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INTRODUCTION 
 
Coronary atherosclerotic unstable plaques may undergo 
spontaneous erosion, rupture, or fissuring during 
percutaneous coronary intervention (PCI), and the 
resulting fragments are washed into distal coronary 
microcirculation by blood flow, causing CME, which is 

a common and challenging complication during the 
perioperative period of PCI clinically [1]. CME may 
lead to poor local blood supply of the subendocardial 
myocardium and cause myocardial microinfarction 
through microvascular vasoconstriction and occlusion, 
ultimately resulting in the progressive decline of cardiac 
function and the occurrence of malignant arrhythmias 
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ABSTRACT 
 
Coronary microembolization (CME)-induced inflammatory response and cardiomyocyte apoptosis are the main 
contributors to CME-associated myocardial dysfunction. Bezafibrate, a peroxisome proliferator-activated 
receptors (PPARs) agonist, has displayed various benefits in different types of diseases. However, it is unknown 
whether Bezafibrate possesses a protective effect in myocardial dysfunction against CME. In this study, we 
aimed to investigate the pharmacological function of Bezafibrate in CME-induced insults in myocardial injury 
and progressive cardiac dysfunction and explore the underlying mechanism. A CME model was established in 
rats, and cardiac function was detected. The levels of injury biomarkers in serum including CK-MB, AST, and 
LDH were determined using commercial kits, and pro-inflammatory mediators including TNF-α and IL-6 were 
detected using ELISA kits. Our results indicate that Bezafibrate improved cardiac function after CME induction. 
Bezafibrate reduced the release of myocardial injury indicators such as CK-MB, AST, and LDH in CME rats. We 
also found that Bezafibrate ameliorated oxidative stress by increasing the levels of the antioxidant GPx and the 
activity of SOD and reducing the levels of TBARS and the activity of NOX. Bezafibrate inhibited the expression of 
pro-inflammatory cytokines such as TNF-α and IL-6. Importantly, Bezafibrate was found to mitigate CME-
induced myocardial apoptosis by increasing the expression of Bcl-2 and reducing the levels of Bax and cleaved 
caspase-3. Mechanistically, Bezafibrate could prevent the activation of p38 MAPK/NF-κB signaling. These 
findings suggest that Bezafibrate may be a candidate therapeutic agent for cardioprotection against CME in 
clinical applications.  
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[2]. During reperfusion therapy, patients with CME 
have a poor prognosis and a high incidence of major 
adverse cardiac events in the long term [3]. It has been 
reported that the incidence of CME is about 15-20% in 
patients with acute coronary syndrome (ACS) during 
and after PCI, and even up to 45% in high-risk patients 
[4, 5]. In recent years, with the progression of clinical 
and basic research, it has been found that myocardial 
injury caused by CME is closely related to local 
inflammatory injury, myocardial cell apoptosis, 
autophagy, and oxidative stress (OS) [6–9]. Skyschally 
et al. found that the recruitment of inflammatory cells 
and the increase of inflammatory cytokines such as 
TNF-α and IL-6 in the myocardial micro-infarction 
region are the main causes of myocardial contractile 
dysfunction after CME [10]. Wang et al. found that 
inhibiting the PTEN gene related to inflammation can 
alleviate myocardial inflammation after CME in 
miniature pigs and improve cardiac function [11]. 
Therefore, multiple genes and signaling pathways 
related to inflammatory reactions participate in the 
regulation of myocardial injury after CME. However, 
the specific mechanism of myocardial injury caused by 
CME remains to be wholly clarified. Although some 
measures such as intracoronary application of 
nitroglycerin, thrombolytics, GPII b/IIIa receptor 
antagonists, calcium channel blockers, or direct 
mechanical thrombus aspiration can improve blood flow 
disorders after CME, the long-term prognosis of 
patients has not been significantly enhanced [12–14]. 
Therefore, exploring the pathogenesis of myocardial 
injury caused by CME through myocardial apoptosis 
and inflammatory cascade mechanisms may deepen the 
understanding of CME and provide new ideas and 
targets for its prevention and treatment. 
 
Peroxisome proliferator-activated receptors (PPARs) 
belong to the nuclear receptor superfamily of ligand-
activated transcription factors [15]. PPAR-α, a subtype 
of the PPARs, is highly expressed in the heart and can 
regulate the lipid metabolism homeostasis [16]. 
Previous studies have found that cardiac deficiency of 
PPAR-α may result in myosin dysfunction [17]. 
Bezafibrate (BEZ) is the only drug among marketed 
drugs that can simultaneously agonize all three subtypes 
of PPAR receptors. BEZ is mainly used for the 
treatment of hyperlipidemia [18, 19]. Both clinical and 
basic experiments have shown that BEZ is beneficial for 
the prevention and treatment of diabetes and its 
complications, especially in reducing the risk of 
cardiovascular diseases [20]. In recent years, BEZ has 
achieved significant effects in inflammation control 
[21], antioxidation [22], and anti-apoptosis [23]. 
Furthermore, BEZ reduces the incidence of myocardial 
infarction and lowers the risk of cardiac mortality in 
patients with metabolic syndrome [24]. In a mouse 

model of Barth syndrome, BEZ showed its beneficial 
effect on cardiac function [25]. However, the protective 
effect of BEZ on myocardial injury induced by CME is 
currently unclear. Here, we aimed to investigate the 
reparative effect of BEZ on myocardial injury in a CME 
rat model and explore the underlying mechanism, 
intending to discover more potential therapeutic 
strategies for clinical applications. 
 
MATERIALS AND METHODS 
 
Animals, modeling, and grouping 
 
48 SD male rats (7-9 weeks) were obtained from Vital 
River (Beijing, China) and divided into 4 groups (n=12/ 
each group): Sham group, coronary microembolization 
(CME), CME+ BEZ (200 mg/kg/day), CME+ BEZ (400 
mg/kg/day). The rats were subjected to a 12-h light/dark 
cycle with unrestricted access to food and water at a 
constant temperature of 23 ± 2° C. The animal experiment 
protocols executed in this study were approved by the 
Institutional Animal Care and Use Committee of 
Dongguan Songshan Lake Central Hospital. Before the 
establishment of CME, rats in the CME + BEZ (200 
mg/kg/day) and CME +BEZ (400 mg/kg/day) groups 
were given BEZ at a dosage of 200 mg/kg or 400 mg/kg 
per day respectively by gavage for 7 days. The dosage of 
BEZ (Cat#54064ES50, Yeasen Biotechnology (Shanghai) 
Co., Ltd. China) was chosen based on previous studies 
[26, 27]. The construction of the CME model was 
performed following previous studies with minor 
modifications [28]. After weighing rats, they were 
anesthetized with 30 mg/kg of 1% pentobarbital sodium 
injected intraperitoneally. Once rats were in a good 
anesthetic state, they were fixed in a supine position on a 
small animal operating table. The hair on the chest was 
then shaved using an electric trimmer, and the trachea was 
intubated and connected to a ventilator. After confirming 
that the respiratory movement of both sides of the chest 
was normal, the anterior chest wall was disinfected with 
iodine, and a sterile surgical drape and towel were placed 
and fixed. The left chest wall from the second to the fifth 
rib was exposed as the surgical field. The chest wall skin 
was incised layer by layer along the left edge of the 
sternum, and the chest muscles were bluntly separated. 
The third to the fifth rib were cut until the heart was fully 
exposed. Immediately after opening the chest wall using a 
retractor, the pericardium was removed by carefully 
tearing it apart using forceps. The aortic arch at the root of 
the ascending aorta was clamped with hemostatic forceps, 
and the heart was lifted using a blunt-tipped small hook. A 
micro embolus ball was aspirated into an insulin needle, 
which was then quickly injected into the myocardium 
through the apex of the heart after which the needle was 
rotated out. After the aortic arch clamp was released 12 
seconds later, the heartbeat was observed. When the 
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heartbeat returned to a normal rhythm, the heart was 
returned to its original position. After there was no 
bleeding in the chest cavity or at the injection site of the 
myocardium, the chest wall muscles and skin were 
sutured layer by layer. The surgical procedure was 
performed gently and strictly under aseptic conditions. 
After closing the incision, the surgical field was 
disinfected again and wrapped with aseptic gauze. Rats 
were placed on a postoperative animal warming pad at 
37° C to recover and their respiratory changes were 
closely monitored. When rats resumed spontaneous 
respiration and could be weaned off the ventilator, the 
tracheal tube was removed and they were placed in a 
clean rat cage for rest. In the Sham group, an equal 
volume of sterile physiological saline instead of the micro 
embolus ball was injected into the myocardium through 
the apex of the heart during surgery, and all other surgical 
procedures were identical.  
 
The detection of the cardiac function in rats 
 
Cardiac function was detected using an ultrasound 
instrument from Philip Technologies with parameters 
including left ventricular ejection fraction (LVEF), left 
ventricular fractional shortening (LVFS), cardiac output 
(CO), and left ventricular end-diastolic diameter 
(LVEDd) [29]. 
 
The detection of the cardiac injury biomarkers in 
serum 
 
Blood was collected from each animal to achieve the 
serum, followed by detecting the levels of CK-MB 
(Cat#ml092665, Shanghai Enzyme-linked Biotechnology 
Co., Ltd.), AST (Cat#ml092714, Shanghai Enzyme-
linked Biotechnology Co., Ltd.), and LDH 
(Cat#ml095184, Shanghai Enzyme-linked Biotechnology 
Co., Ltd.) with an automated biochemical analyzer 
(Beckman Coulter, USA). 
 
Measurement of OS parameters in cardiac tissues 
 
After sacrificing the animals, the cardiac tissues were 
collected and the homogenate was obtained, the 
protein content of which was determined using the 
BCA method (Cat#P0011, Beyotime, Beijing, China). 
The GPx (Cat#ml077381, Shanghai Enzyme-linked 
Biotechnology Co., Ltd. China) level, SOD activity 
(Cat#ml092619, Shanghai Enzyme-linked 
Biotechnology Co., Ltd. China), TBARS level (KL-
TBARS-Ra, Shanghai kanglang Biotechnology Co., 
Ltd), and NOX (Cat#ml092596, Shanghai Enzyme-
linked Biotechnology Co., Ltd. China) activity in 
cardiac tissues were determined using the method 
described by Gholami [30], Beyer [31], Chatterjee 
[32], and Li [33], respectively.  

ELISA 
 
A 96-well plate was taken out and the standard solution 
was added to the standard group according to the 
standard sequence, with distilled water added to the 
blank control group, and the supernatant collected from 
centrifugated homogenate of cardiac tissues added to 
the sample group. Reaction wells were sealed with 
sealing tape and incubated for 2.5 h. Enzyme conjugate 
solution was added to the standard and sample groups 
and incubated with slight shaking for 45 min. After 
introducing the TMB solution, the sample was cultured 
for 20 min, followed by adding the stop solution. After 
achieving the OD value using the microplate reader 
(MD, USA), the standard curve was drawn, and the 
concentration of inflammatory cytokines was 
calculated. TNF-α Elisa kit (Cat#ml002953, Shanghai 
Enzyme-linked Biotechnology Co., Ltd. China), IL-6 
Elisa kit (Cat#ml102828Shanghai Enzyme-linked 
Biotechnology Co., Ltd. China). 
 
TUNEL staining assay 
 
Frozen sections of cardiac tissue were prepared with a 
thickness of 8-12 μm. An appropriate amount of 
TUNEL reaction solution was added, and the slides 
were incubated in a 37° C incubator for 30 min. After 
the sections were air-dried, a freshly prepared DAB 
staining solution was added. Positive cells were 
identified by the presence of a brown nucleus. The 
slides were rinsed with water to terminate the staining 
reaction. The sections were counterstained with 
hematoxylin for approximately 3 min. Finally, the slides 
were dehydrated and sealed with neutral gum. Eight 
high-power fields (×200) were counted for each 
specimen, including the positive cells and all other cells. 
The apoptosis rate (%) was calculated as the number of 
positive cells divided by the total number of cells 
×100%. Each slide was read by two observers and the 
average value was calculated [34]. 
 
Western blotting assay 
 
The rat cardiac tissue was disrupted with RIPA lysis 
buffer, and cytosolic and nuclear proteins were 
extracted. After determining its concentration, the 
protein was denatured and equivalent samples were 
loaded onto an SDS-PAGE gel for electrophoresis. 
The gel was transferred onto a membrane, which was 
blocked with 5% milk for 2 h. Then, primary 
antibodies of Bax (1:1500, Cat#ab216494, Abcam, 
US), Bcl-2 (1:2500, Cat#ab32370, Abcam, US), 
cleaved caspase-3 (1:1000, Cat##9661, Cell signaling, 
US), p-p38 (1:800, Cat#4511, Cell signaling, US), 
p38 (1:2000, Cat#8690, Cell signaling, US), NF-κB 
p65 (1:3000, Cat#8242, Cell signaling, US), and  
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β-actin (1:2000, Cat#ab8227, Abcam, US) were added 
and incubated overnight at 4° C. The next day, the 
membrane was washed with TBST and 1:1000 diluted 
horseradish peroxidase-labeled secondary antibody 
(1:3000, Cat#ab288151, Abcam, US) was added and 
incubated for 2 h. The membrane was washed with 
TBST and the ECL reagent was added for exposure. 
The gel was imaged using a chemiluminescent gel 
imaging system. The grayscale values of the bands 
were quantified using Image J software [35].  
 
Statistical analysis 
 
Statistical analysis was performed using SPSS 21.0 
software. The results of statistical analysis were 
expressed as mean ± standard deviation. One-way 
analysis of variance was used for multiple comparisons 
between groups. Bonferroni analysis was used as a post-
hoc test. P<0.05 was considered statistically significant. 
 
Data availability 
 
The data is available upon reasonable request from the 
corresponding author. 
 
RESULTS 
 
BEZ improved cardiac function after CME 
induction 
 
Firstly, the cardiac function of each animal was 
evaluated. The value of LVEF was markedly reduced 
from 78.2% to 53.3%, which was reversed to 63.6% and 
70.5% by 200 mg/kg and 400 mg/kg BEZ, respectively 
(Figure 1A). The LVFS values in the Sham, CME, 
CME+ 200 mg/kg BEZ, and CME+ 400 mg/kg BEZ 
groups were 43.6%, 22.7%, 30.8%, and 36.6%, 
respectively (Figure 1B). The CO value was markedly 
declined in CME rats but sharply elevated by 200 
mg/kg and 400 mg/kg BEZ (Figure 1C). Furthermore, 
the LVEDd value was notably increased from 5.32 mm 
to 8.21 mm in CME rats then sharply reduced to 7.02 
and 6.13 mm by 200 mg/kg and 400 mg/kg BEZ, 
respectively (Figure 1D). The impaired cardiac function 
in CME rats was alleviated by BEZ. 
 
BEZ ameliorated the release of cardiac injury 
indicators in CME rats 
 
The CK-MB levels in the Sham, CME, CME+ 200 
mg/kg BEZ, and CME+ 400 mg/kg BEZ groups were 
311.5, 825.8, 611.1, and 508.8 U/L, respectively (Figure 
2A). The AST content in CME rats was increased from 
163.2 U/L to 551.7 U/L, which was sharply reduced to 
387.6 and 305.3 U/L by 200 mg/kg and 400 mg/kg 
BEZ, respectively (Figure 2B). Moreover, the LDH 

release in the Sham, CME, CME+ 200 mg/kg BEZ, and 
CME+ 400 mg/kg BEZ groups was 269.5, 661.6, 487.3, 
and 403.6 U/L, respectively (Figure 2C). The cardiac 
injury in CME rats was markedly ameliorated by BEZ.  
 
BEZ alleviated OS in cardiac tissues of CME rats 
 
OS is found to participate in the development of CME-
induced cardiac injury [36]. The GPx content in cardiac 
tissues of CME rats was sharply declined but markedly 
increased by 200 mg/kg and 400 mg/kg BEZ (Figure 
3A). Furthermore, the SOD activity was decreased from 
76.1 to 50.6 U/mg in CME rats, then markedly elevated 
to 59.9 and 68.2 U/mg by 200 mg/kg and 400 mg/kg 
BEZ, respectively (Figure 3B). The TBARS level in the 
Sham, CME, CME+ 200 mg/kg BEZ, and CME+ 400 
mg/kg BEZ groups was 0.27, 0.39, 0.33, and 0.29 
nmol/g, respectively (Figure 3C). Moreover, the NOX 
activity was remarkably increased from 92.1 to 197.6 
U/mg protein, which was largely reduced to 154.6 and 
135.2 U/mg protein by 200 mg/kg and 400 mg/kg BEZ, 
respectively (Figure 3D). The OS state evoked in CME 
rats was repressed by BEZ. 
 
BEZ inhibited the release of pro-inflammatory 
mediators 
 
Enhanced inflammation is one of the main inducers of 
CME-induced cardiac injury [37]. The plasma TNF-α 
level in CME rats was largely increased from 24.6 to 
46.2 pg/ml, which was remarkably repressed to 35.3 
and 29.5 pg/ml by 200 mg/kg and 400 mg/kg BEZ, 
respectively (Figure 4A). Furthermore, the plasma IL-6 
levels in the Sham, CME, CME+ 200 mg/kg BEZ, and 
CME+ 400 mg/kg BEZ groups were 42.1, 83.8, 65.7, 
and 51.3 pg/ml, respectively (Figure 4B). The enhanced 
inflammation in CME rats was alleviated by BEZ. 
 
BEZ suppressed myocardial apoptosis in cardiac 
tissues after CME induction 
 
The apoptosis in myocardial tissues was evaluated using 
the TUNEL staining assay. The rate of myocardial 
apoptosis in CME rats was greatly elevated from 6.7% 
to 24.5%, which was markedly reduced to 17.3% and 
11.5% by 200 mg/kg and 400 mg/kg BEZ, respectively 
(Figure 5), implying an anti-apoptotic property of BEZ 
in CME rats. 
 
The effects of BEZ in the expression of Bax, Bcl-2, 
and cleaved caspase-3 
 
Subsequently, the levels of apoptotic biomarkers in 
cardiac tissues were determined. The levels of Bax and 
cleaved caspase-3 in cardiac tissues were sharply 
increased, while the Bcl-2 level was markedly decreased 
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in CME rats, all of which were remarkably reversed by 
200 mg/kg and 400 mg/kg BEZ (Figure 6A, 6B). 
 
BEZ prevented activation of p38 MAPK/NF-κB 
signaling after CME induction 
 
p38 MAPK and NF-κB signaling are claimed to 
participate in the processing of CME-induced cardiac 
injury [38, 39]. Herein, the p-p38/p38 and nuclear NF-
κB p65 levels were found sharply increased in CME 
rats but markedly repressed by 200 mg/kg and 400 
mg/kg BEZ (Figure 7A, 7B), suggesting a repressive 

function of BEZ against p38 MAPK/NF-κB signaling in 
CME rats. 
 
DISCUSSION 
 
CME reportedly contributes to myocardial injury, which 
is closely related to the mortality rate of heart failure 
and the hospitalization rate within one year after PCI 
treatment in patients with ST-segment elevation 
myocardial infarction [40]. The inflammatory response 
following CME has been reported in several studies [41, 
42], and it is currently believed that the myocardial 

 

 
 

Figure 1. Bezafibrate improved cardiac function after coronary microembolization (CME) induction. (A) Left ventricular ejection 
fraction (LVEF); (B) Left ventricular fractional shortening (LVFS); (C) Cardiac output (CO); (D) Left ventricular end-diastolic diameter (LVEDd) 
(n=12, **, p<0.01 vs. control group; #, ##, p<0.05, 0.01 vs. CME group).  
 

 
 

Figure 2. Bezafibrate ameliorated release of the myocardial injury indicators in CME rats. (A) The CK-MB level; (B) The AST level; 
(C) The LDH level (n=12, **, p<0.01 vs. control group; #, ##, p<0.05, 0.01 vs. CME group). 
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Figure 3. Bezafibrate ameliorated oxidative stress in cardiac tissues of CME rats. (A) GPx levels; (B) SOD activity; (C) TBARS level; 
(D) NOX activity (n=12, **, p<0.01 vs. control group; #, ##, p<0.05, 0.01 vs. CME group). 
 

 
 

Figure 4. Bezafibrate inhibited the expression of pro-inflammatory mediators TNF-α and IL-6 against CME. (A) Plasma levels of 
TNF-α; (B) Plasma levels of IL-6 (n=12, **, p<0.01 vs. control group; #, ##, p<0.05, 0.01 vs. CME group). 
 

 
 

Figure 5. Bezafibrate suppressed myocardial apoptosis after CME induction. The levels of myocardial apoptosis were assayed using 
the TUNEL assay (n=12, **, p<0.01 vs. control group; #, ##, p<0.05, 0.01 vs. CME group).  
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Figure 6. The effects of Bezafibrate in the expression of Bax, Bcl-2, and cleaved caspase-3 in cardiac tissues of CME rats.  
(A) Representative images of western blot results of Bax, Bcl-2, and cleaved caspase-3; (B) Quantification of Bax, Bcl-2, and cleaved caspase-3 
(n=12, **, p<0.01 vs. control group; #, ##, p<0.05, 0.01 vs. CME group). 
 

 
 

Figure 7. Bezafibrate prevented activation of the p38 MAPK/NF-κB signaling after CME induction. (A) The levels of p-p38/p38; 
(B) Protein expression of nuclear NF-κB p65 (n=12, **, p<0.01 vs. control group; #, ##, p<0.05, 0.01 vs. CME group). 
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inflammatory response caused by CME may be the 
main cause of myocardial contractile dysfunction. 
Following the occurrence of CME, a large number of 
inflammatory cells infiltrate the myocardial 
microinfarction lesions, accompanied by the release of a 
large number of inflammatory cytokines, leading to 
local inflammatory reactions in the myocardium. 
Moreover, CME causes inflammation not only in and 
around the microinfarction, but also activates 
microcirculatory inflammatory reactions, and other 
parts of the “normal” myocardium show inflammatory 
factor expression and massive exudation of 
inflammatory cells [37, 43]. The inflammatory response 
produces a large number of inflammatory cytokines, 
such as TNF-α and IL-1β, which cause myocardial 
injury and induce myocardial contractile dysfunction 
through various pathways, including promoting 
myocardial cell apoptosis and expressing adhesion 
molecules [44]. In addition, several studies have shown 
that OS significantly participates in myocardial injury 
caused by CME [36, 45]. Herein, consistent with data 
presented by Yuan [46], impaired cardiac function and 
increased release of cardiac injury indicators were 
observed in CME rats, which were remarkably 
alleviated by BEZ, suggesting a protective function of 
BEZ against CME-evoked cardiac injury. Moreover, the 
aggravated OS state and inflammatory response 
observed in CME rats were in line with the researches 
by Xue [36] and Li [47]. Following the administration 
of BEZ, the OS and inflammation were markedly 
ameliorated, implying that the function of BEZ might 
be correlated to the inhibition of OS and inflammation. 
 
CME-evoked myocardial cell apoptosis is one of the 
reasons for the decrease in heart function [48, 49]. 
Endogenous and exogenous apoptosis are reported. 
The endogenous apoptotic pathway, also known as the 
mitochondrial-mediated cell apoptotic pathway, is 
initiated by cytochrome C (Cyt-c) released from 
damaged mitochondria into the cytoplasm [50]. 
Released Cyt-c binds to apoptosis-related factor 1 
(Apaf1), deoxyadenosine triphosphate (dATP), and 
cysteine aspartate protease 9 (Caspase-9) to form 
apoptosome, which then activates caspase-3, 
ultimately leading to the occurrence of apoptotic 
cascade reactions [51]. Bcl-2 can prevent the release of 
Cyt-c and reduce Bax binding to the mitochondrial 
outer membrane, thereby exerting anti-apoptotic 
effects [52]. SOD activity and MDA content are 
commonly used to evaluate endogenous antioxidant 
stress ability and lipid peroxidation degree. When 
CME occurs, myocardial oxidative free radicals are 
generated, antioxidant defense enzymes are 
suppressed, OS is induced, and lipid peroxidation 
damage occurs [7]. It is claimed that oxidants increase 
mitochondrial depolarization and induce mitochondrial 

Cyt-c release into the cytoplasm, further exacerbating 
apoptotic cell death [53]. Herein, similar to Qin’s 
report [54], enhanced apoptosis was observed in the 
cardiac tissues of CME rats, which was notably 
alleviated by BEZ, further confirming the protection of 
BEZ against CME-evoked cardiac injury. 
 
P38 MAPK/NF-κB signaling is a critical inflammatory 
pathway involved in multiple diseases [55–57]. In 
CME-triggered cardiac injury, the activation of p38 and 
NF-κB signaling is widely reported [38, 58]. Herein, as 
presented by other researchers [29, 59], P38 MAPK and 
NF-κB signaling were markedly activated in CME rats, 
which were notably repressed by BEZ, implying that 
the role of BEZ might be correlated to the inhibition of 
p38 MAPK/NF-κB signaling. In future work, the 
functional mechanism will be further studied by co-
administering BEZ and an agonist of the p38 
MAPK/NF-κB axis. 
 
In summary, BEZ alleviated the CME-evoked cardiac 
injury by repressing OS, inflammation, and apoptosis. 
These findings suggest that BEZ might be used in the 
prevention or treatment of cardiovascular complications 
after CME. 
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