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Abstract: Optical neural networks (ONNs) have gained sig-

nificant attention due to their potential for high-speed and

energy-efficient computation in artificial intelligence. The

implementation of optical convolutions plays a vital role in

ONNs, as they are fundamental operations within neural

network architectures. However, state-of-the-art convolu-

tion architectures often suffer from redundant inputs, lead-

ing to substantial resource waste. Here, we demonstrate an

integrated optical convolution architecture that leverages

the inherent routing principles of arrayed waveguide grat-

ing (AWG) to execute the sliding of convolution kernel and

summation of results. M × N multiply–accumulate (MAC)

operations are facilitated by M + N units within a single

clock cycle, thus eliminating the redundancy. In the exper-

iment, we achieved 5 bit precision and 91.9 % accuracy in

the handwritten digit recognition task confirming the reli-

ability of our approach. Its redundancy-free architecture,

low power consumption, high compute density (8.53 teraOP

mm−1 s−1) and scalability make it a valuable contribution to

the field of optical neural networks, thereby paving the way
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1 Introduction

Convolutional neural networks (CNNs) have become indis-

pensable in various applications, such as image recogni-

tion and natural language processing [1–3]. The adoption of

CNNs has grown exponentially, creating higher demands for

efficient hardware implementations to maximize through-

put and overall efficiency. Importantly, convolutional lay-

ers account for over 90 % of computations in most CNN

architectures [4].

However, the hardware deployment efficiency of con-

volutions faces significant challenges due to inherent redun-

dancy and computational waste in convolution calcula-

tions [5]. The redundancy emerges from the convolution

operation’s overlapping nature, involving numerous mul-

tiplications and accumulations on identical input samples.

This occurs when a small kernel is sliding across a large

dataset, such as an image. At each position, a series of mul-

tiplications is carried out, and their results are summed.

The issue arises due to the kernel’s overlap with neighbor-

ing data segments, leading to repeated multiplications and

accumulations for these overlapping areas. Using multiple

devices or clock cycles for these calculations yields inef-

fective resource utilization, restraining real-time process-

ing capabilities. Addressing these issues becomes crucial

as computational demands continue to surge, presenting

formidable challenges to current computational hardware

platforms.

In response to the limitations of electronic computa-

tion, optical neural networks have emerged as one of the

most competitive candidates in the next-generation com-

puting hardware platform. Photonic chips leverage the

ultra-wide bandwidth of optoelectronic devices, enabling
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them to achieve clock frequencies 1–2 orders of magnitude

higher than existing electronic chips [6, 7]. The various

physical dimensions of light, including wavelength, mode,

and polarization, offer substantial computational paral-

lelism, leading to amanifold improvement in computational

efficiency [8, 9]. An essential advantage of optical compu-

tation lies in its propagation-as-computation of light [10,

11], which allows for ultra-low latency far beyond the

capabilities of traditional electronic chips [12, 13]. This

unique attribute opens up exciting possibilities for novel

applications, such as autonomous driving and ultrafast

science [14, 15].

Despite several demonstrations of optical convolutions

attempting to utilize the advantages of optical computing

mentioned above, they may have some degree of limita-

tions that need to be addressed. Solutions based on spa-

tial light modulator [16–18] encounter limitations related

to the bulky size of discrete devices, which hampers

effective integration. Metamaterial and on-chip diffraction

approaches [19, 20] have practicality issues due to the non-

reconfigurability of the convolution kernel. Dot product

schemes [13, 21] suffer from redundancy in convolution

manipulation, necessitating numerous redundant devices

and resulting in extremely low computational efficiency.

Delay line-based schemes [22–25] face challenges in system

scalability as they require a large number of huge-sized

delay lines, and the convolution operation takes multiple

clock cycles to execute due to the delay. Although on-chip

spatial Fourier transform scheme [26] reduces the device

size and number effectively, they can only handle cyclic

convolution for input and kernel sizes that are the same,

which significantly deviates from the application scenar-

ios of convolutional neural networks. Synthetic dimension

scheme [27] demands high-speed modulation to achieve

static convolution kernels, leading to a substantial increase

in power consumption. Importantly, most of the mentioned

schemes are to some extent limited by the inherent redun-

dancy in convolution computation, resulting in a decrease

in computation efficiency.

Here, we present a redundancy-free on-chip optical

convolution scheme based on arrayed waveguide grating

(AWG). It entails encoding input information into intensities

at various wavelengths and broadband intensity modula-

tors are positioned at different input ports to represent

the convolution kernel. Subsequently, wavelength routing

occurs through an AWG chip fabricated on the silicon-on-

insulator (SOI) platform. Finally, the convolution results

are obtained at the output ports. This approach effectively

overcomes the challenges mentioned earlier, enabling con-

volution to be implemented without redundancy. For an

input vector of size N and a kernel size of M, our scheme

requires onlyNmodulators for input vector encoding andM

broadband modulators for kernel encoding, accomplishing

computation in one clock cycle. The hardware utilization

efficiency has theoretically reached its maximum. In our

design, energy consumption occurs solely during the encod-

ing of the input vector and convolution kernel, where

we have minimized the number of devices. The convolu-

tion process itself remains entirely passive with nearly-

zero power consumption. Notably, since intensity summa-

tion takes place at the output ports, coherence is unnec-

essary. This not only reduces the overall system complex-

ity and costs but also offers potential support for cascad-

ing multiple layers of optical neural networks. The reli-

ability of our scheme is validated through experimental

verification, achieving 5 bit precision and 91.9 % accuracy

rate on a handwritten digit classification task using the

Modified National Institute of Standards and Technology

(MNIST) dataset. Additionally, we discuss the compara-

tive advantages of our approach compared to other on-

chip reconfigurable solutions. The theoretical computing

power density of our scheme can reach 8.53 TOPS mm−2,

which is comparable to the state-of-the-art metrics [28].

This significant advancement marks a stride forward

in the realm of integrated all-optical neural networks,

leading to the emergence of next-generation computing

platforms.

2 Principle and device design

The mathematical form of convolution is illustrated as fol-

lows: Consider an input signal x(n) of lengthN , where n rep-

resents the discrete index ranging from 0 toN − 1. Similarly,

we have a kernel h(m) of lengthM, where m represents the

discrete index ranging from 0 to M − 1. The convolution

operation can be expressed as:

y(n) =
M−1∑

m=0
x(n−m) × h(m) (1)

Here, y(n) represents the output signal at indexn, which

is obtained by multiplying each element of the input signal

x(n) with the corresponding element of the kernel h(m),

and then summing up the results. The index m represents

the shifting or sliding of the kernel over the input signal

for convolution. The output signal y(n) will have a length of

N +M − 1.

Figure 1 shows the photonic convolution core, which

loads input vector in frequency (or wavelength) domain,

loads kernel inmodulator array and distributes convolution
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Figure 1: Operation principle of the photonic convolution core with AWG chip.

results to AWG output ports in spatial domain. The input

data, represented by a vector X of length N , is encoded

into the intensity of various wavelengths from a multi-

wavelength light source. The frequency interval, denoted

as Δ f , matches the frequency spacing of the AWG. The

convolution kernel, a vectorH of lengthM, is encoded using

M intensity modulators. This process generatesM weighted

multi-wavelength information, which is then input through

M adjacent ports of the AWG and routed within it. Since the

frequency spacing of the AWGmatches that of the input vec-

tor, multiple wavelength information from the same input

port propagates to different output ports. The sliding of

the convolution kernel window is achieved through loading

information from adjacent input ports and the unique rout-

ing property of the AWG. Information with different wave-

lengths, each carrying distinct convolution kernel weights,

is routed through the AWG and combined at the output

ports, resulting in the convolution output atM+N − 1 ports.

The total number ofMACoperations isM × N , with thenum-

ber of operations given by 2 ×M × N . Figure 1 illustrates the

operational principle of the photonic convolution core with

N = 14 andM = 3. Given the constraints of on-chip vertical

optical fields, only a single spatial dimension remains after

eliminating the direction of light propagation. This makes

direct on-chip implementation of two-dimensional (2D) con-

volution a significant challenge. The principle of our archi-

tecture and the demonstration of our experiment are based

on one-dimensional (1D) convolution. Nonetheless, a 2D

convolution can be equivalently portrayed as a 1D convo-

lution by applying zero-padding to the kernel [27]. With

our method that encodes the convolution kernel using a

wideband modulator at the input ports, the zero-padding

merely involves omitting specific input ports. This negates

the need to increase the count of modulated devices and

ensures no redundancy is introduced during the 2D to 1D

transition. Our presented approach is tailored to implement

positive convolution kernels. To accommodate convolution

kernels spanning real-number parameters, one can decom-

pose a kernel into two separate entities, one with posi-

tive values and the other with negative. The final subtrac-

tion can be facilitated at the output ports using balanced

photodetectors.

The AWG is based on a commercial SOI wafer with a

220 nm top silicon thickness and SiO2 top cladding. The AWG

has a central wavelength of 1550 nm, a channel spacing of

100 GHz (i.e., 0.8 nm), and a free spectral range of 34.246 nm.

Both the arrayed waveguides and free propagation region

(FPR) are silicon ridge waveguides with an etch depth of

70 nm to reduce phase errors and sidewall scattering loss

in the arrayed waveguides. The AWG structure is shown in

Figure 2. It has 12 input channels and 27 output channels.

The input and output star couplers are overlapped to make

the device more compact, with a size of only 1.5 mm ×
1.5 mm. There are 185 arrayed waveguides, each consisting

of a bent waveguide and straight waveguide. The straight

waveguide width is 1.2 μm, the bent waveguide width is

800 nm, and the bent radius is between 47 and 53 μm.Tapers
are used between the straight and bent waveguides. The

star coupler radius is 353.877 μm. The adjacent arrayed

waveguide length difference is 19.394 μm, corresponding to
a grating order m = 35. The waveguide spacing is 3 μm,
both on the input/output star coupler circumference and on

the AWG circumference. To reduce coupling loss between

the arrayed waveguides and free propagation region, the

arrayed waveguide width on the grating circumference is

expanded to 2.8 μm. The input and output waveguides on

the star coupler circumference have a width of 1.5 μm.
The input and output channel numbers of the AWG

are shown in Figure 2. For a given input, lower numbered

output ports output longer wavelengths, while higher num-

bered ports output shorter wavelengths. Based on the cyclic

routing property of the AWG, for a fixed wavelength input,
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Figure 2: Schematic diagram of an overlapped star coupler AWG structure.

increasing the number of input port by one will cause the

corresponding output port number for that wavelength to

decrease by one.

The AWG features 12 input ports and has the capability

to route 16 wavelengths, allowing it to support a maximum

convolution size of N = 16 and M = 12. The AWG has 27

output channels to accommodate convolution size ofM +N

− 1. Note that the scale of the AWG can be further increased

and Many studies have already demonstrated larger-scale

AWGs [29–36]. As the number of input ports of the AWG

is equivalent to the size of the convolutional kernel, and

the number of wavelengths the AWG can demultiplex rep-

resents the size of the input vector. Previous work has pre-

sented the AWG with 512 input ports and 512 wavelengths

[34], indicating that the size of the input vector and kernel

could see an increase of one to two orders of magnitude

beyond our current demonstration in the future. Here, our

emphasis lies in exploring the untapped potential of AWG

in optical computing. Despite not pushing the AWG’s scale

to its limit in this work, the AWG chip we designed can still

reach a remarkable compute density.

3 Results

Figure 3(a) shows the experimental setup. First, we make

use of a broadband light source (Amonics ALS-CL-15) and an

optical spectral shaper (FinisarWaveShaper 1000S) together

to generate a multi-wavelength light source and encode

the input vector. The selection of the passband frequency

for the optical spectral shaper is determined based on the

measured AWG chip spectrum shown in Figure 3(d). The

spectrum is pre-measured using an optical spectrum ana-

lyzer (YOKOGAWAAQ6370C). Following that, the light power

is divided into three equal parts using a beam splitter,

and these three channels of signals are then fed into three

intensity modulators (JDS Uniphase 21049397, the half-wave

voltage is 5.9 V) to represent a 3 × 1 convolution kernel.

After routing through the AWG chip, the light is measured

using a photodetector array (LUSTER OPM-1008, InGaAs

photodetector, theworkingwavelength is 1530–1570 nmand

the sensitivity is −50 dBm) at the 16 output ports. The light
polarization is controlled by a PBS and PCs before coupling

into the intensity modulators and the grating coupler of

the chip. The whole system is controlled by a custom pro-

grammable voltage source. Figure 3(b) shows the overall

photo of the packaged layout, in which both thermoelectric

cooler (TEC) and vertical grating coupling have already been

packaged for temperature control and optical input/output

(I/O). Themicroscopic image of the fabricated AWG is shown

in Figure 3(c).

Even though the AWG chip can support a maximum of

16 wavelengths and 12 input ports, our experiment is con-

strained by the available equipment. Therefore, we employ

an AWG to carry out the convolution with an input vector

length of N = 14 and a convolution kernel size of M = 3.

We select 14 channels out of the 16 available wavelengths

shown in Figure 3(d), and select input Port 1 to Port 3 of AWG

chip, as depicted in Figure 2. The results are then measured

at output ports from No. 10 to No. 25.

In this section, we first characterized its computational

precision and verified the reliability of our photonic con-

volution core. Next, we conducted an experimental demon-

stration of the handwritten digit classification task using

optical CNN.

3.1 Characterization of compute precision

In Figure 4(a) and (b), we employed a Gaussian distributed

input vector and a [1, 0.3, 1] convolution kernel to visually

demonstrate the effect of our convolution. Initially, we

encoded the 14 wavelengths using the optical spectral

shaper, resulting in a Gaussian distribution. Then, by apply-

ing voltage to the modulators, we modulated the transmit-

tance of the three modulators to 1, 0.3, and 1, respectively,

as per the convolution kernel. Finally, the measurement

results were obtained from the detector array. The calcu-

lated and measured results are displayed in Figure 4(b).
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Figure 3: Experimental realization of the convolver. (a) Experimental setup. PC, Polarization controller; PBS, Polarizing beam splitter; PD, photo-

detector. (b) Overall photo of the packaged layout. The integrated photonic core is mounted on a thermoelectric cooler (TEC). The optical input and

output (I/O) are through the fiber arrays on the left and right sides. (c) Microscopic image of the fabricated AWG. (d) Measured transmission spectra

of 16 output ports for corresponding one input port.

We conducted tests on 1000 sets of random input vec-

tors and convolution kernels, yielding 16,000 data points, as

each convolution output had a length of 16. Each element

of the input vector was a random number between 0 and 1,

while each element of the convolution kernel was a random

number between0 and 1/3. This ensured that the output data

points ranged from 0 to 1. For a total of N data points, the

root mean square error (RMSE) was calculated as:

RMSE =

√√√√√
N∑
i=1

(
pi − qi

)2

N
(2)

Here, pi presents the ith data point of the measured

data, and qi represents the calculated result correspond-

ing to the ith data point, resulting in an RMSE of 0.0316.

Figure 4(d) illustrates the probability distribution of errors.

As the bit precision Nb is expressed as follows:

Nb = log2

(
𝜇max − 𝜇min

𝜎

)
(3)

where 𝜇max and 𝜇max are the maximum and minimum val-

ues of the output, respectively. 𝜎 is the standard deviation of

the errors between the experimental output and expected

output. Since our output range is 0–1, with an error stan-

dard deviation of 0.0310, the computational precision of

the system is determined to be 5 bits. Indeed, this result is

comparable to the precision of themajority of photonic com-

puting architectures. A 5 bit precision is already adequate

for many neural network inference scenarios.

3.2 Demonstration of handwritten digits
classification

In Figure 5(a),we employed aCNN for ten-class classification

of “0–9” hand-written digit images,where the convolutional

layer is implemented using photonic convolutional core.

The images are first resized to 12× 12 and then flattened into

a 144 × 1 vector. The photonic convolutional layer utilizes

sixteen 3 × 1 convolutional kernels, generating sixteen 146

× 1 featuremaps. To achieve the convolution of the long vec-

tor, it is converted into multiple short vector convolutions,



24 — S. Zhang et al.: Redundancy-free integrated optical convolver for optical neural networks

Figure 4: Precision characterization of the convolver. (a) A Gaussian distributed input vector. (b) The calculated and measured output results of the

input vector after convolution with the kernel [1, 0.3, 1]. (c) Scatter plot for convolution accuracy measurement with 1000 random inputs and kernels,

resulting in 16,000 data points. (d) Histogram of compute errors over 16,000 data samples.

Figure 5: Experimental results of a CNN. (a) The network structure of the CNN, where the orange part represents the optically implemented

convolutional layer. (b) The confusion matrix of recognizing 1000 digits in the MNIST test database.

which are subsequently encoded for optical execution. After

applying the ReLU non-linear activation function, the six-

teen 146× 1 featuremaps are reshaped into a 2336× 1 vector.

Considering that our approach currently only supports pos-

itive convolution kernels, we impose a constraint during the

training process, limiting the parameters of the convolution

layers to be positive.

The vector then passes through two fully connected

layers, each with 64 neurons activated by the ReLU func-

tion. The final layer consists of 10 neurons, activated by
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softmax, representing the output layer for classifica-

tion. Offline training using the backpropagation algorithm

(stochastic gradient descent) is performed to minimize

cross-entropy loss. We conducted ten-class classification

on 70,000 images from the MNIST dataset, using 60,000

images for training and a 5:1 split between the training

and validation sets. Additionally, 10,000 images are used for

testing. After 20 epochs, the theoretical accuracy reaches

95.1 %.

The experiment utilized the trained parameters to infer

1000 test images and achieved an accuracy of 91.9 %, as

shown in the confusion matrix in Figure 5(b). The devi-

ation of 3.2 % from the theoretical accuracy is primarily

attributed to the limited bit precision. It’s worth noting that

quantization was only applied during the final inference

stage. Introducing quantization earlier, during the training

process is expected to substantially reduce this deviation.

The constraint in bit precision arises from various factors,

including polarization state jitter, temperature drift, and

other sources of noise. However, these issues can be mit-

igated through various feedback adjustments [37–40] and

in-situ training [10, 41–44].

4 Discussion

Table 1 summarizes the comparison of our photonic con-

volution scheme with other mainstream reconfigurable on-

chip schemes in terms of several metrics. We have chosen

the performance in scenarios with input vector length N

and convolution kernel sizeM as our comparativemetric. In

our approach, we treat the input vector as rapidly updated,

while the convolution kernel is slowly refreshed. As a result,

the input vector needs to be encoded using high-speedmod-

ulation devices, whereas the nearly static convolution ker-

nel can be modulated using low-speed devices.

Our comparative metrics include the number of

high-speed modulation devices, the number of low-speed

modulation devices, and the clock cycles required to com-

plete the convolution operation. To represent the overall

computing resource utilization, we multiply the total num-

ber of devices with the clock cycles, where a lower value

indicates higher comprehensive computing efficiency for

the proposed approach.

It is essential to note that the synthetic dimension con-

volution scheme is not suitable for this comparison. This is

because its clock cycles should be defined based on the sam-

pling rate of modulating the convolution kernel rather than

the refresh rate of the input vector. The synthetic dimen-

sion convolution scheme requires a sampling rate much

higher than the input vector update speed formodulation to

obtain a static convolution kernel. Consequently, this results

in significant energy waste, making it unsuitable for fair

comparison with other approaches.

Compared with previous works, our scheme has sev-

eral advantages:

(a) Our approach achieves the minimal product of device

count and clock cycles, reducing this value to the the-

oretical minimum. As a result, our approach stands as

the only on-chip convolution scheme without redun-

dancy, making it unique and highly efficient.

(b) The entire convolution operation can be completed

in just one clock cycle. By capitalizing on the bene-

fits of ultra-low latency in optical computation, our

approach effectively leverages the ability of light to

perform computation during propagation. This char-

acteristic creates substantial opportunities for appli-

cations that place a strong emphasis on low latency,

providing distinctive advantages in such scenarios.

(c) Allowing the size of kernels to be smaller than inputs.

For CNNs, the kernel size is typically much smaller

than the size of input. Small convolution kernels are

widely used due to their effectiveness in capturing

local features [45], particularly in image processing

applications. The Fourier transform scheme has a lim-

itation in its applicability. It requires the input and

Table 1: Comparison among reconfigurable on-chip schemes.

Delay lines [24, 25]

Synthetic

dimension [27]

Fourier

transform [26]

Dot

product [13, 21]

AWG

(this work)

Number of fast modulated devices 1 N + 1 M + N − 1 M N

Number of slow modulated devices M 0 M + N − 1 M M

Total number of modulated devices M + 1 N + 1 2 × (N + M − 1) 2 × M M + N

Number of clock cycles N + M − 1 N/A 1 N + M − 1 1

Product of modulated devices and clock cycles (M + 1) × (N + M − 1) N/A 2 × (N + M − 1) 2 × M × (N + M − 1) M + N
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convolution kernel sizes to be the same, significantly

restricting its potential application scenarios.

(d) The ability to cascade with fully connected layers.

Existing convolutional neural network architectures

commonly involve cascading convolutional layers fol-

lowed by fully connected layers. However, the delay-

line-based approach outputs temporal sequence infor-

mation, and optical fully connected layers for such

temporal sequences are currently unavailable. Sim-

ilarly, Fourier-transform-based approaches require

coherence, which is prone to loss due to noise in cas-

cadedmulti-layer networks. In contrast, our approach

generates spatial information without any coherence

requirements. This characteristic allows it to be highly

compatible with the majority of current optical non-

linear activation functions [13, 46–49] and optical fully

connected layers [50, 51], facilitating seamless integra-

tion into all-optical neural network architectures.

The most distinctive aspect of our optical convolution

core is that the number ofmultiply-add operations isM ×N ,

while the number of implemented modulation devices isM

+N (including high-speed and low-speed devices). As power

consumption solely occurs in the modulation devices, the

power consumption per operation sharply decreases as the

scale ofM andN increases, leading to a substantial increase

in compute density as well.

Throughout this paper, our primary focus is to highlight

the immense potential of AWG for optical convolution oper-

ations, andwedidnot intentionally pursue the scale of AWG.

Nevertheless, our AWG chip can still theoretically achieve

an astonishing compute density of 8.53 TOPS/mm2, and the

calculation method is as follows:

2 × 12 × 16 × 50 GHz

1.5 mm × 1.5 mm
= 8.53 TOPS mm−2 (4)

In this calculation, the number 16 represents the max-

imum number of wavelengths, which corresponds to the

maximum input vector size. Similarly, the number 12 rep-

resents the maximum number of input ports, which is the

size of the convolution kernel. The factor of two in the

multiplication accounts for the fact that one multiply-add

operation involves two operands. The AWG chip is designed

with a frequency spacing of 100 GHz, allowing for a theoret-

ical maximum modulate rate of the input vector of 50 GHz,

which can be achieved through high-speed ring resonator

modulators. The total footprint of the entire AWG structure

is 1.5 mm × 1.5 mm. The area occupied by the number of

modulation devices (M + N) can be disregarded compared

to the quadratic growth of the number of operations.

Indeed, despite the traditional perception of AWGs

being known for their large footprint, we have success-

fully harnessed their unique characteristics to overcome the

inherent redundancy in convolution operations. This has

led to outstanding compute density performance metrics in

the photonic convolutional computing architecture.

We currently employ a spectral shaper for low-

speed processing of multi-wavelength signals due to the

constraints of high-speed interfaces. However, with the

advancements in commercial silicon photonics processing

platforms, the future holds potential for more integrated

on-chip implementations. Figure 6 presents a perspective

of such an AWG photonic convolver in the future. This

implementation is based on the same architecture as our

current experiment, but it utilizes a monolithic platform to

Figure 6: AWG photonic convolver based on the monolithic platform. FPGA, field programmable gate array; DAC, digital-to-analog converter;

ADC, analog-to-digital converter.
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increase computation speed and energy efficiency by poten-

tial orders of magnitude. In this proposed setup, a multi-

wavelength optical frequency comb is generated using a

distributed feedback laser combined with a silicon nitride

micro-cavity. This multi-wavelength signal is then intro-

duced into the silicon photonics chip. It first traverses a

swift carrier depletion micro-ring array for input vector

encoding. Following beam splitting, the signal undergoes

low-speed convolutional kernel encoding facilitated by a

thermally-tuned Mach-Zehnder interferometer. After the

routing of AWG, it is finally captured by high-speed Si–Ge

photodetectors. This system comprises a customized high-

speed digital-to-analog converter chip, an analog-to-digital

converter chip, and an FPGA chip, collaboratively working

to achieve optimal optical convolution performance.

5 Conclusions

In summary, we demonstrate an integrated optical con-

volution architecture that leverages AWG to execute M ×
N multiply-accumulate (MAC) operations through M + N

units, enabling the convolution to be completed directly

within one clock cycle. This achievement marks for the

first time a non-redundant convolution architecture on an

integrated optical platform. In our experimental valida-

tion, we achieve a precision of 5 bits and obtain 91.9 %

accuracy in a 10-class handwritten digit recognition task.

The theoretical computing power density of our architec-

ture reaches an outstanding 8.53 TOPS mm−2. Its ultra-low

computational latency and cascading scalability not only

significantly enhance the efficiency of optical convolution

computation but also establish a solid foundation for future

integrated all-optical convolutional neural networks, open-

ing up promising avenues for more efficient and powerful

optical computation platform.
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