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Abstract

Many diagnostic errors occur because clinicians cannot easily access relevant information in 

patient Electronic Health Records (EHRs). In this work we propose a method to use LLMs 

to identify pieces of evidence in patient EHR data that indicate increased or decreased risk of 

specific diagnoses; our ultimate aim is to increase access to evidence and reduce diagnostic 

errors. In particular, we propose a Neural Additive Model to make predictions backed by evidence 

with individualized risk estimates at time-points where clinicians are still uncertain, aiming to 

specifically mitigate delays in diagnosis and errors stemming from an incomplete differential. To 

train such a model, it is necessary to infer temporally fine-grained retrospective labels of eventual 

“true” diagnoses. We do so with LLMs, to ensure that the input text is from before a confident 

diagnosis can be made. We use an LLM to retrieve an initial pool of evidence, but then refine this 

set of evidence according to correlations learned by the model. We conduct an in-depth evaluation 

of the usefulness of our approach by simulating how it might be used by a clinician to decide 

between a pre-defined list of differential diagnoses.1

1We make our code publicly available for: 1) retrieving evidence and target diagnoses from EHR text in the form 
of a gym environment—https://github.com/dmcinerney/ehr-diagnosis-env, 2) training agents—https://github.com/dmcinerney/ehr-
diagnosis-agent, and 3) visualizing and annotating predictions—https://github.com/dmcinerney/ehr-diagnosis-env-interface.

mcinerney.de@northeastern.edu . 
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1 Introduction

A major source of poor patient outcomes and unnecessary costs in healthcare are missed 

or delayed diagnoses. A recent report estimated that diagnostic errors result in around 

795,000 serious harms annually (Newman-Toker et al., 2023). Furthermore, many diagnostic 

errors result from information transfer problems (Zwaan et al., 2010). This is unsurprising 

given “note bloat”, i.e., the widespread problem of information overload in EHR notes, 

often due to copied or irrelevant information which obfuscates relevant information. All 

of this motivates the potential of providing more efficient mechanisms to access relevant 

information in EHRs as a means to reduce these errors.

One approach to helping practitioners make use of EHR is to train NLP models to provide 

predictions about patient risk for various illnesses (Rasmy et al., 2021; Li et al., 2021; Yang 

et al., 2023), but these systems are often lack transparency. Even when systems have high 

accuracy, clinicians may still prefer simple linear models as clinical decision support tools 

(Goldstein et al., 2016). Prior work has focused on developing inherently interpretable2 

models with minimal tradeoff in predictive performance, e.g., in the general domain with 

Neural Additive Models (Agarwal et al., 2020) and in healthcare with GA2Ms (Caruana 

et al., 2015). Recently, zero-shot instruction-tuned LLMs have been shown capable of 

extracting information from clinical text (Agrawal et al., 2022), which in turn facilitates 

interpretable predictions (McInerney et al., 2023; Alsentzer et al., 2023).

In this work, we combine the power and flexibility of zero-shot instruction-tuned LLMs 

with the transparency and modeling ability of Neural Additive Models (NAMs) to train a 

risk-prediction model that can also surface evidence to support predictions. We use an LLM 

(FLAN-T5-XXL; Chung et al. 2022) to generate abstractive “evidence” from EHR, which 

is then processed by a simpler model (Clinical BERT; Alsentzer et al. 2019) to produce 

features for a Neural Additive Model (Figure 2). This provides flexibility—the model can 

make inferences and condense information into fluent text snippets—but brings risk of 

“hallucinations”.

This approach is “interpretable” insofar as it produces “evidence” in the form of human-

understandable intermediate variables: Abstractive text with associated risks, providing 

insight into factors that informed predictions. Related approaches to “interpretability” 

(Figure 1) include using relevance scores to weight and combine information from different 

sentences (B), and those that use LLM prompts to infer feature values (C). Our approach 

permits greater flexibility than (C), while maintaining a more faithful interpretability in 

comparison to (B); see Table 1.

One complication is that we would like fine-grained, accurate labels to train our predictor 

(see section 4.1); ICD codes do not meet these criteria (Searle et al., 2020). Instead of ICD 

codes, which are noisy and temporally coarse (observed at the end of an encounter with 

discharge summaries), we propose to synthetically extract diagnosis labels from each report 

2Interpretability is a famously ambiguous term; we are focused on having explicit measure of the contribution of individual pieces of 
evidence to an output.
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using an LLM. In some cases, this has been shown to be more aligned with true diagnoses 

(Alsentzer et al., 2023).

We focus our evaluation on how this system impacts clinical decision-making. Specifically, 

we examine settings where risk of misdiagnosis is high and the consequences severe. Our 

methods work within the confines of data present in electronic health record, which allows 

the model to be trained on any EHR. LLMs can be run locally and are only used for 

inference, so privacy and compute resources are not an issue.

Our contributions are summarized as follows:

Interpretable Risk Prediction with LLMs.

We propose an approach to risk prediction that offers a particular form of interpretability in 

that it can expose faithful relationships between specific pieces of retrieved evidence and an 

output prediction.

Extracting Future Targets with LLMs.

We present a method to extract target diagnoses for use in training from the unstructured text 

in the future of a patient’s medical record that are more granular than ICD codes in the time 

dimension, and we validate with clinician annotations that the extracted labels are accurate.

In-depth Annotation of Usefulness.

We validate how much evidence-wise interpretability can positively impact a clinician’s 

expert judgement in high-impact settings which feature the greatest risk of misdiagnosis.

2 Dataset

We use MIMIC-III (Johnson et al., 2016a,b), an open-source dataset of EHRs from ICU 

patients. The ICU is one of the hospital settings (along with, e.g., the ER and Radiology) 

where misdiagnosis or delayed diagnosis are often caused by incomplete information, since 

clinicians typically do not have enough time to fully examine a patient’s EHR.

In healthcare, cancer, infection, and vascular dysfunction (termed the “big three”) account 

for about 75% of all mis-diagnosis-related harms (Newman-Toker et al., 2023). Within the 

ICU, the latter two categories mostly manifest as pneumonia, and pulmonary edema (which 

in this paper we treat as interchangeable with congestive heart failure). For this reason, we 

will focus on predicting the risk of ICU patients for cancer, pneumonia, and pulmonary 

edema. These are also conditions for which clinical correlation with notes from the past 

EHR is important for diagnosis. We use all patients in the MIMIC dataset so that we 

have both negative and positive examples of the conditions. We include additional details 

regarding the dataset and preprocessing in appendix section A.
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3 An Interpretable Risk Prediction Model

We propose a multi-stage approach to risk prediction, capitalizing on a modern LLM, 

FLAN-T5-XXL (Chung et al., 2022; Wei et al., 2022) in this case, to implement each of the 

following steps.

Retrieval (Section 3.1).

We generate abstractive evidence from free text notes by prompting an LLM with 

appropriate queries. The evidence snippets provide a form of interpretability, in that they 

can be inspected directly to verify predictions.

Risk Prediction (Section 3.2).

We input the evidence into the risk predictor, which models relationships between 

the evidence and each of the potential diagnoses and outputs multi-label classification 

probabilities, i.e. the predicted risk that the patient will be diagnosed with each condition.

Evidence Re-ranking (Section 3.3).

The retrieved evidence may still be too large a pool to review given the time constraints of 

the clinician. Therefore, we re-rank the evidence so as to only show that which promotes risk 

predictions that most deviate from the baseline risks of each condition.

To train risk prediction models we use use synthetic labels extracted from future notes in 

a patient’s record (Section 4). Figure 2 provides an overview of our model and training 

approach.

3.1 Evidence Retrieval

Following prior work (Ahsan et al., 2023), we use a sequential prompting strategy to retrieve 

evidence that is relevant to a queried diagnosis or a risk factor. Specifically, we first ask 

the LLM for a binary response as to whether evidence for a condition exists; if the answer 

is affirmative, we then issue a second prompt tasking the LLM to generate supporting 

evidence. Formally, we define the evidence retrieved for report n and query qi as follows:

en, qi =
GetEvidence(rn, qi)

if EvidenceExists(rn, qi) = ‘‘yes’’
null otherwise

(1)

where “GetEvidence” and “EvidenceExists” represent the corresponding prompt functions.

This approach does have limitations. For example, it cannot produce more than one snippet 

of evidence per report/query pair. Retrieved evidence may also be abstractive rather than 

extractive, which introduces the risk of model “hallucinations”, but permits flexibility 

and interpretability (Ahsan et al., 2023). It also significantly reduces the amount of text 

(therefore requiring a relatively small context window) by going from all reports to 

sentence-length snippets for some reports. The resulting “summarization” in the form of 
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evidence snippets is also controllable through the querying process and works zero-shot, 

i.e., it requires no specialized or in-domain training. Queries, in the form of the 3 diagnoses 

considered and risk factors written by a clinician co-author, are shown in appendix Table 5. 

We present further details regarding the evidence retrieval prompts in Appendix B.

3.2 Risk Prediction

Because a patient can have more than one diagnosis, we treat risk prediction as a 

multi-label classification problem where each label corresponds to a diagnosis. To realize 

interpretability, we use a Neural Additive Model (Agarwal et al., 2020). Specifically, we do 

not model interactions between evidence snippets. Instead, we predict scores individually for 

each piece of evidence, and average these3 to obtain a logit for risk prediction:

p(yi = 1 ∣ e1:E) = σ(bi + wi ⋅ ( 1
E ∑

j = 1

E
fθ

BERT(ej)))

(2)

where wi ∈ ℝd is the embedding of diagnosis i, e1:E is the flattened list of evidence snippets4 

with null evidence omitted, fθ
BERT is the ClinicalBERT (Alsentzer et al., 2019) [CLS] 

embedding function (which yields a d-dimensional vector), and bi ∈ ℝ is the bias for 

diagnosis i. The prior over conditions can be defined as the same equation excluding the 

evidence term: p(y i) = σ(bi), and the relative risk follows as p(y i ∣ e1:E) ∕ p(y i).

While the bias could be learned, we instead simply set it to the inverse sigmoid of the 

observed prevalence of the disease in the training sample distribution: bi = σ−1(prevalencei
train). 

This means that if we wanted to transfer the model to a new population, where the 

prevalence differed but the contributions of different evidence were assumed to remain, 

we could simply update the bi term.

Excluding interactions between evidence snippets is a sacrifice in model complexity, but it 

also allows us to compute an interpretable “vote” for any individual piece of evidence as

p(yi ∣ ej) = σ(bi + wi ⋅ fθ
BERT(ej))

(3)

and compute an individualized relative risk for each piece of evidence using this value.

Conveniently, forcing the bias term to be the inverse sigmoid of the training prevalence, by 

definition, also means we can interpret the evidence term in Equations 2 and 3 as the log 
odds ratio, i.e., the difference between the logits when conditioning vs. not conditioning on 

the evidence. The model is effectively estimating this log odds ratio directly. This variable’s 

3Neural Additive Models typically use a sum instead of an average, but we found that given varying amount of evidence retrieved, it 
worked better to use an average.
4We add the query term used to retrieve the evidence and relative date of the evidence before serving it as input, which we describe in 
greater detail in Appendix C. Also note that we use evidence surfaced by all queries for all predictions.
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expected value does not change if we sample conditions for training with a frequency 

different from the the natural prevalence of the conditions (Simon, 2001). Because of this, 

we can estimate the likelihood and the relative risk during inference on a differently sampled 

population by simply changing the bias term in the prior and in equations 2 and 3 to reflect 

the estimate of the natural prevalence of the conditions (Zhang and Kai, 1998), which we 

can get from the training set before sampling: bi
′ = σ−1(prevalencei

train).

3.3 Evidence Re-ranking

Because of the simplicity of the risk prediction, we can use the internal variables it exposes 

to re-rank evidence. The intuition behind the re-ranking is that the most important evidence 

will be that which most changes our risk assessment from the prior over the diagnoses, and 

we would like the chosen metric to capture this across all of the potential diagnoses. We 

use Mean Squared Error (MSE) of the predicted logits with the logits of the prior p(y). This 

makes the formulation of the MSE metric simple as the mean (over Q conditions) of the 

squares of the log odds ratio for a piece of evidence:

MSE(σ−1p(y ∣ ej), σ−1p(y)) =
1
Q ∑

i = 1

Q
(wi ⋅ fθ

BERT(ej))2 .

(4)

It is necessary to use the log odds ratio term in this score function because we care not 

only about increasing but also about decreasing the probability of a condition, so it makes 

most sense to compare and sum these two different effects in log space. The reason to 

choose MSE over other scores (e.g. the absolute distance) comes from the intuition that it 

is more important to see the evidence that is “very opinionated” about one condition rather 

than to see evidence that is “slightly opinionated” about many. Therefore, it is necessary to 

square this log odds ratio before averaging across conditions to reflect this idea when sorting 

evidence.

4 Certain Diagnosis Extraction

We make an assumption about the EHR of patients that eventually receive a diagnosis that 

there is some period of time in the record where a diagnosis is “uncertain” before it becomes 

“certain”, and the eventual “certain” diagnosis is correct. Of course just because a diagnosis 

is definitive as noted by clinician in the record does not necessarily mean that it is correct—

sometimes clinicians are wrong.

However, it is hard to detect such cases, so here we focus on reducing delayed diagnosis 

errors where we assume some evidence in the medical record from that “uncertain” period 

could have influenced a clinician to make a diagnosis or order a certain kind of test sooner 

than they did, or keep a diagnosis in the running list of differentials for longer. If notes are 

incorporated into the input where the diagnosis is already certain, the prediction problem 

becomes too easy, which is why a time-wise fine-grained label is necessary—such a label 
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could more accurately weed out all of this obvious evidence. To extract these certain 

diagnoses with an LLM, we use three sequential prompts and a normalization step.

4.1 3-Stage Extraction with LLMs

In this section we describe the prompts for certain diagnosis extraction, which are shown in 

full in Appendix D. Following prior work (Ahsan et al., 2023), we first prompt the LLM 

with a binary question asking if there exists a confident diagnosis for a patient. If the answer 

is “yes”, we then ask the model for the diagnoses. Unfortunately, creating a list of diagnosis 

terms from the answer to this prompt is not just a matter of parsing because we found 

that the model will often return extended phrases that are not easily mapped to diagnoses. 

Therefore, we issue one more prompt that only takes in the output of the previous prompt to 

create a structured list of diagnostic terms. We then parse this final output of the LLM into a 

list of strings.

4.2 Normalization

To normalize produced diagnostic terms, we take a two-step apporach. First we 

use string matching heuristics to handle easy cases. Then we embed sentences with 

SentenceTransformers (Wang et al. 2020; Reimers and Gurevych 2019; specifically, 

all-MiniLM-L6-v2) and calculate cosine similarities, matching a term in the parsed list to 

the most similar term (with similarity >.85) in the predefined set (“cancer”, “pneumonia”, 

and “pulmonary edema”). We ignore terms with no match.

5 Evaluation

Because our targets are synthetically generated using an LM, we first evaluate how well 

our labels align with the “ground truth” (Section 5.1). Next, we aim to evaluate how well 

the model can realistically help with risk prediction. Though it is straightforward to assess 

the accuracy of the risk prediction itself—we use the standard metrics of precision, recall, 

F1 and AUROC scores to compare to various uninterpretable baselines—it is not as easy to 

assess what we really care about: How helpful is the interpretability offered by the proposed 

model to clinicians (section 5.2)? For this we resort to manual evaluation by our clinical 

co-authors and develop bespoke interfaces to facilitate annotation.

5.1 Future Target Extraction

To evaluate how well the LLM extracts targets in the form of “confident” diagnoses, 

we enlist our clinical collaborators to annotate the precision with which the LLM infers 

“confident” diagnoses. In particular, for every report where one of the three diagnoses—

cancer, pneumonia, and pulmonary edema—was automatically extracted, an ICU clinician is 

first tasked with answering the question “Is [diagnosis] a confident diagnosis of the patient 

according to the report?”. If the answer is “yes”, they are asked: “Is it likely that this 

confident diagnosis could be identified in earlier reports?”.

5.2 Risk Prediction Interpretability

To assess the viability of clinicians using this model in practice, we collect in-depth 

annotations intended to simulate the real-world use of this technology. We evaluate a number 
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of baseline models and model ablations to assess the relative benefits of different model 

components.

Interface and Annotations—To conduct annotations, we develop an interface that 

simulates as closely as possible the envisioned use case: A clinician is seeing an ICU 

patient’s chart for the first time and trying diagnose the patient or determine what they are 

at risk of. The clinician may not have much time to spend with the patient’s chart, so we 

ask clinician annotators to work quickly—specifically, to try and keep annotation time to a 

few minutes—and we record the amount of time they take to review the patient’s record. 

When they are done, the annotation process starts, and though they are allowed to access the 

patient’s notes, they are encouraged not to.

We first ask if a diagnosis is noted explicitly in the patient’s record. Given that we are 

aiming to evaluated records where the diagnosis is not yet clear, we skip the rest of 

the annotations on the instance if a diagnosis is explicit. If not, we ask for estimates of 

the likelihood (“unlikely”, “somewhat likely”, or “very likely”) of each of the possible 

conditions. Note that we explicitly do not show any model predictions until after this 

question, to avoid bias. Then, we show the annotator the model predictions and ask if the 

predicted risk for the conditions aligns with intuition.

Moving onto the evidence (appendix Figure 13), we allow the annotator to look at the 

sorted evidence one snippet at a time along with the individualized risk prediction only 

based on that snippet. The annotator notes the usefulness of the evidence with respect to 

each condition. If the evidence is useful, they are asked whether or not the impact of this 

evidence on the risk scoring (for the particular condition) aligns with intuition, and whether 

the annotator remembers seeing this piece of evidence during their initial review of the 

patient’s notes. After two pieces of evidence, if the annotator feels like more evidence is 

needed to form a reasonable opinion of the patient’s risk, they can request more evidence 

snippets (up to a maximum of 10), annotating each as they go. Finally, the annotator is asked 

if any of the evidence presented impacted their original assessment of likelihood.

Ablations—While the task of risk prediction is standard, there is less work on the 

task of surfacing relevant evidence (abstracted or extracted) to support such predictions. 

Consequently, there is not a large set of baselines to serve as natural comparators to 

our approach. Therefore, in our analysis we focus on showing the importance of each 

component of our model through ablations. We can decompose our approach into two 

evidence retrieval components, generating the evidence, which we refer to as “LLM 
Evidence” and reranking it, which we refer to as “Log Odds Sorting”. The following 

ablations show the importance of both of these components in identifying useful evidence.

We use prior work (Ahsan et al., 2023) as a starting point for generating the evidence, so 

it is natural to ask what that component can do by itself without re-ranking using the risk 

prediction scores for each piece of evidence. A natural comparison is to present the same 

evidence retrieved but in a random or reverse chronological order (as recency is probably 

important). But we can also use the model certainty in evidence, given that this has been 
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shown to correlate with the utility of snippets (Ahsan et al., 2023). We adopt this approach 

for comparison and call it “Confidence Sorting”.

It is also natural to question the importance of using the language model to abstractively 

generate evidence at all. We might instead simply use every sentence in the report as 

evidence and train our prediction model with this retrieved evidence, re-ranking it in the 

normal way (“Log Odds Sorting”) with the prediction model’s scores. We call this the “All 
EHR” model.

6 Results and Discussion

The majority of our results are based on annotations from 4 annotators on 24 instances and 

3 models. Each instance has a maximum of 3 annotators, each annotating different models 

(assigned randomly). Table 2 reports detailed statistics.

Our main goal is to understand if our approach can retrieve better evidence. To this end, 

we plot the percentage of evidence annotated in each category of usefulness for each 

model in Figure 3.5 Though we record usefulness for each condition individually, here we 

combine these annotations by taking the maximum score across the conditions for each 

piece of evidence. To identify hallucinated evidence, we conducted post-hoc annotations 

with only the annotated LLM-generated evidence that was abstractive (42 of 108).6 The 

results high-light the necessity of both the “LLM Evidence” retrieval component and the 

“Log Odds Sorting” method, as both other variants retrieve significantly less “Useful” and 

“Very Useful” evidence and more “Weakly Correlated” and “Not Relevant” evidence. We 

also find a relatively small number of hallucinations (5) and note where the hallucinated 

evidence was originally ranked in Table 3.

How much of the relevant retrieved evidence is redundant with the information already 

uncovered during the annotator’s initial review of the patient? We plot evidence counts 

separately for seen vs unseen evidence in Figure 4 and find that there is a significant amount 

of unseen evidence that is useful and very useful in all models. It is interesting to note that 

some hallucinated evidence was “seen” by annotators. We believe this is most likely due to 

some hallucinated evidence having been potentially true of the patient at some point but not 

with respect to the specific report used to generate it (e.g. the generated evidence says the 

patient has a bleeding colon lesion, but the report says that the patient no longer has this; see 

Table 8 for more examples).

The rated usefulness of evidence does not necessarily matter if it does not affect the 

clinician’s decision. An example of how these models might work in practice is when our 

LLM Evidence model with Confidence Sorting surfaced the following: “Atrial fibrillation 

with rapid ventricular response. Compared to the previous tracing atrial fibrillation is seen. 

Other findings are similar. The patient is at risk of pulmonary edema.” In this case the 

5Sometimes annotators noticed nearly duplicate evidence, so we kept track of this evidence (a total of 21 snippets) and omitted it from 
the results.
6To annotate hallucinations, we provided a clinician the generated evidence alongside the report from which it was generated and 
asked if the evidence was hallucinated or partially hallucinated. Full results are in appendix Table 8.
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annotator changed their estimate of the likelihood of pulmonary edema from unlikely to 

somewhat likely, and it turns out that pulmonary edema did appear in a future report.

We show all 7 instances where annotators changed their mind after viewing evidence in 

Appendix Table 7. Of these we find 2 instances (including the example above) where 

annotators’ increased their likelihood of conditions that were extracted from future records, 

and 5 where condition(s) other than the synthetically labeled condition(s) were affected 

(mostly by increasing the annotators’ risk assessments). Though more data should be 

collected, this indicates the model might improve annotator recall (though at some cost 

in precision); recall is arguably more important here.

Given that we are using synthetic labels of future diagnoses for both training and evaluation 

for risk prediction (discussed next), it is important to evaluate how well our labels align with 

ground truth. Given that ICD codes are not fine-grained enough and are not always accurate, 

we turn to manual annotations of precision for this evaluation. In Figure 5, we report the 

precision of these labels for being correct or for being “correct and on time”. This second 

category is a stronger correctness in which the annotator also noted that the note where the 

label was detected subjectively seems to be the first note where that label should have been 

given as judged using the phrasing in the note.7

We see reasonable precision when using automatic labeling with the LLM pipeline (about 80 

percent and above for all conditions). We also compute inter-annotator agreement for these 

annotations of precision across the 4 annotators by enforcing that 8 annotated predictions 

overlap for all the annotators. The Fleiss’ Kappa score for these synthetic label annotations 

was .68 for the 3-category classification shown in Figure 5 and .86 for the 2-category 

classification obtained by simplifying the labels into just “Correct” or “Incorrect”.

We would also like to assess how well our models’ risk estimates aligns with the intuitions 

of clinicians with respect to the aggregated and individual predictions. Though for the 

aggregated prediction for an instance, we ask annotators to take the magnitude of the risk, 

not just the direction (i.e. increased compared to baseline or decreased compared to baseline) 

into account, for evidence-level predictions, we ask annotators to take the magnitude with 

a grain of salt and mostly judge based on the direction. This is because the magnitudes 

appeared to be somewhat artificially inflated potentially either due to the strong evidence 

trying to “compensate” for the evidence that does not actively contribute to the log odds 

(see Figure 12) or because of the sorting method.8 Figure 6 shows that both models do 

reasonably well with respect to the aggregated and evidence-wise predictions, and both do 

slightly better on evidence-wise as opposed to aggregated predictions.

Finally, it is important to evaluate the actual prediction performance of our models on our 

synthetic labels. Here we also compare against baseline models that are not interpretable: 

BERT and Long-former. These black-box models are trained on both the All EHR and the 

concatenated retrieved LLM evidence. Figure 7 shows that including all evidence usually 

7It would be time-consuming to annotate this directly becuase it involves looking at a lot of prior notes.
8Future work might investigate how to bring make this magnitude more interpretable.

McInerney et al. Page 10

Proc Conf. Author manuscript; available in PMC 2024 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



helps prediction performance, but using the blackbox vs interpretable models on the same 

input does not effect performance.

7 Conclusions

Clinicians should have access to all the pertinent information to make well-grounded 

decisions for diagnosing a patient, but currently they are inundated with (unstructured) 

information from the EHR. This is exacerbated by the time constraints faced by 

practitioners. We have proposed an approach that aims to facilitate efficient access to 

potentially important data within EHR; our method capitalizes on the capabilities of LLMs 

to produce digestable, abstractively generated text evidence, which is then consumed by a 

Neural Additive Model (NAM) to yield a prediction.

We find that using NAMs does not sacrifice predictive quality, but does enable models to 

surface useful evidence to clinicians. Using the LLM to create the starting set of evidence to 

feed into the NAM does sacrifice some performance, but it also significantly increases the 

usefulness of the evidence in comparison with using the raw sentences from EHR notes as 

evidence.

Further, we find that in some cases the surfaced evidence is able to change a clinician’s 

mind, increasing the clinician’s recall though decreasing precision, which warrants future 

work to improve on this system. One major concern is that this type of system could 

increase clinician’s workload rather than decrease it. Future work should assess exactly how 

and when it might be beneficial to show snippets to clinicians.

8 Limitations

The proposed approach of combining abstractive LLM evidence with Neural Additive 

Models shows promise, but there are still many concerns that need to be addressed in 

future work. One of the biggest concerns is about the use of abstractive “evidence” produced 

by LLMs. Though our analysis does not find many hallucinations, their existence certainly 

poses risks and should be studied further in future work. Any hallucinated evidence could 

at best negatively impact trust of clinicians in the system and at worst mislead clinicians 

and negatively affect patient outcomes. We also did not experiment much with different 

prompts or models for producing this evidence given that our main focus was on validating 

the system-level approach rather than individual components.

Another limitation concerns the lack of a significant number of baseline models. Though not 

many baselines exist for a task that involves retrieving evidence supporting predictions in 

EHR, there are still potential baselines that use relevance weights or cosine similarity with 

clinical BERT that we could have included. However, due to the extensive amount of time 

needed for just one annotation on one model, we chose to focus on ablating over the LLM 

evidence retrieval and sorting method components of the model.

Finally, our analysis mostly relies on a relatively small amount of annotations from one 

dataset. This again stems from the time cost of annotations. Each annotator must first look 

through a whole patient’s record to get a sense of the patient before even getting to any 
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annotations. On average, this took almost 3 minutes, which is all before annotators even see 

any of the questions. Then, because the study focuses on just the top evidence presented for 

each instance, each annotator only annotates 3.2 evidence snippets on average per instance. 

This time-consuming process did limit the number of annotations we could obtain.
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Appendix

A Dataset and Preprocessing

We treat each patient as an instance and split the instances randomly into a training split 

for training the risk prediction model, a validation split for picking the best checkpoint and 

other hyperparmeter tuning, a test split for automatically evaluating the risk prediction, and 

an annotation split for annotations. After the first round of annotations, because we changed 

our model (see section E), we throw out all patients annotated in the first round so that 

the second and final round of annotations, which were used to compute all results, were 

conducted on a held-out set of instances. Instance order was randomized, so no bias resulted 

from throwing out the first set of instances annotated.

Each instance is randomly separated into a past and future. During training, repeated 

examples might have different samples time-points, but during evaluation and annotation, 

the same randomly-picked time-point is used across all evaluations and annotations. We 

also ignore examples longer than 200 reports for computational purposes. Given that this 

application’s use case is for lengthy records, for annotations we restricted to instances with 

greater than 10 records for all but 3 annotated instances, which had already been completed.

During training, to overcome problems caused by data imbalance and for computational 

reasons, we randomly sub-sample 20% of the negative examples—i.e., examples that have 

none of the three considered conditions. For annotations, we sub-sample negatives such that 

each annotation has a 50% chance of having at least one positive condition of the three 

considered.

B Evidence Retrieval Details

We use the same prompts as in (Ahsan et al., 2023) for retrieving evidence of risks and 

signs. We also add an additional set of two prompts for retrieving evidence relating to a 

particular queried risk factor. The exact prompts used are as follows:

Evidence of Risk

Prompt 1: Read the following clinical note of a patient:

<input>

Question: Is the patient at risk of <query>? Choice: -Yes -No
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Answer:

Prompt 2: Read the following clinical note of a patient:

<input>

Based on the note, why is the patient at risk of <query>?

Answer step by step:

Evidence of Signs

Prompt 1: Read the following clinical note of a patient:

<input>

Question: Does the patient have <query>? Choice: -Yes -No

Answer:

Prompt 2: Read the following clinical note of a patient:

<input>

Question: Extract signs of <query> from the note.

Answer:

Evidence of a Queried Risk Factor

Prompt 1: Read the following clinical note of a patient:

<input>

Question: Does the patient have <query>? Choice: -Yes -No

Answer:

Prompt 2: Read the following clinical note of a patient:

<input>

What evidence is there that the patient has <query>?

Answer:

C Risk Prediction Inputs

To provide some context of the evidence for the risk prediction model, we decided to add 

some metadata to the evidence when it was presented to the model with the hope that the 

model could use this context to make better predictions. In particular, we decided to include 
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the query that was used to retrieve a piece of evidence, and the relative day of the report 

from which the evidence was retrieved in the following format:

<query> (<query_type>): “<evidence>” (day <relative_day>)

For example, if querying a diagnosis of “pneumonia” retrieved the evidence “the patient 

has a cough.” from a report 5 days prior to the current time-step, the evidence would be be 

presented to the model as:

pneumonia (diagnosis): “the patient has a cough.” (day −5)

D Certain Diagnosis Extraction Prompts

Prompt 1:

Read the following report:

<input>

Question: Is there a confident diagnosis of the patient’s condition? Choice: -Yes -No

Answer:

Prompt 2:

Read the following report:

<input>

Answer step by step: What is the correct diagnosis of the patient’s condition?

Answer:

We use Chain of Thought (CoT) prompting here because—similar to the evidence retrieval 

step—we want the model first to extract the parts of the report that refer to a diagnosis, as 

this seems to work better than going straight to the list of diagnoses. In initial experiments, 

using the CoT prompt appeared to more easily elicit these verbose extractions.

Prompt 3:

Here is a diagnosis of a patient:

<confident diagnosis>

Question: Provide a list of diagnostic terms or write none.

Answer:
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E Prompting Problems

In our 3-stage prompting process, we initially had some problems with false positives in 

scenarios where pneumonia was negated (Figure 8). We discovered that this was because our 

3rd prompt was originally:

Here is a diagnosis of a patient:

<confident diagnosis>

Question: Based on this diagnosis, provide a list of diagnostic terms.

Answer:

This particular prompt sometimes produced positive synthetic labels for pneumonia when 

pneumonia was actually negated in the confident diagnosis generated by the previous 

prompt. We realized this when starting to annotate validation examples, so we changed 

our prompt (see section 4.1).

Figure 8: 
Synthetic labels on validation examples before correcting the prompting problem.

We also noticed that some false positives might be caused by the model treating the 

admitting diagnosis as true, even though it can often be wrong according to the report text. 

To combat this, we added a preprocessing step before inserting the report into the confident 

diagnosis extraction prompts that removed the admitting diagnosis from the text. All of the 

test annotations used for the results do not include or overlap patients with the annotated 

examples which were used in this phase (chosen from the randomly shuffled annotation 

split) and precipitated these modifications.

F Description of Terms for Models and Settings

Table 4 shows all of the terms used to describe different models and settings.
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G Experiments

We use Clinical BERT for the NAM prediction model. For all models, we train for up to 

10 epochs on one Quadro RTX 8000 GPU and pick the best checkpoint (where checkpoints 

occur every 5 percent of an epoch). For the LLM for both evidence retrieval and synthetic 

label extraction we use FLAN-T5-XXL (Chung et al., 2022; Wei et al., 2022). In the case of 

All EHR used as input to the interpretable NAM, we split sentences with NLTK.

Table 4:

Description of terms.

LLM Evidence Models that use the evidence retrieved with an LLM.

All EHR Models that use the all of the text in the EHR. For Interpretable Neural Additive Model, this 
text is split at the sentence level.

BERT or Longformer Blackbox models that take either All EHR or LLM Evidence (concatenated) as input. BERT 
refers to Clinical BERT (Alsentzer et al., 2019) and Longformer refers to Clinical-Longformer 
(Li et al., 2023).

Interpretable The proposed Interpretable Neural Additive Model, which can operate either on LLM Evidence 
or All EHR inputs.

Confidence Sorting Sorting LLM Evidence by the length-normalized log-likelihood of the evidence under the 
LLM.

Log Odds Sorting Sorting either LLM Evidence or All EHR inputs by the mean squared error of the predicted log 
odds (equation 4).

H Usefulness of Queries

Unlike (Ahsan et al., 2023), we do not directly evaluate how relevant the retrieved evidence 

is to the query used to retrieve it; we instead focus on how relevant the evidence is to the 

risk predictions. However, we would like to examine which queries produce useful evidence. 

Figure 9 shows counts of evidence in each category separated across which query was used 

to retrieve that evidence. It seems as though the most useful evidence came from the three 

queries that directly ask about the condition for which we are predicting risk (the three 

left-most queries), but a few additional queries sometimes did prove useful.

I Full Prediction Performance

We report the full prediction performance in Table 6.

J Annotators Changing Their Minds

Table 7 presents all the occurrences of annotators changing their mind.

K Ablation over amount of evidence used

Figure 10 shows performance if we limit to a set amount of evidence that can be used in the 

Neural Additive Model’s final aggregated score. This shows that the model performance is 

not affected until it is limited to using less than 20 snippets for predictions.
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L Evidence Histograms

Figure 11 shows a histogram of the amount of evidence per each instance, and Figure 12 

shows what the distribution over the log odds votes looks like.

M Annotation Interface

Figure 13 shows a screenshot of what the part of the interface dedicated to annotating 

evidence looks like.

N Hallucinations

Table 8 shows all of the annotated evidence that was subsequently marked as a hallucination 

along with an explanation of why it is a hallucination and other information about the 

evidence.

Figure 9: 
Usefulness per Query.

Table 5:

A non-exhaustive list of risk factors proposed by a clinician for use in queries.

Diagnosis Risk Factors

Pneumonia a stroke, trouble swallowing, a compromised immune system, a high white blood cell count, a 
fever

Pulmonary 
Edema

a low ejection fraction, a heart attack, steroid use

Cancer back pain, neuralogical problems, a history of smoking, night sweats, unexplained weight loss, 
a chronic cough with blood, large neck lymph nodes, a loss of appetite, jaundice, chest pain, 
hoarseness, tiredness, wheezing
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Table 6:

Macro-averaged risk prediction performance on the synthetic labels averaged over 5 

different random seeds used for choosing the time-point in each patient that separates the 

past from the future.

AUROC Precision Recall F1

BERT (All EHR) 75.6 ± .19 65.6 ± 1.38 16.8 ± .38 26.8 ± .43

Longformer (All EHR) 79.6 ± .22 55.5 ± .32 28.8 ± .43 37.9 ± .38

Interpretable (All EHR) 79.5 ± .23 56.5 ± .57 20.5 ± .58 30.1 ± .60

BERT (LLM Evidence) 74.0 ± .27 51.6 ± 1.32 22.7 ± .27 31.5 ± .42

Interpretable (LLM Evidence) 73.3 ± .27 53.6 ± 1.09 15.0 ± .36 23.4 ± .48

Table 7:

Examples of the 5 instances where annotators changed their mind based on evidence shown.

Annotator Model Sorting Changes Best Evidence Usefulness Synthetic 
Label

2 LLM 
Evidence

Confidence 
Sorting

Pneumonia: 
Unlikely → 
Somewhat 
likely

There is a small right 
pneumothorax. There is 
extensive consolidation 
of the right upper lobe. 
Consolidation in the 
right lower lobe is 
mostly located in the 
superior segment. The 
left lung is grossly clear. 
There. Signs: There is 
extensive consolidation 
of the right upper lobe. 
Consolidation in the right 
lower lobe is mostly 
located in the superior 
segment. The left lung 
is grossly clear. There is 
no left pleural effusion. 
There is

Useful for 
Pneumonia

Pneumonia

4 LLM 
Evidence

Confidence 
Sorting

Pulmonary 
Edema: 
Unlikely → 
Somewhat

Atrial fibrillation 
with rapid ventricular 
response. Compared to 
the previous tracing atrial 
fibrillation is seen. Other 
findings are similar. The 
patient is at risk of 
pulmonary edema.

Useful for 
Pulmonary 
Edema

Pulmonary 
Edema

3 All EHR Log Odds 
Sorting

Cancer: 
Unlikely → 
Very likely

Basal cell skin ca. 
[**27**].

Useful for 
Cancer

Pulmonary 
Edema

4 All EHR Log Odds 
Sorting

Cancer: 
Unlikely → 
Somewhat

o.b.resident to see pt., 
pt.waiting for a •biopsy•.

Useful for 
Cancer

Pulmonary 
Edema

4 All EHR Log Odds 
Sorting

Pulmonary 
Edema: 
Somewhat 
likely → 
Unlikely, 
Pneumonia: 
Somewhat 
likely → Very 
likely

There is increased 
opacity in the. 
retrocardiac left lower 
lobe, as well as the right 
lower lobe, which could 
be. due to atelectasis, 
aspiration, or possibly 
pneumonia.

Very Useful 
for 
Pneumonia
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Annotator Model Sorting Changes Best Evidence Usefulness Synthetic 
Label

1 LLM 
Evidence

Log Odds 
Sorting

Pneumonia: 
Somewhat 
likely → Very 
likely

CXR showed L middle/
lower lobe PNA, prob 
asp PNA.

Very Useful 
for 
Pneumonia

4 LLM 
Evidence

Log Odds 
Sorting

Cancer: 
Unlikely → 
Very likely

CLL. Signs: id: pmh of 
CLL

Very Useful 
for Cancer

Table 8:

Clinician-annotated hallucinations.

Evidence Hallucination Explanation Query Sorting Seen Rating

The patient has a 
bleeding colon 
lesion.

Yes The report indicates that 
the patient used to have a 
bleeding colon lesion but 
no longer does.

cancer Log Odds 
Sorting

Yes Useful

The patient has a 
history of heart 
failure.

Yes The report looks like 
it is cut off, and the 
only thing mentioned is 
a Coronary artery bypass 
graft (CABG).

a low ejection 
fraction

Log Odds 
Sorting

Yes Useful

The patient has a 
history of sepsis.

Yes Report says “R/O” meaning 
rule out sepsis.

pneumonia LLM 
Confidence

No Weakly 
Correlated

The patient has a 
mass in her 
breast.

Partially The report header says that 
the patient has a mass, but 
the body of the report does 
not indicate this.

cancer Log Odds 
Sorting

Yes Weakly 
Correlated

The patient had a 
brain tumor 
removed.

Partially Clinicians do not usually 
refer to pituitary adenomas 
(which the report indicates) 
as brain tumors.

neuralogical 
problems

Log Odds 
Sorting

Yes Useful

Figure 10: 
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Ablation over amount of evidence used to make a risk prediction.

Figure 11: 
Histogram of the number of text snippets for each instance.
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Figure 12: 
Histogram of the log odds of each individual piece of evidence.

Figure 13: 
An example part of the evidence annotation interface. The plots on the left indicate the 

predicted likelihood (top) and the odds ratio (bottom).
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Figure 1: Inherently “interpretable” approaches to prediction.
Typically, ‘interpretable’ models trade off between the expressiveness of intermediate 

representations and the faithfulness of the resulting interpretability to the models’ true 

mechanisms. Our approach (D) manages to use very expressive intermediate representations 

in the form of abstractive natural language evidence while still maintaining true transparency 

during aggregation of this evidence. See Table 1 for more details.
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Figure 2: Explainable Risk Prediction and Training.
An overview of our approach. Left: We retrieve evidence snippets from past notes with an 

LLM for predefined queries posed by a clinician. Then we use our risk prediction model to 

estimate risk of various diagnoses given each piece of evidence individually, and aggregate 

these scores. Right: We automatically extract diagnosis ‘labels’ from future reports with an 

LLM to use to train the risk predictor.
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Figure 3: 
Evidence Usefulness (the maximum score across conditions) for our approach and two 

ablations. “LLM Evidence+Confidence Sorting” uses model evidence, but sorts by (length-

normalized) log probability instead of the log odds. “All EHR+Log Odds Sorting” does not 

use LLM evidence and instead takes the last 1000 sentences in the record as evidence.
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Figure 4: 
Seen vs. unseen evidence counts for all evidence that at least weakly correlates with 

a condition. Curiously, the LLM Evidence with Log Odds Sorting model has some 

hallucinated evidence that was seen by annotators. See section 6 for a discussion.
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Figure 5: 
Synthetic label precision. For each confident diagnosis label extracted by the system, 

annotators check whether the diagnosis actually appears in the report (and is definitive), 

and subsequently if subjectively they believe that report is likely the first time the diagnosis 

was definitive based on the report language.
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Figure 6: 
Intuitiveness of predictions macro-averaged across annotators.
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Figure 7: 
Macro-averaged risk prediction performance evaluated on synthetic labels and averaged over 

5 random seeds for choosing the which time-point in the EHR to use prior to the diagnosis 

label. Error bars represent the standard deviation of the random seeds. Here, BERT and 

Longformer refer to Clinical BERT and Clinical Longformer.
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Table 3:

The original evidence ratings of hallucinations.

Not
Relevant

Weakly
Correlated Useful

Very
Useful

LLM Conf. 0 1 0 0

Log Odds 0 1 3 0
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