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Abstract

Quantifying how brain functional architecture differs from person to person is a key challenge 

in human neuroscience. Current individualized models of brain functional organization are 

based on brain regions and networks, limiting their use in studying fine-grained vertex-level 

differences. In this work, we present the individualized neural tuning (INT) model, a fine-grained 

individualized model of brain functional organization. The INT model is designed to have vertex-

level granularity, to capture both representational and topographic differences, and to model 

stimulus-general neural tuning. Through a series of analyses, we demonstrate that (a) our INT 

model provides a reliable individualized measure of fine-grained brain functional organization, 

(b) it accurately predicts individualized brain response patterns to new stimuli, and (c) for many 

benchmarks, it requires only 10–20 minutes of data for good performance. The high reliability, 

specificity, precision, and generalizability of our INT model affords new opportunities for building 

brain-based biomarkers based on naturalistic neuroimaging paradigms.
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1. INTRODUCTION

A central goal of human neuroscience is to understand how brain functional organization 

differs across individuals, and how these differences relate to differences in intelligence, 

personality, motivation, mental health, and many other attributes. Understanding these 

differences is instrumental for providing individualized education and training, as well as 

effective diagnosis and intervention in the case of pathology, and ultimately improving 

educational, occupational, and health-related outcomes (Bijsterbosch et al., 2020; Dubois & 

Adolphs, 2016; Gabrieli et al., 2015; Gratton et al., 2020).

Models of the functional organization of the human brain can be summarized into two 

categories based on their spatial granularity. Typical functional magnetic resonance imaging 

(fMRI) data of the human brain comprise 20,000–100,000 cortical surface vertices (or 

voxels in volumetric data). Coarse-grained models group these vertices into spatial units

—brain regions, networks, and systems—and reduce the brain into tens to hundreds of 

spatial units (Glasser et al., 2016; Gordon et al., 2016; Yeo et al., 2011). Vertices with 

similar, relatively homogeneous functions are studied as a group in coarse-grained models, 

which makes it easier to summarize their functions neuroscientifically and computationally 

(Bijsterbosch et al., 2020; Eickhoff, Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 

2018). Recent advances of coarse-grained brain models have successfully extended group-

level models to model individual brains (Gordon, Laumann, Adeyemo, Gilmore, et al., 

2017; Harrison et al., 2015; Kong et al., 2019; Wang et al., 2015). In these models, the 

cortical topographies of the spatial units in an individual are allowed to differ from the group 

template, in order to account for inter-individual variations in brain functional organization 

(Gordon, Laumann, Adeyemo, & Petersen, 2017; Gratton et al., 2018; Laumann et al., 

2015). Individualized models help disentangle different sources of inter-individual variation 

(Bijsterbosch et al., 2018, 2019), and improve brain-behavior predictions (Kashyap et al., 

2019; Kong et al., 2021).

Given this feature aggregation, coarse-grained models focus on spatial units that are 

centimeters in scale. Modern fMRI data acquisition, however, usually has a spatial resolution 

of 2–3 mm in each dimension, which is close to the spatial precision of blood-oxygen-

level-dependent (BOLD) signal acquired at 3 T (Engel et al., 1997; Parkes et al., 2005). 

This fine spatial resolution affords access to the rich information encoded in fine-grained 

vertex-by-vertex and voxel-by-voxel spatial patterns (Haxby et al., 2001, 2014; Huth et al., 

2016; Kriegeskorte & Kievit, 2013). This information can be used to decode brain responses 

to different object categories (Haxby et al., 2001), and also different exemplars of the same 

category, such as different face identities or different views of the same face (Guntupalli 

et al., 2017; Visconti di Oleggio Castello et al., 2017, 2021). Individual differences in 

fine-grained responses and connectivity are much more reliable than their coarse-grained 

counterparts (Feilong et al., 2018). Fine-grained functional connectivity captures what 
information is exchanged between regions instead of how much information is exchanged, 

providing a twofold increase in accuracy in predicting intelligence (Feilong et al., 2021).

In this work, we present the individualized neural tuning (INT) model, a fine-grained 

individualized model of brain functional organization that has three key features. First, 
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the INT model has vertex-level granularity, which provides access to the rich information 

encoded in fine-grained spatial patterns. Second, it models each individual’s unique 

representational geometry as well as the corresponding topographic organization in cortex, 

and thus affords study of both functional and topographic differences. Third, the INT 

model decomposes responses into stimulus information, as defined by neural responses 

that are shared across brains, and response tuning functions that model individual-specific 

fine-grained responses to any stimulus. Therefore, the INT model affords study of individual 

differences in neural response tuning that are independent of stimulus information (Fig. 1).

Using two rich fMRI datasets collected during movie-watching, we demonstrate that 

our INT model of brain functional architecture has remarkable reliability and validity. 

Specifically, we show that: (a) two estimates of an individual’s model of brain function 

are highly similar based on independent data, but distinctive for different individuals; (b) 

the model can predict idiosyncratic patterns of brain responses to novel stimuli, including 

object categories and retinotopic localizers; (c) the model captures information encoded 

in fine-grained spatial patterns and can differentiate response patterns to different movie 

time points (TRs); and (d) the model works well with small amounts of movie data but 

continuously improves with more data. Together, these results demonstrate that our INT 

model predicts idiosyncratic fine-grained functional organization of the brain with high 

sensitivity and specificity.

2. RESULTS

2.1. Estimating the individualized neural tuning model

Here, we briefly describe the individualized neural tuning (INT) model in order to build 

a high-level intuition for how the model is constructed; see the “Methods” section for 

a more detailed mathematical treatment. Brain responses to external stimuli, such as 

movies, are broadly similar across individuals after anatomical alignment of cortical features 

and show much stronger similarity after the information contained in idiosyncratic fine-

grained patterns is projected into a common model information space using hyperalignment 

(Guntupalli et al., 2016, 2018; Hasson et al., 2004, 2010; Haxby et al., 2011, 2020; 

Nastase et al., 2019). A substantial amount of an individual’s responses can be explained by 

these commonalities. Still, individuals differ from the common space and from each other, 

even though these differences are smaller in scale than the commonalities (Feilong et al., 

2018). Therefore, it is critical to ensure that our model captures the idiosyncrasies of each 

individual’s brain functional organization, as well as the shared responses across individuals.

The goal of the INT model is to re-represent the brain data matrices B(p) acquired 

for each individual in a way that captures precise, individualized vertex-level functional 

architecture and supports out-of-sample prediction across both individuals and stimuli. First, 

we construct a common functional template M across all training participants to serve as 

a target for functional alignment based on all training participants’ data using a searchlight-

based algorithm. Next, we estimate a linear transformation W(p) for each participant, using 

ensemble ridge regression, that maps between their idiosyncratic functional architecture 

and the functional template M. Unlike previous implementations of hyperalignment that 

employed Procrustes-based rotations to resolve topographic idiosyncrasies while preserving 
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representational geometry, here we estimate a linear transformation that captures individual 

differences in both representational geometry and cortical topography. Finally, we convert 

the model-estimated brain data, MW(p), into a more compact shared stimulus matrix S, 

with orthogonal feature dimensions, and an individualized tuning matrix T(p) (Fig. 1). 

This decomposition factors the stimulus-specific temporal structure of the movie into S, 

represented as a collection of basis functional profiles shared across vertices and individuals. 

The individual-specific tuning matrices T(p) can be estimated with independent data using 

different stimuli. The T(p) matrices capture individual differences in functional tuning—

modeling idiosyncrasies in both representational geometry and cortical topography.

2.2. Modeling individualized brain functional organization

To assess how well our model captures individual-specific brain functional organization, 

we evaluated the within-subject similarities and between-subject similarities of the modeled 

tuning matrices (T). For each of the n participants, we divided the movie data into two parts, 

and computed a tuning matrix independently for each movie part. Therefore, we obtained 

estimates of n tuning matrices based on the first part of the movie, and an independent 

set of n estimated tuning matrices based on the second part. Then, we computed an n × 

n matrix of cross-movie-part similarities, where each row corresponds to a tuning matrix 

based on the first part, and each column corresponds to a tuning matrix based on the second 

part. Each entry in the matrix quantifies the cross-movie-part similarity of tuning matrices 

within-subject (diagonal entries) and between-subject (off-diagonal entries) (Fig. 2A). For 

both datasets, the similarity matrix had a clear diagonal, indicating that the within-subject 

similarities were much higher than the between-subject similarities. When all the tuning 

matrices were projected to a 2-D plane using multi-dimensional scaling (MDS), matrices 

from the same participant were close together, whereas matrices from different participants 

were clearly separated (Fig. 2B).

For every tuning matrix, within-subject similarities (Forrest: r = 0.798 ± 0.044 [mean ± SD]; 

Raiders: r = 0.778 ± 0.076) were higher than between-subject similarities (Forrest: r = 0.542 

± 0.037; Raiders: r = 0.503 ± 0.057) (Fig. 2C). Simple nearest-neighbor identification of 

participants based on their tuning matrices performs at 100% accuracy. To better assess the 

distinctiveness of each tuning matrix, we computed a distinctiveness index based on Cohen’s 

d (Fig. 2D). This distinctiveness index measures the difference between the within-subject 

similarity and between-subject similarities of a tuning matrix using the standard deviation 

of the distribution as a unit. For example, Cohen’s d = 5 means that the within-subject 

similarity is 5 standard deviations greater than the average between-subject similarity. On 

average across participants, the distinctiveness index was 12.92 for the Forrest dataset, and 

9.67 for the Raiders dataset, indicating that the individual-specific tuning matrices were 

highly distinctive. The distinctiveness index was computed based on Fisher-transformed 

correlation similarities, which approximately follow a normal distribution. Therefore, the 

identification error rate can be estimated based on the distinctiveness index using the 

cumulative distribution function of the distribution, which was 1.73 × 10−38 for d = 12.92, 

and 2.1 × 10−22 for d = 9.67. These small identification error rates make the INT model a 

useful method for individuation in addition to functional connectivity (Finn et al., 2015) and 

forensic DNA analysis (Kloosterman et al., 2014).
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The results so far are based on the entire tuning matrix, which comprises response tuning 

functions of all cortical vertices. Which part of the brain has the most distinctive responses 

across individuals? To answer the question, we performed a searchlight analysis with a 

20 mm radius and computed the average distinctiveness index across participants for each 

searchlight (Fig. 2E). Extensive occipital, temporal, and lateral prefrontal cortices showed 

high distinctiveness, with estimates of Cohen’s d exceeding 10 in lateral and ventral 

occipital and temporal cortices. Even in brain regions that do not respond strongly to 

external stimuli, such as medial prefrontal cortex, our model can still capture idiosyncratic 

response tuning functions.

To summarize, our model of brain functional organization is highly specific to each 

individual. For both datasets, within-subject similarities of modeled tuning matrices were 

several standard deviations higher than between-subject similarities. Our model also 

captures idiosyncrasies in local response tuning functions throughout the cortex, excluding 

somatosensory and motor regions. Individual differences were most prominent in occipital 

and temporal regions, and reliable individual differences were also found in parietal and 

prefrontal regions.

2.3. Predicting category-selectivity and retinotopic maps

To assess whether the modeled tuning matrix accurately reflects a participant’s brain 

functional organization, we examined to what extent it can predict brain responses to 

new stimuli. Specifically, we examined whether our model trained with movie data could 

accurately predict category-selectivity maps and retinotopic maps in a leave-one-subject-out 

cross-validation analysis.

2.3.1. Predicting category-selectivity maps—Both the Forrest dataset and the 

Raiders dataset had 4 object category localizer runs, which were based on static images 

for Forrest, and dynamic videos for Raiders. Taking the “faces” category as an example, we 

computed a face-selectivity map for each participant and each run, which was the contrast 

between faces and all other categories. Due to measurement noise, the four maps generated 

for each individual participant (one for each run) differ from one another (Fig. 3B and 3C 

bottom rows). We averaged the four maps for each participant to reduce noise and used the 

average map as the localizer-based map for that participant. Based on the similarity between 

these four maps, we computed the Cronbach’s alpha coefficient for each participant, which 

estimates the reliability of the average map. That is, if we were to scan the participant for 

another four localizer runs and correlate the new average map with the current average map, 

the expected correlation would be Cronbach’s alpha.

For each cross-validation fold, we divide the data into n−1 training participants and a 

test participant. To estimate the stimulus descriptors for the target object category (e.g., 

S(faces)), we trained a regression model to predict the localizer-based maps for the training 

participants (dependent variables) from their tuning matrices (T) (independent variables). 

The resultant S(faces) vector contains the coefficients derived from the regression model. 

T was estimated from the independent movie data for each participant and applied to this 

analysis. Then, we computed the product of the S(faces) vector of coefficients and the test 
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participant’s tuning matrix (T) to estimate the test participant’s face-selectivity map. We 

evaluated the quality of this predicted localizer map by computing the correlation between 

the model-based map and the test participant’s actual localizer map based on their own 

localizer data.

For both datasets, the localizer-based and model-predicted face-selectivity maps were highly 

correlated (Forrest: r = 0.618 ± 0.089 [mean ± SD], Raiders: r = 0.716 ± 0.074), and the 

correlations were higher than our previous state-of-the-art hyperalignment model with the 

same dataset (Jiahui et al., 2020). Across all participants, the average Cronbach’s alpha was 

0.606 ± 0.126 for Forrest, and 0.764 ± 0.089 for Raiders. For approximately a third of the 

participants (Forrest: 6 out of 15, 40%; Raiders: 6 out of 20, 30%), the correlation exceeded 

the Cronbach’s alpha of localizer-based maps. In other words, for these participants, the 

predicted maps based on our model were more accurate than the maps based on a typical 

localizer scanning session comprising four runs.

Besides the high accuracy, the model-predicted maps were also highly specific to each 

individual (See Fig. 3B and 3C for examples). The correlation between one participant’s 

localizer-based map and another participant’s model-predicted map (orange circles in Fig. 

3D; Forrest: 0.337 ± 0.071; Raiders: 0.384 ± 0.062) was always lower than the correlation 

with own model-predicted map (green circles in Fig. 3D). This indicates that our model 

accurately predicts the idiosyncratic topographies of each participant’s category-selectivity 

map. See Supplementary Figs. S8 and S9 for measured and predicted face-selectivity maps 

for every participant.

We replicated our analysis for all other categories and found similar results (Fig. 3E; Table 

1). For all object categories and both datasets, the within-subject similarity (correlation 

between own localizer-based map and own model-predicted map) was numerically similar 

to Cronbach’s alpha and much larger than between-subject similarities (correlation between 

each participant’s localizer-based map and others’ model-predicted maps).

2.3.2. Predicting retinotopic maps—We examined whether our model can accurately 

predict eccentricity and polar angle maps based on the retinotopic data of the Forrest dataset. 

Similar to category-selectivity maps, we trained our model using the movie data and used it 

to predict retinotopic maps based on leave-one-subject-out cross-validation. Note that each 

retinotopic map, eccentricity and polar angle, has two components: an amplitude map, which 

measures to what extent a cortical vertex responds to retinotopic stimuli, and a phase map, 

where the phase is associated with eccentricity or polar angle. For the eccentricity map, the 

phase is 0° for the center of the visual field, and 360° for the most peripheral part. For the 

polar angle map, the phase is 0° and 180° for the upper and lower vertical meridians, and 

90° and 270° for the right and left horizontal meridians.

The model-predicted maps for each participant resemble the corresponding localizer-based 

maps, and they capture the idiosyncratic features of each map well (Fig. 4A and 4B). To 

quantify these similarities, we assessed the similarity of amplitude maps and phase maps 

separately.
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Each retinotopic map (e.g., an eccentricity map) was based on a standard univariate analysis 

of two runs where the stimuli were displayed in reversed order (e.g., expanding rings and 

contracting rings), and an amplitude map and a phase map were obtained from each run. 

For each participant, we compared the similarity of these two amplitude maps and estimated 

Cronbach’s alpha. The mean (± standard deviation) for Cronbach’s alpha was 0.701 ± 0.047 

for the eccentricity map, and 0.663 ± 0.069 for the polar angle map. We also compared 

the similarity between the localizer-based amplitude map (average of the two runs) and 

the model-predicted map. On average across all participants, the similarity was 0.774 ± 

0.027 for the eccentricity map, and 0.746 ± 0.049 for the polar angle map. Note that for 

every participant the similarity was higher than Cronbach’s alpha, which means the model-

predicted amplitude map is more accurate than the localizer-based map. The similarity 

between a participant’s localizer-based map with the participant’s own model-predicted map 

is higher than with others’ model-predicted maps (eccentricity: 0.682 ± 0.029; polar angle: 

0.635 ± 0.054), indicating that the model-predicted amplitude map is individual-specific.

To assess the quality of the phase maps, we computed the absolute value of the phase 

difference in early visual areas (V1, V2, V3, and V4; (Glasser et al., 2016)) between two 

retinotopic runs, between the localizer-based map and the participant’s own model-predicted 

map, and between one participant’s localizer-based map and others’ model-predicted maps. 

Note that the phase is circular, and thus the difference between 360° and 1° is the same as 1° 

and 2°. On average across participants, the average phase difference between a participant’s 

localizer-based and model-predicted maps was 39.1° ± 4.8° for eccentricity maps, and 41.5° 

± 6.0° for polar angle maps. This difference was smaller than the difference between two 

localizer runs (eccentricity: 43.7° ± 6.0°; polar angle: 48.2° ± 7.7°) and the difference with 

others’ model-predicted maps (eccentricity: 53.9° ± 6.9°; polar angle: 52.3° ± 4.7°). The 

average phase difference for random data would be 90°.

For both category-selectivity maps and retinotopic maps, our model can accurately predict 

individualized maps with high fidelity and high specificity. See Supplementary Fig. S10 

for measured and predicted retinotopic maps for every participant. The quality of the 

model-predicted maps was similar to or higher than that of maps derived from actual 

localizer data. These results demonstrate that the modeled response tuning functions are 

not only individualized and reliable across independent data, but also can accurately predict 

responses to new stimuli.

2.4. Predicting brain responses to the movie

The previous analyses show that our model accurately predicts brain responses for category-

selectivity and retinotopic maps. These maps reflect coarse-grained functional topographies 

of the brain: they are relatively spatially smooth, and neighboring vertices on the cortex 

(especially vertices in the same brain region) have similar category-selectivity or adjacent 

receptive fields. In the analysis below, we examine whether our model can accurately predict 

fine-grained functional topographies; that is, the vertex-by-vertex spatial patterns which vary 

substantially even within a brain region. Rich visual, auditory, and social information is 

encoded in fine-grained spatial patterns of response (Haxby et al., 2014). Specifically, we 

trained our model using half of the movie data and predicted the other half.
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We used a leave-one-subject-out cross-validation to evaluate the performance of our INT 

model. We derived the tuning matrix T of the test participant based on the first half of the 

participant’s movie data, and combined it with S(2) (the part of S for the second part of the 

movie, derived from the training participants’ data) to predict the test participant’s responses 

to the second part of the movie. The response pattern at each time point (i.e., TR) of the 

movie comprises 18,742 values, one for each cortical vertex. Similar to our previous work 

(Guntupalli et al., 2016), we trained a principal component analysis (PCA) based on the first 

half of the movie to reduce dimensionality from 18,742 vertices to a few hundred principal 

components (PCs) and projected responses to the other half of the movie onto these PCs. 

Analysis of whole-brain spatial patterns of response was based on these normalized PCs.

The model-predicted response patterns for the movie were highly specific to both the time 

point and the participant. Note that these model-predicted patterns are based on other 

participants’ neural responses projected into the native, fine-grained cortical topography of 

the left-out test participant’s brain. The predicted pattern for a certain time point for a 

left-out test participant’s brain was much more similar to the measured response pattern to 

the same time point in that participant’s brain (Fig. 5A diagonal) than responses to other 

time points (Fig. 5A off-diagonal). The average correlation similarity between predicted 

and measured response patterns for the same time point was 0.356 for the Forrest dataset, 

and 0.408 for the Raiders dataset, whereas the average similarity between predicted and 

measured patterns from different time points was close to 0 for both datasets. For the same 

time point, the measured response patterns were more similar to predicted patterns in a 

participant’s native space than to predicted patterns in other participants’ native spaces (Fig. 

5B diagonal). The average similarity of the same time point for different participants was 

0.211 for the Forrest dataset, and 0.209 for the Raiders dataset (Fig. 5C).

Considering the similarity between measured and predicted response patterns, we assessed 

whether we could classify which time point of the movie the participant was viewing based 

on these patterns. We performed the classification analysis using a one-nearest-neighbor 

classifier in two different ways. First, we used binary classification (2-alternative forced 

choice); that is, we compared the measured response pattern for one time point with the 

predicted patterns for the same single time point paired with each other time point to 

determine which pair is more similar, and then averaged across all pairs, resulting in a 

chance accuracy of 50%. Second, we used multiclass classification; that is, whether the 

similarity with the same time point is higher than with all other time points. The number 

of time points was 1818 for Forrest and 1680 for Raiders, resulting in a multiclass chance 

accuracy less than 0.1% for both datasets. We varied the number of PCs used in the analysis 

from 10 to 300 with an increment of 10 and repeated the analysis at each number of PCs. 

For binary classification, the accuracy peaked at 99.0% for Forrest (180 PCs) and 98.6% for 

Raiders (250 PCs) (Fig. 5D). For multiclass classification, the peak accuracy was 51.9% for 

Forrest (190 PCs) and 44.8% for Raiders (220 PCs) (Fig. 5E). Note that these classification 

results are robust against the number of PCs used, and the accuracy was stable with 100–300 

PCs for both approaches and both datasets.

The response patterns of different participants’ share some similarities (Fig. 5C, dark 

orange), and we were able to classify which time point one participant was viewing based 
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on the predicted patterns in another participants’ native space to some extent. For the 

binary classification analysis, the peak accuracy was 95.2% for Forrest (50 PCs) and 94.1% 

for Raiders (60 PCs) (Fig. 5D, orange lines). For the multiclass classification analysis, 

the peak accuracy was 20.1% for Forrest (90 PCs) and 15.8% for Raiders (80 PCs) 

(Fig. 5E, orange lines). Note that the classification accuracy for mismatching participants 

drops dramatically after peaking at 50–90 PCs, whereas the classification accuracy for the 

matching participant monotonically improves until the number of PCs is roughly 200. This 

suggests that a considerable amount of the information in our model-predicted response 

patterns are specific to the test participant.

To localize cortical areas where the fine-grained patterns are most accurately predicted, we 

performed a searchlight analysis (20 mm radius) with the binary classification approach. 

Due to the limited number of vertices in each searchlight, we performed the classification 

analysis without dimensionality reduction. We found that the accuracy was highest for 

visual, auditory, and corresponding association cortices (Fig. 5F and G) with significant 

classification across almost all of the cortex.

2.5. Model performance with less data

The datasets used so far in this work comprise relatively long-duration movie-watching 

fMRI acquisitions (Forrest: 120 minutes; Raiders: 56 minutes), which may not be feasible 

for every fMRI experiment due to limited scanning resources. How well does our INT 

model work with smaller amounts of movie data? To address the question, we systematically 

manipulated the amount of movie data for the test participant and assessed our model 

performance for key benchmarking indices. For the Forrest dataset, the durations were 5, 10, 

15, 20, 30, 40, 50, 60, and 120 minutes; for the Raiders dataset, the durations were 5, 10, 15, 

20, 28, and 56 minutes. Depending on the analysis, up to half of the movie data (60 and 28 

minutes, respectively) or the entire movie dataset was used.

With more movie data used for estimating a tuning matrix, the distinctiveness of that 

modeled tuning matrix increased monotonically (Fig. 6A). With 10 minutes or more movie 

data, the average Cohen’s d was more than 6, which means within-subject similarity of 

tuning matrices exceeded between-subject similarities by more than 6 standard deviations on 

average. Given that Fisher-transformed correlation similarities are approximately normally 

distributed, the chance of a between-subject similarity exceeding the within-subject 

similarity was less than 10−9. In other words, if we were to identify an average individual 

using the tuning matrix based on 10 minutes of movie data, the error rate would be less than 

10−9.

We observed a similar effect of data volume on functional distinctiveness in local brain areas 

based on a searchlight analysis (Fig. 6B). The distinctiveness based on movie responses 

differs inherently across brain regions and is highest in temporal and occipital regions and 

lowest in somatosensory and motor regions (Fig. 2E). Therefore, instead of a simple average 

value, we assessed key percentiles of the distribution. Specifically, we assessed the effect of 

data volume on the 50th, 80th, 90th, 95th, and 99th percentiles of the distribution, representing 

local brain areas with low to high distinctiveness. With 15 minutes of movie data, the 
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Cohen’s d for the 95th percentile was 5.83 for the Forrest dataset and 7.19 for the Raiders 
dataset.

The prediction performance for face-selectivity maps also increases with more movie 

data (Fig. 6C). For the Forrest dataset, the correlation between localizer-based and model-

predicted maps was 0.557, 0.592, 0.610, and 0.618 for 15, 30, 60, and 120 minutes of movie 

data, respectively. For the Raiders dataset, the similarity was 0.684, 0.702, and 0.716 for 

15, 28, and 56 minutes of data, respectively. Note that for the Forrest dataset, the similarity 

sometimes exceeded Cronbach’s alpha, which means the model-predicted map is more 

accurate than a map based on four localizer runs (21 minutes). The quality of localizer-based 

maps increases with more localizer data, which can be estimated using the Spearman–Brown 

prediction formula (Brown, 1910; Spearman, 1910). Based on Cronbach’s alpha and the 

Spearman–Brown prediction formula, we estimated the amount of localizer data needed to 

achieve similar accuracy as our model. For the Forrest dataset, the maps predicted by 15, 30, 

60, and 120 minutes of movie data were as accurate as 17.0, 22.4, 26.2, and 30.1 minutes 

of localizer data, respectively. For the Raiders dataset, the maps predicted by 15, 28, and 

56 minutes of movie data were as accurate as 9.7, 11.4, and 12.8 minutes of localizer data, 

respectively.

Note that brain responses to movies contain richer information than traditional experimental 

paradigms. Besides the face-selectivity map, many different maps can be estimated using 

the same movie data, such as retinotopic maps. With 15, 30, 60, and 120 minutes of Forrest 
data, the correlations between localizer-based and model-predicted amplitude maps were 

0.744, 0.759, 0.766, and 0.774, respectively, for the eccentricity map; and 0.717, 0.732, 

0.740, and 0.746, respectively, for the polar angle map (Fig. 6D). These similarities were 

much higher than the corresponding Cronbach’s alpha values. Based on the Spearman–

Brown prediction formula, the quality of the predicted maps was equivalent to 22.1, 27.7, 

31.4, and 35.8 minutes of retinotopic scans, respectively.

The prediction performance for fine-grained response patterns to the movie also increases 

with the amount of movie data (Fig. 6E). For the Forrest dataset, the accuracy for binary 

time point classification was 98.1%, 98.6%, and 98.9% for 15, 30, and 60 minutes of 

training movie data, respectively. For multiclass classification, the accuracy was 37.3%, 

44.8%, and 50.3%, respectively. Similar results were observed for the Raiders dataset, where 

the binary classification accuracy was 98.1% and 98.5% for 15 and 28 minutes of training 

movie data, respectively, and the multiclass classification accuracy was 38.8% and 43.1%, 

respectively.

To sum up, the performance of our model grows continuously with more data. For certain 

tasks (e.g., individual identification, predicting retinotopic maps), 10 to 20 minutes of movie 

data might be sufficient to achieve satisfying performance. Additional data will further 

improve the performance of our model, at least up to the typical duration of a feature film 

(2 hours). Besides the amount of data for the test participant, using more data to build the 

template also increases the performance of these tasks (Supplementary Fig. S7).
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3. DISCUSSION

In this work, we present an individualized model of fine-grained brain functional 

organization. Through a series of analyses, we demonstrate that (a) the individualized tuning 

functions recovered by our model for each person are highly reliable across independent 

data; (b) our model can accurately predict an individual’s topographic brain responses to 

new stimuli, such as object categories and retinotopic localizers; (c) our model accurately 

predicts fine-grained response patterns to movies, which can be used to distinguish different 

time points (TRs) of the movie; and (d) the performance of our model continuously 

improves with more training data. Besides high reliability and high prediction accuracy, our 

model also shows high specificity—the predicted responses tuned to a given individual are 

much more similar to the actual responses for that person than the predicted responses tuned 

to other individuals. Different from previous area-level individualized models (Gordon, 

Laumann, Adeyemo, Gilmore, et al., 2017; Harrison et al., 2015; Kong et al., 2019; Wang et 

al., 2015; see Huth et al., 2016 for fine-tuning area-level models to fit individual vertices), 

the INT model is an individualized model of brain function that offers vertex-level (voxel-

level for volumetric data) spatial resolution. That is, our INT model provides out-of-sample 

generalization to new participants at the quality and spatial resolution of within-subject data 

acquisition.

Like most biological systems, the functional architecture of the brain is “degenerate,” 

such that roughly the same information can be instantiated in structurally different ways 

across different brains (Edelman & Gally, 2001; Haxby et al., 2020). In this work, we 

used searchlight hyperalignment algorithms (Guntupalli et al., 2016) to create a functional 

template of brain responses based on the training participants. The template is a common, 

high-dimensional response space, and its column vectors (response time series of features) 

span the space of response time series across vertices and participants. We took advantage 

of this property and created a set of basis vectors, so that we could express the response 

time series of each vertex and each participant as a linear combination of the same set of 

basis vectors. These weights offer a way to directly compare the functional architecture 

of different participants and different vertices. Based on these weights, we created the 

individualized tuning matrices that describe the brain functional organization of each 

participant, which can be used to accurately predict the participant’s idiosyncratic responses 

to various stimuli.

The present model provides a theoretical advance over previous hyperalignment algorithms 

by capturing not only topographic idiosyncrasies, but also inter-individual differences 

in representational geometry. The first component of the model introduces a new 

hyperalignment algorithm that we refer to as warp hyperalignment (WHA). WHA warps 

the representational geometry of one participant (or the template) to match the unique 

representational geometry of another participant, and thus it captures both topographic 

idiosyncrasies and representational idiosyncrasies. The second component of the model 

derives individualized tuning matrices in each participant’s native cortical topography from 

the WHA model, which we refer to as the individualized neural tuning (INT) model. In 

contrast to our earlier hyperalignment algorithms for creating a common model information 

space with individual transformation matrices calculated using the Procrustes algorithm 
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(which preserves representational geometry) (Busch et al., 2021; Feilong et al., 2018, 2021; 

Guntupalli et al., 2016, 2018; Haxby et al., 2001, 2020; Jiahui et al., 2020), WHA calculates 

transformations using ensemble regularized regression that allows for individualized 

representational geometries. Compared to classic Procrustes hyperalignment, the INT model 

based on WHA can better predict individualized response time series, representational 

geometry, category-selectivity maps, retinotopic maps, and response patterns to the movie 

(Supplementary Figs. S1–S6). WHA also introduces a new way to calculate a template 

matrix M in a single step that more accurately reflects the central tendency for cortical 

topography and is not biased towards the topography of a “reference brain.” The common 

model space in our previous models, M, had as many dimensions as cortical vertices 

(approximately 20,000 to 60,000). In the INT model, a change of basis from M to S 
recasts the common model space into a smaller orthogonal basis with approximately 3000 

dimensions. In our previous algorithms, we studied individual differences in responses 

and connectivity as residuals around shared content in the model space, M. In the INT 

model, by contrast, we model individual differences in the transformation matrices, T, which 

capture individual differences in both content and cortical spatial topography of functional 

patterns in participants’ native cortical topographies. Because individual differences in 

representational geometry are now contained in the individual transformation matrices, T, 

the new model space, S, is a neural data-driven stimulus matrix that is not confounded with 

individual differences in representational geometry. Moreover, comparable estimates of T 
can be calculated from responses to different stimuli, giving the INT model more flexibility 

in its application, as well as greater precision. In our previous algorithms, we performed 

between-subject classification of response patterns after projecting all participants’ data into 

the common model space, M. In the INT model, we perform between-subject classification 

by comparing each test participant’s response pattern in their native space to response 

patterns from other participants projected into that test participant’s native space.

The INT model separates neural responses into stimulus-related information and stimulus-

general neural tuning, which can be estimated separately. The stimulus-related information 

is represented as the stimulus matrix S, which is derived based on the neural responses 

of the training participants when the functional template is created. After the functional 

template has been created, descriptors for additional stimuli can be estimated based on a 

subset of training participants for whom responses to the new stimuli are available. These 

descriptors for new stimuli extend the original stimulus matrix S, and they can be used 

to predict individualized responses to the new stimuli for the left-out test participants. For 

example, we built the functional template based on responses to the movie, estimated the 

stimulus descriptors for object categories and retinotopic localizers, and used these stimulus 

descriptors to estimate the category selectivity maps and retinotopic maps of left-out test 

participants. In other words, the original stimulus matrix S can be extended based on a 

subset of participants, provided that we have their neural responses to the new stimuli and 

their tuning matrices. On the other hand, the tuning matrix T of a new participant, which 

represents stimulus-general neural tuning, can be accurately estimated with several minutes 

of movie data (Fig. 6). Therefore, our INT model makes it possible to accurately predict 

individualized, out-of-sample responses to a wide range of stimuli based on a rich normative 

functional template and a relatively small amount of fMRI data from a new participant.
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A major objective of studying individual differences in brain functional organization is to 

build biomarkers that are associated with cognition, behavior, and disorders. Our model 

focuses on semi-shared components of brain functional organization and is ideal for this 

purpose. By “semi-shared” we mean that the same component exists in multiple brains but 

differs in amplitude and topography. These reliable variations across individuals may covary 

with phenotypes of interest and provide accurate biomarkers. A fully shared component, 

which is identical across brains, cannot covary with other variables by definition. A fully 

idiosyncratic component that only exists in one brain, on the other hand, cannot be used 

to build generalizable models. For example, a specific component that only exists in one 

schizophrenic brain may be of interest for a case study but cannot be used to diagnose other 

schizophrenic individuals because it does not exist in other brains. Our model focuses on 

how the same set of components are instantiated in different forms across the functional 

organization of different brains. Given the large number of components (over 3000 in 

the current implementation) and observation that they vary across brains in a variety of 

ways, these semi-shared components provide a promising basis for developing biomarkers. 

Similar to our previous work (Feilong et al., 2018), brain regions that have the most shared 

and synchronized responses (Guntupalli et al., 2016; Hasson et al., 2004, 2010) are also 

the regions showing the most reliable differences, suggesting the great potential of using 

semi-shared components to study individual differences.

In this work, we evaluated our model using two different movie datasets, both of which 

yielded highly similar results. The Forrest dataset was collected using a 3 T Philips Achieva 

dStream MRI scanner in Germany, with German-language audio, a TR of 2 seconds, and 

a spatial resolution of 3 mm. The Raiders dataset was collected using a 3 T Siemens 

Magnetom Prisma MRI scanner in the US, with English-language audio, a simultaneous 

multi-slice acceleration factor of 4, a TR of 1 second, and a spatial resolution of 2.5 

mm. Despite these differences, our model worked well for both datasets, suggesting it is 

robust over differences in scan parameters and other details. Recently, many large-scale 

neuroimaging datasets have become openly available (Alexander et al., 2017; Horien 

et al., 2020; Nastase et al., 2021; Snoek et al., 2021; Taylor et al., 2017), and many 

have naturalistic movie-viewing sessions similar to our datasets. The synergy between 

our individualized model of brain function and large-scale neuroimaging datasets offers 

a great opportunity to study individual differences in brain functional organization and their 

correlates with various phenotypes.

In this work, we focused on neural response profiles to the movie. However, in theory, the 

algorithm itself can be applied to any kind of data matrices. In our previous hyperalignment 

algorithms, the searchlight procedure originally developed based on response profiles (RHA) 

(Feilong et al., 2018; Guntupalli et al., 2016; Haxby et al., 2020; Jiahui et al., 2020) has 

been applied successfully to connectivity profiles (CHA) (Feilong et al., 2021; Guntupalli 

et al., 2018; Nastase et al., 2020) and a hybrid of both (H2A) (Busch et al., 2021); and 

the original algorithm developed based on fMRI data of humans (Haxby et al., 2011) has 

been applied successfully to electrophysiology recording data of rodent neurons (Chen et al., 

2021). Generalizability of models trained on responses to movies is satisfactory for much of 

cortex, and these models have been shown to work for both visual information (Guntupalli et 

al., 2016; Haxby et al., 2011, 2020; Jiahui et al., 2020) and high-level semantic information, 
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such as familiarity for a face (Visconti di Oleggio Castello et al., 2021). However, it is 

unknown whether these models also generalize to brain activations that are less time-locked 

to content of the movie or are often absent during movie-watching; for example, brain 

activations related to moving one’s own body or solving math problems. Additional data are 

needed to assess the generalizability of INT models trained on movie data in these scenarios, 

and additional functional indices, such as functional connectivity, may help increase the 

generalizability of the model in these cases. We leave it to future works to assess the 

generalizability of the INT model to other functional profiles, modalities, and species. 

Different modalities may highlight different aspects of individual differences. For example, 

individual differences in association cortices are more prominent than other areas based 

on functional connectivity (Mueller et al., 2013), whereas regions that have synchronized 

responses across individuals exhibit more individual differences than other regions based 

on responses to the movie (Feilong et al., 2018). Future work that combines multiple 

modalities might provide a more comprehensive description of individual differences in 

brain functional architecture, and potentially provide better models of brain–behavior 

associations.

4. METHODS

4.1. Overview of the INT model

The fine-grained functional architecture of the brain encodes rich information (Haxby et al., 

2001, 2014, 2020) and affords reliable measures of individual differences in brain functional 

organization that are predictive of differences in behavior (Feilong et al., 2018, 2021). In 

this work, we present the individualized neural tuning (INT) model, an individualized model 

of fine-grained brain functional organization, to better model these differences. The INT 

model has three key features. First, it has fine spatial granularity, which affords access to 

the rich information encoded in vertex-by-vertex (or voxel-by-voxel) patterns. Second, it 

models each individual’s idiosyncratic functional organization as well as that individual’s 

topographic projection onto the cortex, and thus it can be used to study both functional 

differences and topographic differences. Third, it models the individualized response tuning 

of cortical vertices in a way that generalizes across stimuli, and therefore the model 

parameters can be estimated from different stimuli, such as different parts of a movie that 

have different durations. These three features make the INT model a powerful tool to study 

individual differences in fine-grained functional organization of the brain.

The INT model is based on the conceptual framework of hyperalignment (Guntupalli 

et al., 2016, 2018; Haxby et al., 2011, 2020). Hyperalignment models the fine-grained 

functional organization of each brain as a high-dimensional feature space, and it creates 

a high-dimensional common space based on the shared functional profiles of a group of 

participants. Hyperalignment also provides a way to transform between different spaces 

using a high-dimensional rotation, which can be used to project the data from the common 

space to a participant’s native anatomical space, from a participant’s space to the common 

space, or from a participant’s space to another’s (Jiahui et al., 2020). This high-dimensional 

rotation resolves topographic differences, which is critical to study individual differences in 

fine-grained functional organizations (Feilong et al., 2018, 2021).
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The INT model starts with creating a functional template M (a matrix of shape t × 

v) based on the data of the training participants (n−1 for leave-one-subject-out cross-

validation), which corresponds to the hyperalignment common space. The template 

M has the same shape as the data matrix B of a participant, and its function and 

topographies are representative of the group of participants used to create the template. 

The data matrix B(p) of the participant p is modeled as a matrix multiplication of the 

shared functional template M and an idiosyncratic linear transformation W(p) (v × v). 

We use a new hyperalignment algorithm (“warp hyperalignment”, WHA) to derive the 

transformation instead of Procrustes-based hyperalignment, so that the transformation is a 

linear transformation instead of an improper rotation. An improper rotation (rotation and 

reflection) changes how the information is encoded on the cortex (“where”) but it does 

not change the content information (“what”), and thus it only accounts for topographic 

differences across individuals. A linear transformation allows scaling and shearing, which 

also warp the representational geometry of the template to model the idiosyncratic 

representational geometry of each participant, and therefore it accounts for both topographic 

(“where”) and functional (“what”) differences.

With warp hyperalignment, we obtain a modeled data matrix B(p), which are the brain 

responses that can be accounted for by the functional template and the linear transformation 

(i.e., MW(p)). To derive a measure of neural response tuning that generalizes across stimuli, 

we decompose B(p) into two matrices: a stimulus matrix S (t × k) shared by all participants, 

and a tuning matrix T(p) (k × v) that is specific to the participant p. With the decomposition, 

the temporal information, such as contents of a movie over time, is factored into S. In the 

tuning matrix T(p), the response tuning function of each cortical vertex is depicted using a 

column vector of k elements, which is the same for all stimuli.

To sum up, with the INT model we use the tuning matrix T(p) to model each 

participant’s individualized functional organization. The tuning matrix has a fine-grained 

spatial granularity, models the participant’s topographic and functional idiosyncrasies, and 

generalizes across stimuli. In the next few sections, we describe in detail the steps we 

used to derive the tuning matrices and to benchmark the reliability, validity, accuracy, and 

specificity of our INT model.

4.2. Building the functional template

In each cross-validation fold, we built a functional template based on the training 

participants and modeled each test participant’s data matrix as the linearly transformed 

template in a high-dimensional space. Both the data matrix and the functional template 

have the same shape t × v; that is, the number of time points by the number of cortical 

vertices. The template was created in a way that its functional properties—both in terms 

of representational geometry and cortical topography—are representative of the training 

participants (Fig. 7).

4.2.1. Searchlight-based algorithm—We built the template using a searchlight-based 

algorithm. For each searchlight, we built a local template based on all vertices within 

the searchlight. We then combined all the local templates into a whole-brain template. 
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Each local template contains modeled response profiles of vertices in the corresponding 

searchlight. Each vertex is included in multiple searchlights, and each searchlight and the 

corresponding local template offers a modeled response profile for the vertex. We combined 

these modeled response profiles of the same vertex into a single response profile for the 

vertex, which is the vertex’s response profile in the whole-brain template. In our previous 

algorithms, we combined local searchlight templates by adding together the modeled 

response profiles of the vertex to form the final response profile of the vertex (Guntupalli 

et al., 2016, 2018). In this work, we instead used a distance-based weighted average instead 

of summation. Specifically, the weight was computed as r − d
r , where r is the searchlight 

radius (20 mm), and d (0 <= d <= r) is the distance between the vertex and the center of 

the searchlight. In other words, the weight is 1 when the center of the searchlight is the 

vertex itself, and close to 0 when the vertex is close to the boundary of the searchlight. This 

improved procedure makes the searchlights closer to the vertex contribute more to the final 

modeled response profile of the vertex (due to weighting local templates), and the scale of 

the modeled response profile for a vertex similar to the actual response profile for that vertex 

(due to using averaging instead of summation).

4.2.2. Building local templates—In order to estimate the INT model, we must first 

create a functional template capturing the consensus functional organization (which we refer 

to as M). Within each searchlight, we created a local template using a PCA-Procrustes 

algorithm, and the matrix shape of the local template is the same as a local data matrix (i.e., 

the number of features is the same as the number of vertices in the searchlight, not the total 

number of vertices). First, we concatenated all training participants’ data matrices in the 

searchlight along the features dimension to form a group data matrix with n × v features; 

that is, the number of participants times the number of vertices in the searchlight. We then 

applied principal component analysis (PCA) to this concatenated data matrix. To keep the 

total variance the same for a single participant’s local data matrix and the local template, 

we divide the PC time series by n. Similar to our previous work (Haxby et al., 2011), here 

we chose to make the dimensionality of the local template the same as a single participant’s 

local data matrix, thus retaining the first v PCs and discarding the remaining. Note that the 

PCA is based on the data of all training participants, and thus the PCs summarize across all 

vertices and participants; each PC is a weighted sum of all vertices (in a given searchlight) 

across all training participants. The PCs capture the representational geometry for a given in 

searchlight in a way that is representative of the representational geometries of the training 

participants. In other words, the PCs provide a template that models the shared function of 

the searchlight.

The group-PCA approach creates a local template that is representative of the 

representational geometries of the training participants. However, the dimensions of this 

local template are PCs, which are optimized for their explained variance. For neuroscientific 

interpretability, it is desirable to map the PCs back to cortical vertices, so that the neural 

responses can be associated with topographic locations on the cortex instead of abstract 

PC dimensions. Moreover, it is also desired to have the local templates in vertex space for 

combining local templates to form a whole-brain template. Neighboring searchlights share 

some of the vertices, but their PCs do not necessarily have one-to-one correspondence. 
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Therefore, if all local templates are in the same vertex space, time series for the same 

vertex from different local templates can be averaged directly. For these reasons, for each 

searchlight, we derived a second local template, which is the first local template rotated 

from the PC space to a vertex space. The rotation was optimized so that the functional 

topographies of the second template are representative of those of the training participants, 

and the features of the second template can be interpreted as vertices.

We then used the orthogonal Procrustes algorithm to “align” the PCs to the training 

participants’ data, so that the functional topographies of the local template are also 

representative of the training participants. Mathematically, we want to find a rotation matrix 

R which minimizes the topographic differences without changing the information content.

R = argminR ∑
p = 1

n
∥ M(PC)R − B(p) ∥F

2

In this equation, M(PC) is the PC matrix, B(p) is the local data matrix of the p-th participant, 

n is the number of participants, and || ||F is the Frobenius norm.

To find the solution R, we applied the orthogonal Procrustes algorithm to concatenated data 

matrices. This time, we concatenated all training participants’ data along the samples (i.e., 

time points) dimension to form another group data matrix, where the number of rows is n × 

t; that is, the number of participants times the number of time points. We copied the template 

PC matrix n times and concatenated them in the same way, so that the concatenated PC 

matrix had the same shape as the concatenated group data matrix. We applied the orthogonal 

Procrustes algorithm to these two data matrices to get a rotation matrix R.

R = argminR

B(1)

⋮
B(n)

−
M(PC)

⋮
M(PC)

R
F

2

Note that the solution for this formula is the same as the previous one. However, because 

the matrices have been concatenated, the solution of the orthogonal Procrustes algorithm can 

be computed directly based on the singular value decomposition of the covariance matrix, 

which provides an analytical solution to the problem.

Similar to Procrustes-based hyperalignment algorithms, this rotation matrix R does not 

change the representational geometry or the information content in the data matrix. Instead, 

it changes the functional topographies so that one data matrix is “aligned” to another. In 

this case, a single rotation is estimated that best aligns the coordinate axes (i.e., PCs) of the 

template matrix and the coordinate axes (i.e., cortical vertices) of all participants, so that 

the functional topographies of the rotated template matrix maximally resemble those of the 

training participants. The final local template M is the PC matrix multiplied by the rotation 

matrix R: M = M(PC)R.
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In short, we used the PCA-Procrustes algorithm to create a local template for each 

searchlight, which is representative of the training participants both in terms of 

representational geometry and cortical topography. The PCA step ensures that the functional 

profiles and representational geometry of the local template are close to those of the training 

participants, and the orthogonal Procrustes step ensures that the topographical distribution of 

these functions on the cortex is also representative of the training participants. After iterating 

over all searchlights, the local templates were combined into a single whole-brain template 

using the distance-based weighted average method described above.

4.3. Modeling response tuning functions

We modeled each participant’s response data matrix B(p) as the template data matrix M 
multiplied by a linear transformation W(p), plus some noise E:

B(p) = B(p) + E = MW (p) + E

Unlike Procrustes-based hyperalignment (Haxby et al., 2011), in which the transformation 

matrix W(p) (often denoted as R) is a rigid improper rotation, the linear transformation 

W allows warping of representational geometry. Consequently, individual differences in 

representational geometry are embedded in the transformation matrices, W, rather than 

in the individual information projected into the model space, M. We name the new 

algorithm “warp hyperalignment” (WHA) to emphasize its capacity to warp representational 

geometries and to distinguish it from previous algorithms (Fig. 8). Compared to Procrustes 

hyperalignment, WHA captures individual differences in representational geometry and 

better predicts individualized responses to new stimuli (Supplementary Figs. S1–S6).

We computed the linear transformation W(p) using a searchlight-based algorithm, similar to 

the procedure we used to create the template M. That is, for each of the searchlights, we 

computed a local transformation, and these local transformations were combined using the 

distance-based weighted average (Fig. 9).

Typically, a model needs to be regularized to avoid overfitting and to increase 

its generalizability to new data. For the orthogonal Procrustes algorithm, the linear 

transformation W(p) is constrained to be orthogonal (i.e., an improper rotation in a high-

dimensional space), which can be considered as a strong regularization. In this work, we 

allowed scaling and shearing in the transformation, which models individual differences in 

function, such as representational geometry. We used two methods to avoid overfitting in 

model estimation. First, we used ridge regression with a regularization parameter of 103 

based on independent pilot data not presented here. Second, we used an ensemble method 

which we call k-fold bagging. That is, for each participant and each searchlight, we trained 

100 ridge regression models based on bootstrapped samples (bootstrapped time points; 

sampled with replacement), and we averaged the weights of these 100 models to serve as the 

weights for the final model (described in detail below).

4.3.1. Ensemble ridge regression models—We used ensemble learning (Zhou, 

2012) to improve the accuracy and generalizability of our models. Specifically, we adapted 
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the bootstrap aggregating (“bagging”) algorithm (Breiman, 1996) for our time series data. 

Bagging is commonly used to reduce model variance and avoid overfitting by averaging 

across models trained on bootstrapped samples. It also provides estimation of model 

performance on new data through out-of-bag cross-validation. During out-of-bag cross-

validation, the predicted value of a data point is the average prediction of models that 

were not trained with the time point (i.e., out-of-bag models). In this case, this data point 

serves as the test data and the other time points as training data. Typically, bootstrapped 

samples are randomly drawn with replacement from the original sample. A participant’s 

fMRI data (e.g., responses to movies) usually comprises hundreds or thousands of time 

points. With the classic bagging algorithm, it often happens that some time points are drawn 

by all bootstrapped samples, which makes them inappropriate for model evaluation using 

out-of-bag cross-validation (i.e., no out-of-bag models for these data points). To use as much 

data as possible for cross-validation, we augmented the classic bagging algorithm with a 

k-fold scheme (Fig. 10).

In each k-fold repetition, we first divide all time points randomly into k-folds. For a given 

fold, we set aside the data in that fold to serve as candidate test data, while data in the 

other k—1 folds serve as candidate training data. We then drew a bootstrapped sample from 

the candidate training data and used it to train a model. This procedure guarantees that the 

candidate test data can be used for model evaluation because they were not used in model 

training. Some candidate training data may not get chosen by the bootstrapped sample and 

these data also serve as test data for model evaluation. In other words, for each model, the 

actual test data include both candidate test data and the candidate training data not drawn by 

the bootstrapped sample. After an iteration over all k-folds, we obtained k trained models. 

For each data point, our resampling procedure ensures that at least one of the k models 

was not trained with the data point. In this work, we used k = 5 and repeated the k-fold 

scheme for 20 times, and thus the prediction for each data point was the average of at least 

20 out-of-bag models.

To account for temporal autocorrelation caused by the hemodynamic response function, 

we also introduced temporal “buffers” for out-of-bag cross-validation. That is, when we 

evaluate model performance on a certain time point, we exclude not only models trained 

with the time point itself, but also models trained with time points less than 10 seconds away 

from the time point used for evaluation. For example, for a 2 seconds TR length, when we 

evaluate model performance for the i-th TR, we exclude models trained with any of the 11 

TRs from i−5 to i + 5. To avoid removing too many buffer time points from the training 

data, we divided time points into groups by grouping them into 10 seconds segments (5-TR 

segments for a 2 seconds TR), and assigned all time points in the same segment to the same 

fold.

The adapted bagging algorithm and the out-of-bag cross-validation procedure were only 

based on the training data (for the test participant). Similar to the inner-loop of nested 

cross-validation, the training and test folds discussed in this context were both part of the 

training data. Because independent data were used in out-of-bag evaluation, this procedure 

provides an unbiased way to estimate model performance on new data, such as the actual 

test data.
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4.3.2. Separating stimulus and tuning information—Based on the whole-brain 

functional template M and the linear transformation W(p) derived by warp hyperalignment, 

we obtained a modeled brain response matrix B(p) for the participant p, which are the 

responses of the participant that can be accounted for by the linearly transformed template. 

To model the participant’s neural response tuning independent of stimulus information, we 

derived a tuning matrix T(p) (k × v) by a matrix decomposition of B(p) (Fig. 11).

This matrix decomposition factors the temporal information into the matrix S (t × k). The 

columns of S are a set of basis response profiles (i.e., response time series to the movie). The 

response profile of each vertex is modeled as a linear combination (i.e., weighted sum) of 

the basis profiles, and the weights of the linear combination are the corresponding column 

in T(p), which is a column vector of k elements. This column vector is independent of the 

stimulus, and it reflects the response tuning function of the vertex. We refer to this column 

vector as the tuning profile of the cortical vertex to distinguish it from the response profile 

(response time series).

To use the tuning matrices to model differences in neural tuning across vertices and across 

individuals, ideally the tuning matrices should have several properties: (a) cortical vertices 

that have larger differences in response time series also have larger differences in their 

tuning profiles; (b) individuals who are more similar based on their response profiles are 

also more similar based on their tuning matrices; and (c) the same tuning matrix can 

be estimated from different stimuli, such as different parts of the movie with different 

durations. These objectives motivate us to find a matrix S with three properties: (a) the 

columns are orthogonal to each other; (b) each column has unit variance; and (c) the 

columns of S form a basis set of response profiles. Orthogonality is necessary to make S a 

similarity transformation, so that differences in T(p) across vertices and across individuals 

are proportional to their differences in B(p). Unit variance ensures that the scale of the 

estimated T(p) is the same for different amounts of data, such as data matrices from different 

parts of the movie. That the columns of S form a set of basis response profiles means the 

response profile of each vertex and each participant can be expressed as a linear combination 

of the basis profiles. In other words, S can be used to fully model B(p) and B(p) without any 

loss of information.

There are many choices of S which have all these properties and work similarly well for 

our purposes. In this work, we use the normalized principal components (PCs) from a 

group-PCA. The normalized PCs work well in practice, as is shown by the benchmarking 

analyses. Furthermore, due to the nature of PCA, they provide an easy way to reduce 

data dimensionality when less dimensions are desired. In this work, we did not reduce 

dimensionality, and thus k equals the rank of the concatenated matrix, which is the same as 

the number of time points in the movie in practice (approximately 3000). We performed the 

group-PCA using a singular value decomposition (SVD) on the concatenated data matrices 

of all participants, and rescaled the first matrix U to get S.

B(1), B(2), ⋯, B(n) = UΣV T
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S = nU

Based on the conceptual framework of hyperalignment (Haxby et al., 2011, 2020), different 

brains share the same functional basis. In practice, the shared functional basis is instantiated 

as a hyperalignment common space, which is a functional template. The response profiles 

of the template’s vertices form a set of basis response profiles, and the response profile of 

each cortical vertex is expressed as a linear combination of these basis response profiles. 

The weights of the linear combination are the elements in the corresponding column of 

the transformation matrix. Note that the transformation matrix based on the searchlight 

algorithm is highly sparse, and the weights of the linear combination are non-zero only 

for local neighborhoods of vertices (i.e., vertices included in the same searchlight) in the 

template. As a result, the response profile of each vertex is modeled using a different set of 

vertices, whose response profiles highly covary due to spatial autocorrelations.

In the INT model, the columns of matrix S serve as the set of basis response profiles, 

which are orthogonal vectors with unit variance. The response profiles of all vertices and all 

participants are all expressed as a linear combination of the same basis set, which affords 

the study of functional tuning differences across vertices and across individuals based on 

tuning matrices, whose columns comprise the linear combination weights. In other words, 

we are replacing local basis sets (response profiles of adjacent vertices) with a single global 

basis set of response profiles (columns of S). Conceptually, S is also a common space, but 

different from M, the features in S are completely virtual and do not correspond to specific 

cortical loci.

The features in S are neural data-driven stimulus descriptors. They are derived from shared 

brain responses and reflect the primary ways cortical vertices respond to stimuli. Each 

stimulus (e.g., movie time point) is described as a row in S, which is a vector of k elements, 

and each element indexes to what extent a virtual feature responds to the stimulus. In other 

words, the row vector describes the key features of the corresponding stimulus based on 

neural responses. Therefore, here and elsewhere we refer to S as the stimulus matrix.

Because stimulus information is factored into S, the information in the tuning matrix T(p) 

is neural response tuning of cortical vertices that is the same for a wide variety of stimuli 

from the space spanned by a naturalistic, audiovisual movie stimulus. For example, when we 

divide the neural response data matrix B into two halves, each half can be modeled using 

the corresponding half of S and the same T(p) (Fig. 1B). This property has an important 

implication for T(p): Once the functional template is created, the same individualized T(p) 

can be estimated from independent data of the same individual (e.g., different parts of a 

movie), and the amount of data used to estimate T(p) can be less than the amount of data 

used to create the functional template (e.g., responses to part of the movie instead of the 

entire movie).

Furthermore, the INT model can be extended to model responses to stimuli that were not 

used to create the template. Given the neural responses to new stimuli from a group of 

participants (which can be a subset of all participants) and their tuning matrices, the stimulus 
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descriptors S(new) for the new stimuli can be estimated (Fig. 1C) and used to predict other 

participants’ responses to the new stimuli.

In the sections below, we use a series of analyses to demonstrate the reliability, validity, 

accuracy, and specificity of our INT model. In the first analysis, we show that the tuning 

matrices estimated from different parts of the movie are highly similar for the same 

individual but dissimilar for different individuals. In the second and third analysis, we 

show that individualized responses to new stimuli (category selectivity and retinotopic maps) 

can be accurately predicted by estimating the stimulus descriptors for the new stimuli. 

In the fourth analysis, we show that the INT model can accurately predict individualized 

fine-grained spatial response patterns, such as responses to a specific time point of a movie. 

In the fifth analysis, we show that 10–20 minutes of movie data are sufficient for satisfying 

performance of the INT model, but the performance grows continuously with more data.

4.4. Datasets

4.4.1. The Forrest dataset—The Forrest dataset is part of the Phase 2 data of the 

studyforrest project (Hanke et al., 2014). It contains 3 T fMRI data collected from 15 right-

handed German adults (mean age 29.4 years, 6 females) during movie-watching, retinotopic 

mapping, and object category localizers (Hanke et al., 2016; Sengupta et al., 2016). Each 

participant’s movie data comprised eight runs of approximately 15 minutes each, while the 

participant watched a short-ened version of the audiovisual feature movie Forrest Gump. In 

total, 3599 volumes were collected over the course of 2 hours of scanning. The retinotopic 

data comprises four 3-minute runs (12 minutes in total), and the four runs corresponded to 

expanding rings, contracting rings, clockwise wedges, and counterclockwise wedges. The 

object category localizer data contain four runs that are 5.2 minutes each (20.8 minutes in 

total). Each run contains two 16 seconds blocks for each of the 6 categories (bodies, faces, 

houses, objects, scenes, and phase scrambled images). During each block, 16 grayscale 

images were displayed for 900 ms each with a 100 ms interval. During the object category 

localizer scans, the participant performed a central letter reading task to maintain attention 

and fixation.

All these data were acquired with a Philips Achieva dStream MRI scanner with a 32-channel 

head coil and a gradient-echo EPI sequence. Every 2 seconds, a whole-brain volumetric 

image containing 3 mm isotropic voxels was acquired with the sequence. The volume 

comprises 35 axial slices with a 3-mm thickness and a 10% inter-slice gap, acquired in 

ascending order. Each slice had an 80 × 80 matrix and an FOV of 240 × 240 mm3. The TE 

was 30 ms, flip angle was 90°, and the phase encoding direction was anterior–posterior. The 

acquisition was accelerated with a SENSE factor of 2. More details of these datasets can be 

found in the data descriptors for the 3 T studyforrest data (Hanke et al., 2016; Sengupta et 

al., 2016).

4.4.2. The Raiders dataset—The Raiders dataset contains data from 23 participants 

(mean age ± SD: 27.3 ± 2.4 years; 12 females) while they were watching the second half 

of the movie Raiders of the Lost Ark (Nastase, 2018). The movie scan comprised four runs 

that were 14–15 minutes each (850, 860, 860, and 850 seconds, respectively). In total, 3420 
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volumes were collected for each participant, with a 1 second TR and 2.5 mm isotropic 

voxels. The movie clips of adjacent runs had 20 seconds of overlapping content, and thus 

we removed 10 seconds of data from the end of the first run and 10 from the beginning of 

the second run during analysis. After chopping off the overlapping content, the remaining 

movie data were 14 minutes (840 TRs) per run and 56 minutes in total. Among the 23 

participants, 20 also had localizer data. The localizer data were the same data used in Jiahui 

et al. (2020). They were collected using the same scan protocol as the movie, and they 

comprised four runs of 3.9 minutes each (15.6 minutes in total). Each run comprised 10 

blocks, 2 per category (faces, bodies, scenes, objects, and scrambled objects), and each 

block was 18 seconds long. Each block comprised 6 video clips that were 3 seconds each. 

During the localizer scans, the participant performed a 1-back repetition detection task based 

on the video clips.

The Raiders dataset was collected using a 3 T Siemens Magnetom Prisma MRI scanner 

with a 32-channel head coil at the Dartmouth Brain Imaging Center, with the same scan 

protocols as (Visconti di Oleggio Castello et al., 2020). Each second, a volume was collected 

with 2.5 mm isotropic voxels and whole-brain coverage. The volume comprised 52 axial 

slices collected in an interleaved fashion with gradient-echo echo-planar imaging. Each 

slice had a 96 × 96 matrix and an FOV of 240 × 240 mm3. The TE was 33 ms, flip 

angle was 59°, and the phase encoding direction was anterior–posterior. The imaging was 

accelerated using a simultaneous multi-slice (SMS) factor of 4 and no in-plane acceleration. 

All participants gave written, informed consent, and were paid for their participation. The 

study was approved by the Institutional Review Board of Dartmouth College.

4.4.3. MRI preprocessing—We ran fMRIPrep (Esteban et al., 2019) on all MRI data, 

using version 20.1.1 for the Forrest dataset, and 20.2.0 for the Raiders dataset. After 

fMRIPrep, functional data from all participants were projected onto a cortical surface 

and were in alignment with the fsaverage template (Fischl et al., 1999) based on cortical 

folding patterns. We then performed downsampling and nuisance regression in the same 

way as Feilong et al. (2018). First, we downsampled functional data to a standard cortical 

surface mesh with 9372 vertices for the left hemisphere and 9370 vertices for the right 

hemisphere (approximately 3 mm vertex spacing; 10,242 per hemisphere before removing 

non-cortical vertices). Then, we performed a linear regression to partial out nuisance 

variables from functional data separately for each run. The nuisance regressors include 6 

motion parameters and their derivatives, global signal, framewise displacement (Power et al., 

2014), 6 principal components from cerebrospinal fluid and white matter (Behzadi et al., 

2007), and polynomial trends up to the 2nd order. Finally, we normalized the residual time 

series of each vertex to zero mean and unit variance.

4.5. Assessing the reliability and specificity of tuning matrices

To make the tuning matrices a useful measure of brain functional organization, they need to 

have high reliability and specificity. That is, tuning matrices of the same individual based on 

independent data should be similar, and tuning matrices from different individuals should be 

dissimilar. Therefore, we split each participant’s movie data into two parts, and estimated a 

tuning matrix based on each part of the movie.
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B(p, 1) = S(1)T (p, 1)

B(p, 2) = S(2)T (p, 2)

Where B(p) =
B(p, 1)

B(p, 2)
, and S =

S(1)

S(2)
⋅ T (p, 1) and T (p, 2)

are both estimations of T(p), but they are estimated based on different parts of the movie 

(independent data).

To assess the reliability and specificity of the modeled tuning matrices, we computed a 

cross-movie-part similarity matrix for each dataset based on the estimated tuning matrices. 

The matrix has a shape of n × n, where each row corresponds to a tuning matrix based 

on the first part of the movie, each column corresponds to a tuning matrix based on 

the second part of the movie, and each entry is the correlation-based similarity between 

the two matrices. The diagonal of the matrix is the within-subject similarities, and the 

off-diagonal elements are between-subject similarities. A clear difference between diagonal 

and off-diagonal elements indicates a substantial difference between within-subject and 

between-subject similarities.

4.5.1. Multi-dimensional scaling—To better visualize the similarities between 

estimates tuning matrices, we performed multi-dimensional scaling (MDS) using the T-

distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Van der Maaten & Hinton, 

2008). We used a full individual differences matrix (i.e., 2n × 2n elements, comprising both 

same-movie-part and cross-movie-part dissimilarities based on correlation distance) as input 

to the t-SNE algorithm. The 2n tuning matrices were projected to a 2D space by t-SNE. 

Given any MDS algorithm would unavoidably distort distances during the projection, we 

used a perplexity parameter of 10 to reduce the distortions of distances between closer 

neighbors, which in this case are within-subject dissimilarities and several smallest between-

subject dissimilarities. These dissimilarities are key to determine whether an individual can 

be easily identified based on the tuning matrix and a nearest-neighbor classifier.

4.5.2. Distribution of tuning matrix similarities—For each tuning matrix, we 

extracted its within-subject similarity and between-subject similarities based on the cross-

movie-part similarity matrix. These similarities correspond to the diagonal (within-subject) 

and off-diagonal (between-subject) elements of a row of the similarity matrix. We plotted the 

distribution of the within-subject similarity and between-subject similarities for each tuning 

matrix in Figure 2C, sorted by within-subject similarity.

4.5.3. Distinctiveness index—For all tuning matrices, we found that within-subject 

similarity was far greater than the distribution of between-subject similarities. In other 

words, any participant can be identified by the modeled tuning matrix with an accuracy of 
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100% based on a simple one-nearest-neighbor classifier. To better describe how distinctive 

an individual is based on the modeled tuning matrix, we computed the distinctiveness index 

based on Cohen’s d:

distinctiveness = within−subject similarity − mean(between‐subject similarity)
SD(between‐subject similarity)

The distinctiveness index is a measure of effect size, and thus is comparable across datasets 

with different sample sizes. The similarities used to compute the distinctiveness index 

were Fisher-transformed correlation similarities, and therefore they approximately follow 

a normal distribution, and the distinctiveness index can serve as a z-statistic. Using the 

cumulative distribution function of the standard normal distribution, an identification error 

rate can be estimated based on the distinctiveness index.

4.5.4. Searchlight analysis—To locate the brain regions where the functional 

organization is the most distinctive, we performed a searchlight analysis (Kriegeskorte et 

al., 2006) using a searchlight radius of 20 mm. Within each searchlight, we computed a 

distinctiveness index for each tuning matrix based on vertices in the searchlight, and we 

averaged the distinctiveness index across all tuning matrices to get an average distinctiveness 

index for the searchlight. We repeated this process for each searchlight and obtained an 

average index for each searchlight. These average distinctiveness indices formed a map of 

distinctiveness for each dataset (Fig. 2E).

4.6. Predicting category-selectivity maps

The previous analyses have shown that our model has high reliability and specificity. The 

modeled brain functional organization is highly similar for the same individual (based on 

independent data), and much less similar for different individuals. In this part, we tested 

the generalizability of our model. Specifically, we tested whether our model could predict 

responses to new stimuli that were not used in model training. Therefore, we trained our 

model based on the movie data and tested whether the model can be used to predict 

responses to various object categories. Here, we use the “faces” category as an example to 

illustrate the procedure of our analysis, and the same procedure was applied to other object 

categories.

4.6.1. Quality of localizer-based maps—The Forrest dataset has 4 static object 

category localizer runs per participant (for all participants), and the Raiders dataset has 

4 dynamic object category localizer runs per participant (for 20 out of the 23 participants). 

For each run of each participant, we used the general linear model to estimate the contrast of 

interest (faces vs. all other categories) and obtained a map of t-statistics for the contrast.

From a psychometrical perspective, each cortical vertex has a specific face selectivity, and 

the face-selectivity map based on each localizer run is a test of face-selectivity, which 

assigns a score to each vertex. The score is a sum of the true score of the vertex (its 

ground truth face-selectivity) and some noise. Accordingly, the variance of measured face-

selectivity across vertices is a sum of true score variance and noise variance. The ratio 

between true score variance and total variance is an indicator of the quality of the measured 
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face-selectivity map, which is known as the reliability of the measured map and denoted as 

ρ. When we average over k independent maps, the noise variance is 1/k of each single map 

(because the noise is assumed to have no covariance with the noise from another map nor 

the true score map). This relationship can be used to estimate how the reliability increases 

with larger k, which is known as the Spearman–Brown prediction formula. Specifically, the 

reliability of the average map is:

ρavg = ρ
(1 − ρ)

k + ρ
= kρ

1 + (k − 1)ρ

For each participant’s face-selectivity map, we have k measured maps X1, X2, …, Xk, each 

of which is from an independent localizer run and is represented as a vector. For i = 1…k, Xi 

= T + Ei, where T is the true score map, and Ei is the noise for the i-th map. The variance of 

the sum map is:

var X1 + … + Xk = var kT + E1 + … + Ek = k2var(T ) + var E1 + … + var Ek

and the ratio between the sum of variance for each map and the variance of the sum map is:

kvar(T ) + var E1 + … + var Ek

k2var(T ) + var E1 + … + var Ek

= kρ + k(1 − ρ)
k2ρ + k(1 − ρ)

= 1
kρ + 1 − ρ

This ratio is often used to compute Cronbach’s alpha, which is an estimate of the reliability 

of the average map:

α = k
k − 1 1 − kvar(T ) + var E1 + … + var Ek

k2var(T ) + var E1 + … + var Ek

= k
k − 1 1 − 1

kρ + 1 − ρ = kρ
1 + (k − 1)ρ = ρavg

The covariance between one map and another map is:

cov X + Ei, X + Ej = var(X) .

Therefore, the correlation between the two maps is:

ri, j = cov X + Ei, X + Ej

var X + Ei var X + Ej
= ρiρj

Note that when ρi > ρj, ri,j > ρj. In other words, if a predicted map has comparable quality 

with the average map, their correlation will be the same as average map’s Cronbach’s alpha; 

if a predicted map has superior quality than the average map, their correlation will exceed 

Cronbach’s alpha. Therefore, we choose Cronbach’s alpha as a baseline when we present the 

correlation between measured maps and predicted maps of the INT model. Note that in this 

analysis, the objective is to predict category-selectivity maps, and both “more accurate” and 
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“superior quality” mean that the model-predicted map has a higher correlation with the true 

score map, which should not be confused with better construct validity.

4.6.2. Model-predicted category selectivity maps—We used a leave-one-subject-

out cross-validation scheme to evaluate model performance. We built the template based on 

the n−1 training participants’ movie data. We then computed a tuning matrix T(p) for each of 

the n participants based on the movie data. We modeled the face-selectivity map as the brain 

response pattern to the specific “faces” category:

B(p, faces) = S(faces)T (p) + E

Here, B(p,faces) denotes the face-selectivity map for participant p, and S(faces) denotes 

the stimulus descriptors for the “faces” versus other categories contrast. In this case, 

both B(p,faces) and S(faces) are row vectors because there is only one stimulus (category). 

Both B(p,faces) and T(p) were known for the training participants, and thus S(faces) can 

be estimated using a general linear model (e.g., ordinary least squares) by finding the 

S(faces) that minimizes the Frobenius norm ||B(p,faces) − S(faces)T(p)||F. This solution can be 

computed using ordinary least squares (“vanilla” regression), but here we used ensemble 

linear ridge regression to increase the accuracy and generalizability of our model. The 

ensemble model is similar to the algorithm we used to build the INT model, which is 

based on k-fold bagging. The final prediction model was the average of 50 ridge regression 

models (k = 5, 10 repetitions), and the choices for the regularization parameter were 21 

values evenly distributed in a logarithmic scale, ranging from 0.01 to 100. Similar to 

nested cross-validation, the choice of the regularization parameter was determined based 

on out-of-bag cross-validation, and thus it is only based on the training data. For each 

single model in the ensemble, we bootstrapped n−1 participants with replacement from the 

n−1 training participants and trained the ridge regression model based on the bootstrapped 

sample. To further increase the diversity of models in the ensemble, each time a participant 

was chosen by a bootstrapped sample, we also bootstrapped four runs with replacement 

from the participant’s data, and the face-selectivity map used in the regression was the 

average of the four bootstrapped runs. After all n−1 participants had been chosen for the 

bootstrapped sample, we concatenated their vertices, and trained a ridge regression model 

based on the concatenated data. We obtained an estimated S(n–1, faces) for each bootstrapped 

sample (coefficients of the regression model), and the final estimation of S(n–1, faces) was the 

average across all bootstrapped samples.

The model-predicted map of the left-out test participant was simply the matrix 

multiplication of the estimated stimulus descriptors S(n–1, faces) based on the n−1 training 

participants and the estimated tuning matrix T(p) of the test participant:

B(p, faces) = S(n − 1, faces)T (p)

4.6.3. Evaluating model-predicted maps—We evaluated the quality of model-

predicted maps in the same way as Jiahui et al. (2020). That is, for each test participant, we 

computed the Pearson correlation between the localizer-based map and the model-predicted 

Feilong et al. Page 27

Imaging Neurosci (Camb). Author manuscript; available in PMC 2024 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



map of the participant. Note that we estimated the reliability of the localizer-based map 

using Cronbach’s alpha, which is the expected correlation between two average maps, each 

based on four runs of independent data. Based on the Spearman–Brown prediction formula, 

we can estimate how Cronbach’s alpha changes with the amount of data (i.e., the number 

of localizer runs), and correspondingly, how much localizer data is needed to achieve the 

quality of the model-predicted map.

We also evaluated the specificity of our model-predicted maps. For each test participant, 

we also computed the correlations between the participant’s own localizer-based map and 

model-predicted maps of other participants. If the model-predicted map is highly specific 

to the participant, we expect the between-subject correlations to be much lower than the 

correlation with the participant’s own model-predicted map.

4.7. Predicting retinotopic maps

4.7.1. Estimating retinotopic maps based on localizers—The Forrest dataset 

contains 4 retinotopic scans per participant that are 3 minutes each. The four runs 

are expanding rings, contracting rings, clockwise wedges, and counterclockwise wedges, 

respectively. We followed the steps of Warnking et al. (2002) and estimated an eccentricity 

map based on the runs of expanding rings and contracting rings and a polar angle map 

based on clockwise wedges and counterclockwise wedges for each participant. Specifically, 

we performed Fourier transformation on the time series data that were collected during 

stimulus presentation (5 cycles of 16 TRs [32 seconds] each; 80 TRs [160 seconds] in total; 

started 4 seconds after scan onset) and located the frequency component that had the same 

period as the stimuli (i.e., 5 cycles in 80 TRs). The amplitude of the component indicates to 

what extent a vertex’s response time series can be explained by retinotopic stimuli, and the 

phase of the component indicates the eccentricity or the polar angle that a vertex responds 

maximally to. Considering the hemodynamic response function of BOLD signal, we shifted 

the phase by 5 seconds to account for hemodynamic delay. For each kind of retinotopic map 

(i.e., eccentricity and polar angle), we averaged the Fourier transformation results of the two 

corresponding runs (e.g., expanding and contracting rings for eccentricity map) to get the 

final map. The amplitude was the mean amplitude of the two runs, and the phase was the 

circular mean of the two runs (which removes the remaining effects of hemodynamic delay).

4.7.2. Model-predicted retinotopic maps—Each retinotopic map comprises two 

parts, namely an amplitude map and a phase map.

B(ret) = Acos(θ − φ)

Here, A is the amplitude, θ is the preferred phase (i.e., eccentricity or polar angle) for 

each vertex, and φ is the phase corresponding to the current stimulus. A vertex responds 

maximally when the phase of the current stimulus corresponds to its preferred phase, and 

the response decreases when the phase moves away from the vertex’s preferred phase. The 

retinotopic map can be modeled as a weighted sum of a sine map and a cosine map.
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Acos(θ − φ) = Acos(θ)cos(φ) + Asin(θ)sin(φ)
= xcos(φ) + ysin(φ)

Note that the original phase θ is a circular variable and it is difficult to predict it using 

a linear model (e.g., the model we used to predict category-selectivity maps). After the 

transformation, we have two new variables x and y, which contain the same information as 

the original amplitude map A and the phase map θ. However, both x and y are weights of the 

linear combination, and thus they can be predicted directly using linear models.

We used similar prediction procedures as the category-selectivity analysis for the current 

analysis. Specifically, we used leave-one-subject-out cross-validation, and the prediction 

models were ensembles of ridge regression models. For each test participant and each 

kind of retinotopic map, we trained two sets of ensemble models: one for predicting the 

weight map x, and the other for predicting y. After estimating the stimulus descriptors for 

x and y based on the training participants, we multiplied them by the estimated tuning 

matrix of the test participant to get the estimated x and y maps for the test participant. The 

model-predicted amplitude and phase maps can be computed from the estimated x and y 
maps:

A = x2 + y2

θ = arctan2(x, y)

4.7.3. Evaluating model-predicted maps—We evaluated the amplitude map and the 

phase map separately for each kind of retinotopic map. For the amplitude map, we computed 

the correlation between the test participant’s localizer-based map and the participant’s own 

model-predicted map, as well as the correlations with others’ model-predicted maps. We 

also computed Cronbach’s alpha based on the amplitude maps from the two runs from each 

kind of retinotopic map. In general, the amplitude maps were assessed in a similar way as 

the category-selectivity maps.

For the phase map, we computed the average (absolute) phase difference between the test 

participant’s localizer-based map and the participant’s own model-predicted map in the early 

visual cortex—an area known to have retinotopic responses. The early visual cortex was 

located based on regions V1, V2, V3, and V4 of the Glasser parcellation (Glasser et al., 

2016). Similarly, we computed the average phase difference with others’ model-predicted 

maps, and the average phase difference between the two runs for each kind of retinotopic 

map. Note that the phase differences between the two runs are driven by both hemodynamic 

delay and noise, and their influences cannot be fully separated based on the current data.

4.8. Predicting response patterns to the movie

The previous analyses demonstrate the power of our model in predicting brain responses 

to new stimuli, such as object categories and retinotopic localizers. However, both object-
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category representation and retinotopy correspond to relatively coarse-grained cortical 

topographies. To assess the spatial granularity of our model, we further tested how well 

it could predict fine-grained spatial response patterns, such as time-point-by-time-point 

responses to a movie.

4.8.1. Cross-validation scheme—For each movie dataset, we used leave-one-subject-

out cross-validation to assess the model predictions. Each time, we built a template based on 

the full movie data of the n−1 training participants. Similar to the distinctiveness analysis, 

we estimated the test participant’s tuning matrix using only half of the test participant’s 

movie data, and in this case it is the first half of the movie data. The second half of the 

test participant’s movie data was held out for test. Then, we multiplied the stimulus matrix 

for the second part of the movie with the estimated tuning matrix of the test participant to 

get the model-predicted response patterns to the second part of the movie that are based on 

other participants’ responses. We assessed the model prediction by comparing the measured 

response patterns and the model-predicted responses patterns of the test participant. Note 

that unlike our previous methods, in which we compared a participant’s response patterns 

to others’ patterns in the common model space, our INT model allows this comparison 

to be made in the native anatomical space (normalized to the fsaverage template) of each 

individual participant’s brain.

4.8.2. Dimensionality reduction—For each time point (i.e., each TR), the response 

pattern is a vector of 18,742 elements. Similar to our previous work (Guntupalli et al., 

2016, 2018; Haxby et al., 2011), we performed dimensionality reduction using principal 

component analysis (PCA) and compared the similarity of response patterns based on 

normalized PCs. We repeated the analysis using different numbers of PCs, ranging from 10 

to 300 with an increment of 10. Note that the key results of this analysis (Fig. 5D and 5E) 

are very robust against the choice of the number of PCs.

4.8.3. Similarity between measured and predicted patterns—To illustrate the 

similarities of measured and predicted response patterns, we computed the correlations 

between measured and predicted response patterns based on 150 PCs. Specifically, we 

computed the similarities of patterns from the same participant and those from different 

participants; we also computed similarities of patterns for the same time point and those for 

different time points. These allowed us to evaluate the specificity of the model-predicted 

response patterns both to the participant and to the time point. Examples of the similarities 

are shown in Figure 5A and 5B, and the similarity distribution for each of the four 

conditions is summarized in Figure 5C.

4.8.4. Binary movie time point classification—For each test participant, the 

similarity between the measured and predicted patterns for the same time point was much 

higher than those from different time points. We assessed to what extent this difference in 

similarity could be used to predict which time point of the movie the participant was viewing 

based on a binary classification task. The binary classification task is a 2-alternative forced 

choice. For each time point of the movie, we computed the correlation of its measured 

response pattern to two other response patterns—one was the pattern predicted from other 
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participants’ responses to the same time point, and the other was the pattern predicted from 

other participants’ responses to another time point. The classification was successful if the 

similarity of patterns of the same time point was higher than the different time point, and 

thus the chance accuracy is 50%. We looped through all choices of the test time point, and 

for each test time point, looped through all choices of the foil time point and averaged the 

accuracies. Note that the difficulty of the binary classification task does not change with the 

length of the movie data, and its accuracy can be considered as a measure of effect size in 

that sense. For example, the binary classification accuracy based on a dataset with 500 time 

points and another with 1000 time points are comparable. To evaluate the specificity of the 

predicted patterns to the test participant, we replaced the test participant’s predicted patterns 

with another participant’s predicted patterns and repeated the analysis.

4.8.5. Multiclass movie time point classification—The classification accuracy of 

the binary classification task was close to 100%. To demonstrate the accuracy and specificity 

of the response patterns predicted by the INT model, we performed a multiclass movie time 

point classification analysis. That is, we compared the measured response pattern to a time 

point of the movie to all the model-predicted response patterns (i.e., predicted response 

patterns to all time points). We examined whether the pattern similarity was highest for 

the model-predicted response pattern of the same time point. The second part of the movie 

contains 1818 time points in total for the Forrest dataset, and 1680 time points for the 

Raiders dataset. Therefore, the number of choices was over 1000 for both datasets, and 

the chance accuracy was less than 0.1%. Note that the foils also included the time points 

right before or after the target time point, which was only 2 seconds (Forrest) or 1 second 

(Raiders) apart, and the inclusion of these neighboring time points made the classification 

task even more challenging.

4.9. Model performance with less data

In practice, it is not always feasible to collect a large amount of fMRI data during 

movie-watching as the datasets used in the current study (Forrest: 120 minutes; Raiders: 

56 minutes). To assess the performance of our INT model with smaller data volume, we 

trained the model with smaller amounts of movie data for the test participant and evaluated 

its performance as a function of data volume.

First, we assessed how data volume affected the distinctiveness of the tuning matrix. This 

analysis requires two estimates of the same tuning matrix based on independent data, and 

thus each estimate can use up to half of the movie data (Forrest: 60 minutes; Raiders: 28 

minutes). For the Forrest dataset, we repeated the analysis with 5, 10, 15, 20, 30, 40, 50, and 

60 minutes of movie data for each estimate. For the Raiders dataset, we repeated the analysis 

with 5, 10, 15, 20, and 28 minutes of movie data for each estimate.

Second, we assessed how data volume affected the distinctiveness of local neural tuning 

based on a searchlight analysis. The same amounts of movie data as the whole-brain 

distinctiveness analysis were used. Instead of focusing on the average across searchlights, 

we assessed the 50th, 80th, 90th, 95th, and 99th percentiles of the distribution.
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Third, we assessed how data volume affected the estimation of category selectivity maps 

and retinotopic maps. Note that the objective of the analysis is to predict responses to new 

stimuli, and thus up to the entire movie data can be used to train the INT model and estimate 

the tuning matrices. For the Forrest dataset, we repeated the analysis with 5, 10, 15, 20, 30, 

40, 50, 60, and 120 minutes of movie data. For the Raiders dataset, we repeated the analysis 

with 5, 10, 15, 20, 28, and 56 minutes of movie data.

Fourth, we used movie time point classifications to assess how data volume affected the 

quality of predicted response patterns to the movie. For this analysis, we used the same test 

data to evaluate the model, which was the second half of movie data for the test participant. 

Therefore, the movie data used to estimate the tuning matrix of the test participant was 

the first half of movie data or part of the first half. For the Forrest dataset, we repeated 

the analysis with 5, 10, 15, 20, 30, 40, 50, and 60 minutes of movie data. For the Raiders 
dataset, we repeated the analysis with 5, 10, 15, 20, and 28 minutes of movie data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimating a shared stimulus matrix and individualized tuning matrices. (A) The 

individualized neural tuning (INT) model decomposes the brain response data matrix B(p) 

(shaped t × v, where t is the number of time points and v is the number of cortical vertices) 

of participant p into a shared stimulus matrix S (t × k, where k is the number of stimulus 

features) and an individualized tuning matrix T(p) (k × v, the number of stimulus features by 

the number of cortical vertices). Temporal information capturing how the stimulus changes 

over time is factored into S; each row of S is a time point in the stimulus, and each column 

of S is a basis response profile shared across individuals and vertices. Each column of 

T(p) is a vector of k elements describing the response tuning function of a cortical vertex 

over basis response profiles. (B) If we divide the brain responses matrix B(p) into several 

parts (i.e., responses to different stimuli), each part can be modeled as part of the matrix S 
multiplied by the same T(p). In other words, T(p) models neural response tuning in a way 

that generalizes across stimuli. Moreover, the same T(p) can be estimated from different parts 

of B(p) (e.g., two halves of a movie B(p,1) and B(p,2)) by using the corresponding parts of S 
(S(1) and S(2)). (C) After obtaining T(p), it can be used to predict the participant’s responses 

to new stimuli B(p,new) using the corresponding S(new) matrix, which can be estimated from 

other participants’ data.
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Fig. 2. 
Modeling individual-specific brain functional organization. (A) For each movie part, we 

obtained n tuning matrices, one for each participant, which describes the participant’s 

response tuning functions. The cross-movie-part similarities form an n × n matrix, where 

rows are tuning matrices based on the first movie part, and columns the second movie 

part; the colored legends at left and top index individual participants. The obvious diagonal 

indicates that within-subject similarities were much higher than between-subject similarities. 

(B) Multi-dimensional scaling (MDS) projection of the 2n matrices onto a 2-D plane. Two 

dots of the same color denote two estimates of the tuning matrix for the same participant, 

as in (A). Dots from the same participant clustered together. (C) The distribution of 

within- and between-subject tuning matrix similarities, sorted by within-subject similarity. 

For each tuning matrix, the within-subject similarity always exceeded between-subject 

similarities. (D) We computed a distinctiveness index for each tuning matrix based on 

the difference between within- and between-subject similarities. The distinctiveness index 

is based on Cohen’s d and, therefore, measures effect size. Based on the distinctiveness 

index, we estimate the error rate for individual identification (bottom). (E) Local functional 

distinctiveness based on a searchlight analysis (20 mm radius), averaged across all 

participants for each dataset. Extensive occipital, temporal, and lateral prefrontal cortices 

showed high distinctiveness.
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Fig. 3. 
Predicting category-selectivity maps of individual participants. (A) Face-selectivity map of 

an example participant and a zoomed-in view focusing on right ventral temporal cortex. 

(B) The localizer-based (top) and model-predicted (middle) face-selectivity maps for two 

example participants from the Forrest dataset. Each localizer-based map was the average of 

four maps, one from each localizer run. Individual maps for each localizer run are shown at 

bottom. (C) Face-selectivity maps of two example participants from the Raiders dataset. (D) 

Similarity of each participant’s localizer-based face-selectivity map to the participant’s own 

predicted map (green) and to other participants’ predicted maps (orange). Cronbach’s alpha 

(purple) for each participant was calculated based on the similarity of the four localizer 

runs and is shown as a reference. (E) Cronbach’s alpha (purple), within-subject correlation 

(green), and between-subject correlation (orange) for all category-selectivity maps. Error 

bars are standard errors of the mean. For both datasets, the within-subject correlations were 

similar to, and sometimes higher than Cronbach’s alpha. Between-subject correlations were 

much lower, suggesting that our prediction models were able to capture each participant’s 

idiosyncratic category-selectivity topographies.
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Fig. 4. 
Predicting retinotopic maps of individual participants. (A) The localizer-based (upper) and 

model-predicted (lower) left hemisphere eccentricity and (B) polar angle maps for five 

example participants. (C) Similarity of each participant’s localizer-based amplitude map 

(i.e., to what extent a vertex responds to retinotopic stimuli) to the participant’s own 

predicted map (green), other participants’ predicted maps (orange), and its Cronbach’s 

alpha (purple). (D) The average phase difference in early visual areas between the 

participant’s two retinotopic runs (e.g., expanding and contracting rings; purple), between 

the participant’s localizer-based map and own model-predicted map (green), and between 

the participant’s localizer-based map and other participants’ predicted maps (orange). In 

both (C) and (D), participants are sorted along the x-axis according to within-subject 

similarity (green). Note that we inverted the y-axis in (D) because smaller differences 

indicate higher similarity.
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Fig. 5. 
Predicting brain response patterns to movie time points (TRs). (A) The similarities between 

measured and predicted brain response patterns for the first 100 time points of an example 

Forrest participant (the full matrices for Forrest and Raiders contain 1818 and 1680 time 

points, respectively). The red diagonal indicates that the model-predicted response pattern 

at each time point was highly similar to the actual response pattern for the corresponding 

time point. The response patterns were based on 150 principal components (PCs) reduced 

from all cortical vertices. (B) The similarities between measured response patterns of one 

participant and predicted patterns of another. The less obvious diagonal suggests that 

our model predicted both the shared functional topographies (which generalize across 

participants) and each participant’s idiosyncratic functional topographies (which does not 

generalize across participants). (C) The distribution of response pattern similarities across 

participants and time points. When the measured and the predicted patterns were for the 

same time point of the movie, the average within- and between-subject similarities were 

0.356 and 0.211, respectively, for the Forrest dataset, and 0.408 and 0.209, respectively, for 

the Raiders dataset. Cross-time-point similarities were centered around 0. This indicates that 

the predicted movie response patterns were highly specific to both the participant and the 

time point. (D) Binary (2-alternative forced choice) movie time point classification based 

on a nearest-neighbor classifier and pattern similarities. The within-subject accuracy peaked 

at 99.0% for Forrest (180 PCs) and 98.6% for Raiders (250 PCs), and it was fairly robust 
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across the number of PCs. The peak between-subject accuracy was 95.2% (50 PCs) and 

94.1% (60 PCs), respectively. (E) Multiclass movie time point classification. The number of 

choices was 1818 for Forrest and 1680 for Raiders, and chance accuracy was less than 0.1% 

for both datasets. The peak within-subject accuracy was 51.9% for Forrest (190 PCs) and 

44.8% for Raiders (220 PCs), and the peak between-subject accuracy was 20.1% for Forrest 
(90 PCs) and 15.8% for Raiders (80 PCs). (F and G) Searchlight binary classification. The 

accuracy was high for much of the cortex for both datasets, with the highest accuracies in 

temporal and occipital regions.
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Fig. 6. 
Effect of data volume on model performance. (A) Effect of data volume on the 

distinctiveness of an individual’s tuning matrix (cf. Fig. 2D). With 10 minutes or more 

movie data, the within-subject similarity of tuning matrices was more than 6 standard 

deviations away from between-subject similarities on average, corresponding to a participant 

identification error rate of less than 1/109. (B) Effect of data volume on the distinctiveness 

of local tuning matrices (cf. Fig. 2E). Different lines denote different percentiles across 

searchlights, from an average searchlight (50th percentile) to a highly distinctive searchlight 

(99th percentile). (C) Predicting face-selectivity map with lower volumes of movie data (cf. 

Fig. 3C). Face-selectivity maps can be accurately predicted with 20 minutes of movie data, 

but the prediction performance continues to grow with more data. Based on psychometrics 

and the quality of predicted maps, we estimated the amount of localizer data needed 

to achieve a similar quality (right panel). For the Forrest dataset, 30 minutes of movie 

data works better than standard localizers (21 minutes). Dashed horizontal lines indicate 

Cronbach’s alpha (left panel) or the actual duration of localizer scans (right panel). (D) 

Predicting retinotopic maps based on less movie data (cf. Fig. 4C). (E) Quality of predicted 

response patterns for movie time points based on a model estimated from varying volumes 

of data (classification accuracy; cf. Fig. 5C and 5D). Binary classification results on the left 

panel; multiclass results on the right panel. Both were based on 100 PCs. To summarize, the 
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performance of our model continuously grows with more training data, but for certain tasks 

(e.g., individual identification, predicting category-selectivity and retinotopic maps), only a 

small amount of movie data (e.g., 30 minutes) is needed to achieve satisfying performance.
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Fig. 7. 
Schematic illustration of local functional template creation. (A) First, we concatenated all 

participants’ data in the searchlight along the vertices dimension and performed SVD on 

the concatenated data matrix. The representational geometry of the SVs is representative of 

the representational geometry of the training participants. For convenience, we only kept the 

first v(sl) SVs, where v(sl) is the number of vertices in the searchlight. (B) We concatenated 

all participants’ data along the time series dimension, and concatenated duplicated M(pc)’s in 

a similar manner. We derived a rotation matrix R using the orthogonal Procrustes algorithm, 

and applied it to M(pc) to derive the final local template M(sl). The rotation makes the 

functional topography of M(sl) also representative of the group of training participants. 

Together, these two steps create a local functional template that accurately reflects both 

(a) what information is encoded in the region, and (b) how the information is encoded on 

the cortical surface. (C) After creating a local template for each searchlight, these local 

templates were aggregated into a whole-brain template using weighted average.
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Fig. 8. 
Schematic illustration of modeling a participant’s brain functional organization as a linearly 

transformed functional template. (A) A participant’s brain responses constitute a data 

matrix, where rows are stimuli (e.g., time points in a movie) and columns are cortical 

vertices (left). Multiple vertices form a high-dimensional space, where each vertex is a 

dimension, and each stimulus is a point in the space (middle). Information is encoded in the 

distances between the points. Such information can be summarized using a representational 

dissimilarity matrix (RDM), where each entry is the (dis) similarity between a pair of stimuli 

(right). (B) The RDM of the template resembles that of a participant (right), but the data 

matrix is usually quite different (left). This is because different brains encode the same 

information using different cortical topographies—the vertices collectively perform similar 

functions across individuals, but the function for each single vertex is quite different across 

individuals. (C) The participant’s idiosyncratic topographies can be predicted by a rotation 

of the template’s feature space (middle), calculated with the Procrustes transformation. The 

rotation changes the topographies of the template and makes the spatial patterns (rows of 

the data matrix) more similar to the participant’s (left), without changing the information 

content, or the RDM (right). (D) A linear transformation of the template, calculated with 

ridge regression (warp hyperalignment, WHA), can fully predict a participant’s responses 

by modeling both the participant’s idiosyncratic topographies and idiosyncratic information 
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content; that is, both the “what” and “where” of a participant’s brain functional organization. 

Note that the schematic illustration is oversimplified; a typical fMRI data matrix contains 

thousands of stimuli/time points (rows) and tens of thousands of vertices (columns), and a 

real neural feature space is a high-dimensional space (hyperspace).
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Fig. 9. 
Schematic illustration of the warp hyperalignment (WHA) algorithm. (A) For each 

searchlight, we used ridge regression to derive a local transformation matrix that best 

predicted brain responses B(sl) using the functional template M(sl). (B) Local transformations 

were aggregated using a weighted average to derive a whole-brain transformation matrix 

W(p) for the participant p.
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Fig. 10. 
Schematic illustration of the k-fold bagging ensemble method. In classic bagging (bootstrap 

aggregating), a time point might be chosen as training data in every bootstrapped sample, 

making it unusable for validation. We combined bagging with the k-fold scheme to 

overcome this problem. In this schematic example, we use a movie that is 300 seconds 

long (TR = 1 second) and k = 5 for k-fold. (A) We divided the movie into 30 segments of 

10 seconds each, and we split the 30 segments into 5 subsets of equal length. Each subset is 

the candidate test data of a cross-validation fold. (B) For each fold, the time points that are 

at least 10 seconds away from any candidate test data are chosen as candidate training data. 

This ensures that training and test data are not temporally adjacent, and therefore the model 

cannot rely on temporal autocorrelation to make the prediction. (C) We resampled 300 time 

points with replacement from the candidate training data, and these 300 bootstrapped time 

points are the actual training data of the model. Note that some candidate training data are 

not chosen, and some time points are chosen more than once. (D) Besides candidate test 

data, additional time points can be used as test data as well, as long as they are also at least 

10 seconds away from any training data. For example, a segment immediately adjacent to 

two candidate test segments might not be chosen as candidate test data in the beginning; 

however, because it is far away from any training data, the segment can be used as test 

data as well. In other words, any training and test data are at least 10 seconds away in each 

cross-validation fold. In this process, we train five models in total, and each time point can 

be used as validation data for at least one of the five models.
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Fig. 11. 
Separating stimulus and neural tuning information using the INT model. (A) We used a 

group SVD to derive the normalized PCs, which we used as a basis set that contains 

stimulus information. (B) The stimulus information was factored out in the modeled brain 

responses, so that the derived tuning matrix T(p) is stimulus general. For example, estimates 

of T(p) based on different parts of the movie are highly similar. (C) The participant’s 

responses to new stimuli can be predicted using the new stimulus matrix S(new) and the 

participant’s tuning matrix T(p).
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