Liver glucose-6-phosphatase activity is not modulated by physiological intracellular Ca^{2+} concentrations

Rosella FULCERI,* Giorgio BELLOMO,† Alessandra GAMBERUCCI* and Angelo BENEDETTI*! *Istituto di Patologia Generale, University of Siena, 53100 Siena, and tClinica Medica I. University of Pavia, 27100 Pavia, Italy

1. In the presence of MgATP and increasing amounts of added $Ca²⁺$, isolated liver microsomal vesicles accumulate approx. 10 nmol of Ca^{2+}/mg of protein and buffer ambient free Ca^{2+} at increasing concentrations (0.22–10.9 μ M). Under these experimental conditions, microsomal glucose-6-phosphatase activity is unaffected by the concentration of extravesicular free Ca²⁺. 2. Different levels of intravesicular Ca²⁺ were obtained by treating microsomes with the Ca²⁺ phophore A23187 and by stimulating active microsomal Ca^{2+} accumulation with P. (3 mM). In both instances, nicrosomal glucose-6-phosphatase activity is unaffected by the level of intravesicular Ca^{2+} .

INTRODUCTION

Liver microsomal glucose-6-phosphatase (G-6-Pase; EC 3.1.3.9) catalyses the terminal reaction of gluconeogenesis and glycogenolysis [1]. Since the rate of hepatic glycogenolysis is increased by the rise in cytosolic free Ca^{2+} levels [2], it seems logical that G-6-Pase activity might be also modulated by cytosolic free Ca^{2+} . In this respect, previous reports are conflicting. There have been reports from three independent laboratories that Ca²⁺ activates G-6-Pase activity in intact rat liver microsomes [3-5]. In contrast, other authors [6] concluded that free Ca²⁺ inhibits G-6-Pase activity of rat liver microsomes and of permeabilized rat hepatocytes. Discrepancies can be due to the experimental systems employed. In fact, G-6-Pase activity has been measured in the presence of non-physiologically high $Ca²⁺$ concentrations [4] or alternatively of high concentrations of EGTA in order to lower free Ca^{2+} to cytosol-like sub-micromolar levels [5,6]. In the latter condition, the EGTA- Ca^{2+} complex by itself inhibits microsomal G-6-Pase activity [7].

Against this background we have re-investigated the effect of $Ca²⁺$ on G-6-Pase activity of intact rat liver microsomes by using a different experimental approach. In particular, experiments have been performed under cytosol-like conditions with respect to the levels of free Ca²⁺ and in the absence of EGTA. To this end, liver microsomes have been allowed to buffer external free $Ca²⁺$ in the presence of ATP, and their G-6-Pase activity has been evaluated thereafter. Data reported indicate a lack of modulation by sub-micromolar concentration of Ca^{2+} on the rate of hydrolysis of glucose 6-phosphate (G-6-P) by liver microsomal G-6-Pase.

EXPERIMENTAL

Materials

ATP, G-6-P (disodium salt), phosphocreatine and creatine kinase (Sigma type III) were from Sigma, St. Louis, MO, U.S.A. [1-14C]Glucose 6-phosphate (49 mCi/mmol) was from DuPont-New England Nuclear, Dreieich, Germany. $Ca²⁺$ electrodes were purchased from lonetics Inc., Palo Alto, CA, U.S.A. All other chemicals were of analytical grade.

Preparation of liver microsomes

Male Sprague-Dawley rats (180-230 g) were used. Liver microsomes were prepared as reported previously [8]. Microsomal fractions were resuspended (approx. 80 mg of protein/ml) in a medium which had the following composition (mM): KCI, 100; NaCl, 20; MgCl₂, 5; Mops, 20, pH 7.2. Intactness of the microsomal membrane was ascertained by measuring the latency of mannose-6-phosphatase activity [4]. Mannose-6-phosphatase activity of microsomes was less than 10% of the activity of fully disrupted microsomal vesicles, in all the preparations employed.

Incubation procedures

Microsomes were incubated in a thermostatically regulated (37 °C) Plexiglas vessel in which a Ca^{2+} electrode and a reference electrode (Radiometer K4040) were immersed. The incubation medium (1 ml) was as follows (mM) : KCl, 100; NaCl, 20; MgCl_a, 5; Mops, 20 (pH 7.2); ATP, 3; phosphocreatine, 10; NaN₃ (as mitochondrial inhibitor), 5. Creatine kinase (10 units/ml) was also present. The Ca^{2+} electrode was calibrated as described elsewhere [9]. The amount of total Ca²⁺ present in the incubation medium before any Ca^{2+} addition (i.e. Ca^{2+} already present as a routine contaminant of solutions) ranged from 9 to 20 nmol/ml, as measured by atomic-absorption spectroscopy.

G-6-Pase assay

G-6-Pase activity was measured by using [14C]G-6-P [10]. Briefly, G-6-P (including trace amounts of [14C]G-6-P) in a small volume of the basic buffer (50 μ l) was added to the microsomal suspensions incubated as above. At the selected time points, aliquots (50 μ l) of the incubation mixture were transferred into tubes containing 0.5 ml of 0.3 M-ZnSO₄. After mixing, 0.5 ml of a saturated solution of $Ba(OH)_{2}$ was added and tubes were centrifuged to remove white precipitate. A 0.5 ml portion of the clear supernatant was used to measure [14C]glucose produced from [14C]G-6-P, by liquid-scintillation spectroscopy. More than 95% of glucose was recovered in the clear supernatant, as assessed by using standard [14C]glucose. Also, contamination of the clear supernatant with $[$ ¹⁴C]G-6-P was minimal (< 5%), as verified by using standard [14C]G-6-P.

Quantification of microsomal Ca2' accumulation

Microsomal Ca²⁺ accumulation was evaluated by measuring free Ca²⁺ in incubations with a Ca²⁺ electrode, and was quantified by titrating the amount of Ca^{2+} released by using the Ca^{2+} ionophore A23187 (2 μ M), by means of CaCl₂ additions to parallel incubations.

Abbreviations used: G-6-P, glucose 6-phosphate; G-6-Pase, glucose-6-phosphatase.

^t To whom correspondence should be addressed.

Fig. 1. Buffering at different free Ca²⁺ concentrations of ambient Ca²⁺ (a), and concomitant rate of hydrolysis of G-6-P (b) by rat liver microsomes

Rat liver microsomes (2 mg of protein/ml) were incubated in the presence of MgATP (see the Experimental section) and different amounts of added Ca²⁺ to obtain different free Ca²⁺ concentrations in the incubation mixture (panel a, traces a, b and c). At steady-state levels (arrows), $[{}^{14}C]G-6-P$ (0.1 μ Ci/ml, 100 μ M) was added to the incubation mixtures. At the indicated time points, labelled glucose was measured as reported the Experimental section (panel b): \bigcirc , trace a; \bigcirc , trace b; \bigtriangleup , trace c. Free Ca²⁺ concertration of incubations was measured with a Ca²⁺
the Experimental section (panel b): \bigcirc , trace a; \bigcirc , trace b;

Other assays

Protein was determined as reported previously [11], with BSA as standard.

RESULTS AND DISCUSSION

In a first set of experiments, the rate of hydrolysis of G-6-P by intact liver microsomes was evaluated in media containing $\frac{d}{dx}$ and the concentrations was evaluated in include containing m_{eff} concentrations of fice $Ca + f$ ins was done by anowing microsomes themselves to buffer external free $Ca²⁺$ at the desired concentrations. In fact, liver microsomal vesicles possess an oncentrations. In fact, fiver inicrosomal vesicles possess an ctive (MgA IP-dependent) Ca²⁺-sequestering system with low capacity $(< 10-15$ nmol/mg of protein) and high affinity (to 0.1–0.2 μ M) [12,13]. In the presence of MgATP and of different amounts of added Ca²⁺ (Fig. 1*a*), liver microsomes accumulated external Ca²⁺ until a steady-state level of approx. 10 nmol/mg of

cate of nydrolysis of G-6-P by liver microsomes

Liver microsomes were incubated in the presence of MgATP and diver microsomes were incubated in the presence of MgATP and \mathbf{r} different amounts of Ca^{2+} , and their G-6-Pase activity was subsequently measured with 100 μ M- and 500 μ M-G-6-P (see Fig. 1 and the Experimental section). Ambient free Ca^{2+} concentrations were measured with a Ca^{2+} electrode. Data are means \pm s.E.M. of four experiments.

protein was achieved. As a consequence of microsomal sequestration of external Ca^{2+} , desired steady-state levels of free $[Ca^{2+}]$ in the incubation media were obtained (Fig. la). Under these experimental conditions, the rate of hydrolysis by liver microsomes of added G-6-P (arrows, Fig. 1a) was evaluated. As shown in Fig. $l(b)$ and Table 1, liver microsomes linearly hydrolyse 100 μ M-G-6-P with a rate which was unaffected by external free $\frac{1}{2}$. Similar results with $\frac{1}{2}$. Similar results with $\frac{1}{2}$. Similar $\frac{1}{2}$. Similar results with $\frac{1}{2}$ $\frac{1}{2}$ order to minimize which condition with $\frac{1}{2}$ order to $\frac{1}{2}$ hepatocellular hepatocellular hepatocellular hepatocellular hepatocellular hepatocellular hepatocellular hepatocellular hepatocellular hepatoce In order to mimic cytosol-like (physiological) hepatocellular conditions, extravesicular free $[Ca^{2+}]$ from approx. 0.2 to 10 μ M and 100 μ M- or 500 μ M-G-6-P were employed. Indeed, cytosolic free $[Ca^{2+}]$ has been shown to be approx. 0.2 μ M in the resting (ce [Ca] has been shown to be approx. 0.2μ M in the results μ is interacted by the patchers $[12,13]$, and it firsts to 0.5-F μ and alter stimulation by extracellular agonists [12,13]. Also, G-6-P concentrations have been reported to be $0.05-0.1$ mm in the liver under resting conditions and $0.2-0.5$ mm after stimulation (e.g. by hormones) of glycolysis and/or glucone ogenesis $[14, 15]$.

Thus physiological cytosol-like concentrations of extravesicular Ca^{2+} appear unable to modulate the rate of hydrolysis of G-6-P by the liver microsomal G-6-Pase system. This system, however, comprises different components which act in concert in the intact microsomal vesicles [16]. In particular, G-6-P enters the vesicles through a transporter (T1), is hydrolysed intravesicularly by the phosphohydrolase component, and P_i and glucose produced are exported from the vesicles in the medium by two transporters, T2 and T3 respectively [16]. For this, the possibility exists that the rate of hydrolysis of G-6-P would be affected by the level of intravesicular Ca^{2+} , as suggested by others [17]. This possibility, however, is unlikely, since liver microsomes which have released the accumulated Ca^{2+} , after treatment with the Ca²⁺ ionophore A23187 (2 μ M; 2 min), exhibit the same G-6-Pase activity $(2.61 \pm 0.41 \text{ nmol of glucose/min per mg of protein})$; mean \pm s.e.m., $n = 3$) as those loaded with Ca²⁺ up to their maximal capacity $(2.65 \pm 0.53 \text{ nmol of glucose/min per mg of})$ protein; mean \pm s.e.m., $n = 3$; experimental conditions as in Fig. 1*a*, trace a). After the collapse of the Ca²⁺ gradient by A23187,

Table 2. Rate of hydrolysis of G-6-P by liver microsomes preloaded with different amounts of Ca^{2+} in the presence of P_i

Liver microsomes were incubated in the presence of MgATP, ³ mM- P_i and increasing concentrations of added Ca^{2+} (from 5 to 30 nmol/mg of protein) until free Ca²⁺ concentration of the medium was lowered to approx. $0.2 \mu \text{m}$ as described in the Experimental section. Microsomal G-6-Pase activity was subsequently measured with 100 μ M- or 500 μ M-G-6-P, as described in the legend to Fig. 1 and in the Experimental section. Parallel incubations in each experiment were employed to quantify microsomal Ca²⁺ accumulation as described in the Experimental section. Data are $means \pm s.E.M.$ of three experiments or means of two experiments.

intravesicular $Ca²⁺$ concentration should be the same as that of the medium (i.e. 5–6 μ M), whereas within Ca²⁺-loaded vesicles a concentration of approx. ³ mm can be envisaged. The latter value is calculated on the basis of the intravesicular space volume, $6.4 \pm 0.7 \mu$ l/mg of microsomal protein, reported by others [18].

Previous reports from our laboratory have shown [19,20] that liver microsomes can co-accumulate Ca^{2+} and P_i anions in the presence of MgATP, provided that inorganic phosphates or G-6-P are also present. In the latter case, the hydrolysis of G-6-P by G-6-Pase within the microsomal lumen is the source of accumulated P , [19]. In the absence of G-6-P, extravesicular inorganic phosphates and $Ca²⁺$ are co-sequestered by energized microsomes [20]. If similar mechanisms are operative in the intact hepatocyte, high amounts of Ca^{2+} (and P_i) could be stored in the endoplasmic reticulum. On this basis, experiments have been also performed to see if high intramicrosomal levels of Ca^{2+} (and P_i) can affect the rate of hydrolysis of G-6-P by the microsomal G-6-Pase system. As shown in Table 2, in the presence of MgATP and 3 mm-P_i liver microsomes accumulate Ca²⁺ until the external free [Ca²⁺] is lowered to 0.2 μ M. This permits attainment of progressively higher intravesicular Ca^{2+} levels, from 12 to 40 nmol of Ca^{2+}/mg of protein. The rate of G-6-P hydrolysis, however,

Received 28 January 1991/14 February 1991; accepted 18 February 1991

exhibited by microsomes in all the conditions is unmodified. A small inhibition was present merely as an effect of the inclusion of 3 mm-P_1 in the system (Table 2; compare also Table 1).

The reported data compellingly indicate that liver microsomal G-6-Pase activity is not regulated by extravesicular as well as intravesicular Ca2". At present, although under physiopathological and/or nutritional conditions the amount of G-6-Pase can be increased or decreased [1], no short-term regulation of the enzyme has been definitively proved [16,21].

We thank Mrs. Cristina Pallini for technical assistance.

REFERENCES

- 1. Nordlie, R. C. & Sukalski, K. A. (1985) in The Enzymes of Biological Membranes (Martonosi, A. N., ed.), vol. 2, pp. 349-398, Plenum Publishing Corp., New York
- 2. Cohen, P. (1983) in Control of Enzyme Activity (Cohen, P., ed.), 2nd edn., pp. 42-71, Chapman and Hall, London and New York
- 3. Yamaguchi, M., Mori, S. & Suketa, Y. (1989) Chem. Pharm. Bull. 37, 388-389
- 4. Waddell, I. D., Gibb, L. & Burchell, A. (1990) Biochem. J. 267, 549-551
- 5. Mithieux, G., Vega, F., Beylot, M. & Riou, J.-P. (1990) J. Biol. Chem. 265, 7257-7259
- 6. van de Werve, G. (1989) J. Biol. Chem. 264, 6033-6036
- 7. Mithieux, G., Vega, F. & Riou, J.-P. (1990) J. Biol. Chem. 265, 20364-20368
- 8. Henne, V. & S6ling, H. D. (1986) FEBS Lett. 202, 267-273
- 9. Tsien, R. Y. & Rink, T. J. (1981) J. Neurosci. Methods 4, 73-86
- 10. Kitcher, S. A., Siddle, K. & Luzio, J. P. (1978) Anal. Biochem. 88, 29-36
- 11. Lowry, 0. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) J. Biol. Chem. 193, 265-275
- 12. Carafoli, E. (1987) Annu. Rev. Biochem. 56, 395-433
- 13. Gerok, W., Heilmann, C. & Spamer, C. (1990) in Intracellular Calcium Regulation (Bronner, F., ed.), pp. 139-162, Alan R. Liss, New York
- 14. Hers, H. G. (1976) Annu. Rev. Biochem. 45, 167-189
- 15. Christ, B., Probst, I. & Jungermann, K. (1986) Biochem. J. 238, 185-191
- 16. Burchell, A. (1990) FASEB J. 4, 2978-2988
- 17. van de Werve, G. & Vidal, H. (1990) Biochem. J. 270, 837-841
- 18. Brattin, W. J., Waller, R. L. & Recknagel, R. 0. (1982) J. Biol. Chem. 257, 10044-10051
- 19. Benedetti, A., Fulceri, R. & Comporti, M. (1985) Biochim. Biophys. Acta 816, 267-277
- 20. Fulceri, R., Bellomo, G., Gamberucci, A. & Benedetti, A. (1990) Biochem. J. 272, 549-552
- 21. Burchell, A. & Waddell, I. D. (1990) in Genetics and Human Nutrition (Randle, P. J., Bell, J. & Scott, J., eds.), pp. 93-110, J. Libbey and Co., London