to:

ℛ r, θ1, θ2 : = Nr ℬ1
+ r; θ1 ; ℰc r; θ2 (r) .

(10)

A good set of candidate parameters θ1, θ2  can be obtained by minimizing the following 

composite loss function via gradient descent [45]–[47] with the Adam optimizer [48]:

ℒ θ1, θ2 = ℒdata θ1 + λℒr θ1, θ2 ,

ℒdata θ1 = 1
N ∑

N

i = 1
Re ℬ1

+ ri; θ1 − Re B1
+ ri

2

+ 1
N ∑

N

i = 1
Im ℬ1

+ ri; θ1 − Im B1
+ ri

2,

ℒr θ1, θ2 = 1
N ∑

i = 1

N
ℛ ri, θ1, θ2

2 .

(11)
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ℒdata denotes the data mismatch and ℒr denotes the PDE residual. λ denotes the weight 

coefficient in the loss function, which balances the two loss terms in the composite loss. 

We remark that λ is a hyperparameter that can either be specified by the user or be tuned 

automatically [49], [50]. All the derivatives of ℬ1
+ r; θ1  and ℰc r; θ2  with respect to the 

spatial coordinate r as well as the gradient of the loss function with respect to the neural 

network parameters θ1, θ2 , are computed using automatic differentiation algorithms [33].

The workflow of our proposed PIFON-EPT (Fig. 1) can be summarized as follow. First, 

we define two separate fully-connected neural networks B1
+ Net and EP Net ℰc r; θ2  to 

represent the B1
+ and the EP, respectively. A random Fourier features mapping (see Fig. 1 

green dotted box) is embedded B1
+ Net to learn high frequency components of the target 

B1
+ field solution more efficiently [39]. Second, B1

+ Net and EP Net are trained jointly by 

minimizing a composite loss function that aims to fit the measured B1
+
 data (see Fig. 1 blue 

dotted box), while satisfying the physics laws characterized by the PDE residual. The trained 

physics-informed B1
+ Net and EP Net facilitate the generation of physically consistent B1

+ and 

EP predictions at any desired spatial point, respectively (see Fig. 1 bottom red dotted boxes). 

In particular the B1
+ Net denoises and completes the input B1

+
.

B. Choice of Helmholtz equation

If we assume piece-wise constant EP, then the Helmholtz equation simplifies as in (4). Eq. 

(6) is a generalized form of the same equation, which accounts for gradients of EP, but is yet 

not fully general because to reduce the number of unknowns, we assumed that Bz is equal 

to zero. Depending on which Helmholtz equation is used, we introduced two variants of 

PIFON-EPT: simplified PIFON-EPT and generalized PIFON-EPT.

1) Simplified PIFON-EPT: Assumes piece-wise constant EP and does not require any 

assumption on Bz. Following Eq. (4), the Helmholtz residual (10) can be represented as:

ℛH = ∇2ℬ1
+ r; θ1 + k0

2ℰc r; θ2 ℬ1
+ r; θ1 .

(12)

2) Generalized PIFON-EPT: Assumes Bz ≈ 0 and uses the generalized equation (6). The 

Helmholtz residual (10) becomes:

ℛGH = ∇2ℬ1
+ r; θ1 + k0

2ℰc r; θ2 ℬ1
+ r; θ1 − 1

ℰc r; θ2
∂ℬ1

+ r; θ1
∂x − i∂ℬ1

+ r; θ1
∂y

∂ℰc r; θ2
∂x + i∂ℰc r; θ2

∂y

− 1
ℰc r; θ2

∂ℬ1
+ r; θ1
∂z ⋅ ∂ℰc r; θ2

∂z .

(13)

Both techniques rely on knowledge of the absolute phase of B1
+, which for a quadrature 

birdcage coil can be estimated from the transceive phase assumption. Note that with a 

sufficient number of transmit-receive coils, it is theoretically possible to solve for both the 
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unknown absolute phase and Bz [51], although the lack of suitable multi-channel coils and 

the computational complexity of such solution has prevented practical implementations.

IV. RESULTS

We present a series of numerical examples to demonstrate the effectiveness of our proposed 

PIFON-EPT framework. Throughout all experiments, unless otherwise specified, we used 

simulated complex B1
+ maps as measured data and corrupted them with white Gaussian 

noise with a standard deviation equal to the ratio of the peak value of B1
+  to a prescribed 

peak signal-to-noise-ratio (SNR) value. The simulations were performed with the volume 

[52] and the volume-surface integral equation [53], [54] methods. The volume equations 

were solved using higher-order polynomials [55] as basis functions to ensure accuracy in 

the B1
+ distributions. All experiments were performed on a server running Ubuntu 20.04.3 

LTS operating system, with an Intel(R) Xeon(R) Silver 4216 CPU at 2.10GHz, 64 cores, 2 

threads per core, and an NVIDIA RTX 3090 GPU with 24 GB of memory.

To measure the discrepancy between the prediction (v) and ground-truth (v ∈ ℝN) values we 

used the peak normalized absolute error (PNAE), defined as:

PNAE(v, v) = ∥ v − v ∥1
∥ v ∥∞

.

(14)

A. Validation against the analytical solution

To verify our method, we used a complex B1
+ map obtained from the Mie Scattering theory 

[56] for an infinitely long homogeneous dielectric cylinder of relative permittivity 3 and 

electric conductivity 0.01 S/m, and it’s air outside the cylinder. The operating wavelength 

was λ = 2.437 m and the cylinder had a radius r equal to the wavelength. A TMz planewave 

was used as the excitation.

1) Data Acquisition: We considered a representative section of the cylinder and 

computed the B1
+ field distribution in the domain [ − 2r, 2r] × [ − 2r, 2r] using Mie scattering 

theory [57]. The pixel isotropic resolution was set to 0.05λ so that the section was 81 × 81 

for a total of 6561 voxels. We corrupted the synthetic B1
+ field with Gaussian noise of peak 

SNR of 200 and then scaled the noisy field with the peak value of B1
+  to obtain synthetic B1

+

measurements. The resulting B1
+
 fields were used as the measured data for PIFON-EPT.

2) PIFON Training Settings: B1
+ Net was constructed by a Fourier features mapping 

initialized with s = 2 as a coordinate embedding of the input, followed by a fully-connected 

neural network with 3 layers, 128 units per layer. EP Net was constructed using a fully-

connected neural network with 3 layers, 128 units per layer. We set all the activation 

functions as the Sine function. We set λ = 10−4 in equation (11). We trained B1
+ Net and 

EP Net jointly using the Adam optimizer for 120k iterations in total, with a decaying 

schedule of learning rates 10−3, 10−4, 10−5 decreased every 40k iterations, which took 
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~ 30 minutes and ~ 40 minutes for employing simplified PIFON-EPT and generalized 

PIFON-EPT, respectively.

3) Results: We tested the performance of the simplified and generalized PIFON-EPT 

using the same training settings. Fig. 2 and Fig. 3 compare the reconstructed EP against the 

ground truth values for the simplified and generalized PIFON-EPT, respectively. Fig. 4 and 

Fig. 5 compare ground truth and reconstructed B1
+ maps for the simplified and generalized 

PIFON-EPT, respectively. The average PNAE over the domain for the relative permittivity, 

conductivity, and B1
+ was 3.96%, 9.67% and 0.22%, respectively for the simplified PIFON-

EPT. The error decreased to 1.80%, 1.11% and 0.20%, when the generalized PIFON-EPT 

was used. The lower error in this case is because the generalized PIFON-EPT is able to 

approximate better EPs at the boundary.

B. Concentric Cylindrical Phantom

We considered a two-compartment concentric cylindrical phantom with relative permittivity 

ε = 70, 78  and conductivity σ = 0.5, 1  S/m (outer, inner). The cylinder loaded a high-pass 

birdcage coil with eight legs as shown in Fig. 6. The outer and inner radius of the cylinder 

were 6 cm and 3 cm, respectively, and its length was 14 cm. For this example, we compared 

the proposed PIFON-EPT with the Helmholtz-EPT (H-EPT) and the Convection-Reaction 

EPT (CR-EPT) (see II-B). In particular, we used the implementations in EPTlib [40], with 

the Savitzky-Golay filter with an ellipsoid-shaped kernel of size 2 × 2 × 2 to approximate 

all the gradients. For CR-EPT, we set the diffusion coefficient to 0.02 and the conductivity 

boundary condition to 0.55 S/m.

1) Data Acquisition: We used the volume-surface integral equation method [54] to 

simulate the circularly polarized (CP) mode of the birdcage coil loaded with the cylindrical 

phantom at 3 T. The resolution was set to 2 mm3. We used B1
+ and B1

− from the central 

region of the cylinder (12 × 12 × 2 cm3, MR measurements out of cylindrical phantom were 

not used) and corrupted them with Gaussian noise of peak SNR of 200. We approximated 

the complex B1
+ using the transceive phase assumption (TPA) and constructed the MR 

measurements B1
+

 and φ±.

2) PIFON Training Settings: The Bz field of a birdcage is negligible around the mid-

plane of the coil. For this reason, we used the generalized PIFON-EPT to perform the 

reconstruction. For B1
+ Net, the Fourier feature mapping was initialized with s = 40 as a 

coordinate embedding of the input, followed by a fully-connected neural network with 6 

layers, 128 units per layer. EP Net was an additional Fourier neural network constructed 

by a Fourier feature mapping initialized with s = 2, followed by a fully-connected neural 

network with 6 layers, 128 units per layer. We set all the activation functions as the Sine 

function and set λ = 10−8 in equation (11). We trained B1
+ Net and EP Net jointly using the 

Adam optimizer for 120k iterations in total, with a decaying schedule of learning rates 10−3, 

10−4, 10−5 decreased every 40k iterations. Note that the network settings have to change 

for different experimental setups”. In particular, the total number of iterations is determined 
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based on the network size, and deep neural networks usually require more iterations to 

converge than shallow networks. The overall training time was 220 minutes on our GPU.

3) Results: The reconstructed EP (Fig. 7) and B1
+ (Fig. 8) are presented for the central 

axial cut of the cylinder. The average PNAE over the entire volume of the cylinder was 

4.84%, 3.20% and 0.25% for the relative permittivity, conductivity and B1
+, respectively.

Fig. 9 and Fig. 10 present the conductivity reconstruction results for H-EPT and CR-EPT, 

respectively, along with the PNAE distribution and the error histogram. The average 

PNAE over the volume of the phantom was 51.80% and 11.28% for H-EPT and CR-EPT, 

respectively.

C. Four-Compartment Phantom

In this example, we explore the performance of PIFON-EPT at 7 T. We considered a 

previously used [19] tissue-mimicking four-compartment phantom shaped as a 20 × 20 × 

20 cm3 rectangular parallelepiped. The relative permittivity values of the four compartments 

were 51, 56, 65, and 76. The corresponding electric conductivity values were 0.56, 0.69, 

0.84, and 1.02 S/m.

1) Data Acquisition: We used a single external excitation to illuminate the phantom, 

generated from a numerical electromagnetic basis [58], similar to previous work [19]. We 

used 6 mm isotropic voxel resolution. We corrupted the synthetic B1
+ with different levels 

of Gaussian noise (Peak SNR = 200, 100, 50, 20) and then scaled each field map by the 

corresponding peak value of B1
+  to obtain synthetic B1

+
 measurements. The case of peak SNR 

= 50 is shown in Fig. 11.

2) PIFON Training Settings: Since the B1 field in the z direction cannot be assumed 

zero at 7 T, we used the simplified PIFON-EPT. The B1
+ Net was constructed using a Fourier 

feature mapping initialized with s = 40 as a coordinate embedding of the input, followed by 

a fully-connected neural network with 3 layers, 128 units per layer. For EP Net, we used 

a second fully-connected neural network with 3 layers, 128 units per layer. We set all the 

activation functions as the Sine function. We set λ = 10−8 in equation (11). We trained B1
+

Net and EP Net jointly using the Adam optimizer for 30k iterations in total, with a decaying 

schedule of learning rates 10−3, 10−4, 10−5 decreased every 10k iterations, which took 21.4 

minutes on our GPU.

3) Results: Figs. 12 and 13 presents the reconstructed EP and B1
+ map (absolute value 

and phase) for the central slice of the four-compartment phantom, respectively. Our method 

removed the noise from the noisy synthetic measurements (Fig. 11) and the reconstructed B1
+

(Fig. 13) was indistinguishable from the noise-free ground truth. The average PNAE over the 

volume of the phantom was 2.47%, 4.01%, 0.24% for the relative permittivity, conductivity 

and B1
+, respectively.
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The average PNAE for the reconstructed EP and B1
+ for different levels of noise in the 

synthetic measurements are summarized in TABLE I. The reconstructions were robust for a 

wide range of noise levels.

D. Incomplete Four-Compartment Phantom

In this final numerical experiment, we used the same four-compartment phantom as before, 

but we assumed the synthetic B1
+
 measurements were incomplete, which could happen in 

reality if the measured MR signal used to reconstruct the B1
+ maps is too low or corrupted 

for certain voxels. We tested whether PIFON-EPT could reconstruct the EP and a complete, 

denoised B1
+ for the entire volume.

1) Data Acquisition: We randomly set to zero from 20% to 90% of the voxels in the 

synthetic B1
+
 measurements with peak SNR of 50. As a result, only 10% to 80% of the 

measurements were used as input for simplified PIFON-EPT. Fig. 14 shows one of the 

resulting B1
+
 measurements for the central axial cut, where 50% of the B1

+
 values were set to 

zero.

2) Results: We used the same training settings as for the previous experiment. The total 

training time when we used 10%, 20%, 50%, and 80% of the measurements was 10, 11, 15, 

and 18 minutes, respectively. For the case where only 50% of the synthetic B1
+
 measurements 

were used, Figs. 15 and 16 show the ground truth EP and noise-free synthetic B1
+ (first 

column), the reconstructed EP and the denoised and completed B1
+ (second column), and 

the PNAE of the predicted EP and B1
+ (third column) for the central slice of the phantom. 

The fourth column presents the error distribution over the entire volume of the phantom. We 

found that our method could accurately reconstruct the EP and B1
+ for the whole domain, 

despite using partial measurements as the input. The average PNAE over the entire volume 

of the phantom was 2.49%, 4.09% and 0.32% for the relative permittivity, conductivity, and 

B1
+, respectively.

TABLE II summarizes the average PNAE for the EP and B1
+ when different percentages of 

the synthetic measurements were used. The error for the B1
+ reconstruction increased when a 

smaller percentage of the data was used. However, PIFON-EPT yielded robust results for the 

EP maps until as little as 20% of the measurements were used as inputs.

V. DISCUSSION

In this work, we reformulated EPT as a physics-constrained optimization problem with the 

goal to train two independent neural networks (B1
+ Net and EP Net) to represent the B1

+ and 

EP at any location of interest. To achieve that, we minimized a composite loss that aims 

to fit B1
+
 measurements while penalizing the PDE residual (see Fig. 1) via gradient descent 

with Adam optimizer [48]. Penalizing the PDE residual not only helps EP Net predict the EP 

distributions that best describe the measured data but also prevents B1
+ Net from fitting the 

noise. Compared with standard EPT methods [14], [16] that rely on numerical derivatives 

to approximate gradients of noisy B1
+
 measurements, which is prone to noise amplifications 
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and artifacts, PIFON-EPT uses automatic differentiation [33] to calculate all the necessary 

gradients from de-noised B1
+ maps provided by B1

+ Net. This way of computing derivatives 

makes our method robust to noise. Unlike previous supervised deep learning-based EPT 

methods [26]–[30], our approach does not require a large amount of known data pairs to 

supervise the training. Compared with previous hybrid deep learning EPT methods [31], 

[32], which combine deep learning and CR-EPT to solve EP from convection-reaction 

equations, our method directly trains a neural network (EP Net) to represent the EP based 

on measured data and the Helmholtz PDE without requiring any boundary conditions and 

hyperparameter tuning for the diffusion coefficient.

A major concern for B1
+ maps represented by neural networks is that deep fully-connected 

networks could fail to learn high-frequency components of the target functions because of 

the spectral bias [59]–[62]. To overcome the spectral bias and ensure that B1
+ Net would 

efficiently learn the high-frequency details of B1
+, we applied Fourier features mapping as an 

input embedding to the B1
+. In the concentric cylindrical phantom example, we also applied 

Fourier features mapping to EP Net because it could help the network avoid predicting 

homogeneous EP distributions.

In simplified PIFON-EPT, we assume a homogeneous distribution of EP. This assumption 

introduces errors near the interface between regions of different EP values and can 

deteriorate the quality of the reconstructions. When Bz is negligible, the generalized PIFON-

EPT can be used which allows the estimation of inhomogeneous EP distributions based on 

the generalized Helmholtz equation (6) which can greatly decrease the errors near the tissue 

boundaries (see IV-A). In fact, we showed that PIFON-EPT returned 48.6% and 8.08% 

more accurate results on average compared to H-EPT and CR-EPT (see IV-B). Furthermore, 

CR-EPT required tuning of the boundary condition value and the diffusion coefficient 

parameter until the reconstructed conductivity was close to the ground-truth value, which is 

not practical in experiments where the ground-truth values are unknown.

To the best of our knowledge, PIFON-EPT is the only EPT method that can reconstruct EP 

and B1
+ for an entire object, using incomplete and noisy B1

+ measurements. We demonstrated 

this for an ultra-high field MRI example, using complex-valued synthetic B1
+ measurements. 

The same approach would be impractical in actual experiments because the absolute phase 

of the B1
+ is not measurable and the TPA does not hold at 7 T. However, note that PIFON-

EPT could be adapted to work with multiple transmit coils, which could provide enough 

degrees of freedom to enable EP reconstruction using the relative phase of B1
+ between the 

coil channels [19], [51], which can be measured. This approach will be explored in future 

work.

The current version of PIFON-EPT has a limitation when Bz can not be assumed equal to 

zero. In this case, boundary artifacts appearing in the reconstructed EP cannot be eliminated. 

Previous work suggests that this limitation could be overcome by using multiple transmit-

receive coils [51]. In this work, we used instead a birdcage coil, for which Bz can be assumed 

negligible if the main field strength is lower or equal to 3T. However, we found that our 

network’s expressive power was not enough to reconstruct both the EP and the B1
+ in such 
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a case. To address this, we made our network deeper and used more complex architectures 

(for example, we included Fourier mapping also in the EP Net) to accurately represent the 

EP and B1
+, which ultimately increased the network’s training time. This problem could 

be solved by designing compressed network architectures [63], [64] to replace the current 

fully-connected neural networks.

VI. CONCLUSION

We introduced PIFON-EPT, a new technique to estimate EP and magnetic transmit field 

distributions from noisy and/or incomplete MR measurements. We demonstrated our new 

approach using a series of numerical examples, showing that PIFON-EPT is accurate 

and robust even when its input is corrupted with a significant amount of noise. Since 

PIFON-EPT can efficiently de-noise MR measurements, it has the potential to improve other 

MR-based EPT methods that rely on magnetic transmit fields as inputs. In future work, 

we will investigate the performance of the proposed algorithms with realistic human head 

models and perform experimental validation.
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Fig. 1. 
PIFON-EPT workflow. Two separate fully-connected neural networks B1

+ Net ℬ1
+ r; θ1  and 

EP Net ℰc r; θ2  are defined to take spatial coordinates r = (x, y, z) as inputs and output the 

corresponding B1
+ field and the EP distributions, respectively at the same r locations. The 

B1
+ Net and EP Net are trained jointly by minimizing a composite loss function that aims 

to fit the measured B1
+
 data (blue dotted box) while also penalizing the PDE residual. Once 

trained, the resulting physics-informed B1
+ Net and EP Net can be used to obtain physically 

consistent predictions of B1
+ and EP at any arbitrary 3D location. A representative axial cut of 

the outputs of the neural networks obtained at different iterations during training is shown at 

the bottom (red dotted box).
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Fig. 2. 
EP reconstruction with simplified PIFON-EPT for a representative section of the uniform 

dielectric cylinder. From left to right, ground truth EP, including relative permittivity (top) 

and conductivity (bottom), predicted EP using B1
+
 measurements with peak SNR of 200, 

peak-normalized absolute errors, distribute on of the error in 6561 voxels.
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Fig. 3. 
EP reconstruction with generalized PIFON-EPT for a representative section of the uniform 

dielectric cylinder. From left to right, ground truth EP, including relative permittivity (top) 

and conductivity (bottom), predicted EP using B1
+
 measurements with peak SNR of 200, 

peak-normalized absolute errors, distribution of the error in 6561 voxels.
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Fig. 4. 
Reconstructed B1

+ with simplified PIFON-EPT for a representative section of the uniform 

dielectric cylinder. From left to right, ground truth noise-free synthetic B1
+, including 

magnitude (top) and transmit phase (bottom), reconstructed B1
+ from noisy synthetic B1

+

measurements with peak SNR of 200, peak-normalized absolute errors, distribution of the 

error in 6561 voxels.
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Fig. 5. 
Reconstructed B1

+ with generalized PIFON-EPT for a representative section of the uniform 

dielectric cylinder. From left to right, ground truth noise-free synthetic B1
+, including 

magnitude (top) and transmit phase (bottom), reconstructed B1
+ from noisy synthetic B1

+

measurements with peak SNR of 200, peak-normalized absolute errors, distribution of the 

error in 6561 voxels.
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Fig. 6. 
Geometry of the high-pass birdcage coil loaded with a two-compartments cylindrical 

phantom
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Fig. 7. 
EP reconstructed with generalized PIFON-EPT for the two-compartment cylindrical 

phantom. From left to right, ground truth EP for the central axial cut of the phantom, 

including relative permittivity (top) and conductivity (bottom), estimated EP using synthetic 

B1
+
 measurements with peak SNR of 200, peak-normalized absolute errors, distribution of the 

error in 31031 voxels.
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Fig. 8. 
Reconstructed B1

+ with generalized PIFON-EPT for the two-compartment cylindrical 

phantom. From left to right, noise-free synthetic B1
+ for the central axial cut, including 

magnitude (top) and transmit phase (bottom), reconstructed B1
+ field from noisy B1

+

measurements, peak-normalized absolute errors, distribution of the error in 31031 voxels.
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Fig. 9. 
Conductivity reconstructed with phase-based H-EPT for the two-compartment cylindrical 

phantom. From left to right, ground truth conductivity for the central axial cut of the 

phantom, estimated conductivity using φ± measurements with peak SNR of 200, the peak-

normalized absolute errors, the distribution of the error in 17423 voxels.
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Fig. 10. 
Conductivity reconstructed with phase-based CR-EPT for the two-compartment cylindrical 

phantom. From left to right, ground truth conductivity for the central axial cut of the 

phantom, estimated conductivity using φ± measurements with peak SNR of 200, the peak-

normalized absolute errors, the distribution of the error in 11645 voxels.
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Fig. 11. 

Noisy synthetic B1
+
 measurements. Magnitude (left) and transmit phase (right) are shown for 

the central axial cut of the Four-compartment phantom. The peak SNR was set to 50.
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Fig. 12. 
EP reconstructed with simplified PIFON-EPT for the four-compartment phantom. From 

left to right, ground truth EP for the central axial cut of the phantom, including 

relative permittivity (top) and conductivity (bottom), EP reconstructed from synthetic B1
+

measurements with peak SNR of 50, peak-normalized absolute errors, error distribution in 

32768 voxels.
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Fig. 13. 
Reconstructed B1

+ with simplified PIFON-EPT for the four-compartment phantom. From 

left to right, ground truth synthetic B1
+ for the central axial cut of the phantom, including 

magnitude (top) and transmit phase (bottom), reconstructed B1
+ field from noise-corrupted 

synthetic B1
+
 measurements with peak SNR of 50, the peak-normalized absolute errors, the 

distribution of the error in 32768 voxels.
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Fig. 14. 

Incomplete noisy synthetic B1
+
 measurements with 50% of the voxels set to zero. Magnitude 

(left) and transmit phase (right) are shown for the central axial cut of the Four-compartment 

phantom. The peak SNR was set to 50.
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Fig. 15. 
Reconstructed EP with simplified PIFON-EPT for the incomplete four-compartment 

phantom. From left to right, ground truth EP for the central axial cut of the phantom, 

including relative permittivity (top) and conductivity (bottom), estimated EP using 50% of 

B1
+
 with peak SNR of 50, the peak-normalized absolute errors, the distribution of the error in 

32768 voxels.

Yu et al. Page 31

IEEE J Multiscale Multiphys Comput Tech. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 16. 
Reconstructed B1

+ with simplified PIFON-EPT for the incomplete four-compartment 

phantom. From left to right, magnitude (top) and transmit phase (bottom) of the synthetic B1
+

field for the central axial cut of the phantom, reconstructed B1
+ field using 50% of B1

+
 with 

peak SNR of 50, peak-normalized absolute errors, error distribution in 32768 voxels.
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TABLE I

ROBUSTNESS ANALYSIS OF PIFON-EPT WITH RESPECT TO THE NOISE LEVEL

PNAE╲Peak SNR 200 100 50 20

εr 2.56% 2.64% 2.47% 2.56%

σ 4.00% 4.10% 4.01% 3.96%

B1
+ 0.15% 0.17% 0.24% 0.49%
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TABLE II

PERFORMANCE OF PIFON-EPT WITH RESPECT TO THE PERCENTAGE OF MEASUREMENTS USED AS INPUT FOR THE 

RECONSTRUCTIONS

PNAE╲% of the Data 80% 50% 20% 10%

εr 2.41% 2.49% 2.77% 7.22%

σ 3.94% 4.09% 4.06% 7.58%

B1
+ 0.26% 0.32% 0.57% 2.69%
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