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Abstract
5-aminosalicylic acid (5-ASA) is a first-line treatment for maintaining colitis remission. It is a highly effective, safe, 
and well-tolerated drug with anti-inflammatory and chemo-preventive properties. While patients with primary sclerosing 
cholangitis (PSC) with concomitant ulcerative colitis are treated with 5-ASA, the molecular mechanisms underlying the 
drug’s chemo-preventive effects are not entirely understood. We previously reported that bile acids and lipopolysaccha-
ride-induced miR-155 expression was associated with downregulating mismatch repair (MMR) proteins in CACO-2 cell 
lines. Therefore, in this investigation, a set of in vitro functional studies was performed to show the possible mechanisms 
behind the epigenetic relationship between miR-155 and 5-ASA’s prevention of high microsatellite instability (MSI-H). 
In transient transfection with miR-155Mimic, which behaves like endogenous miRNA, we confirmed the relationships 
between miR-155 and its target MMR in three human intestinal epithelial cell lines: CACO-2, NCM460D and HT-29. We 
have shown, for the first time, that 5-ASA modulates MLH1, MSH2, MSH6 in miR-155 transfected cells. These findings 
underline that chemoprotective 5-ASA therapy can effectively attenuate the expression of miR-155 and potentially prevent 
a development of MSI-H in a subset of colorectal cancers associated with PSC.

Key Points
miR-155 may be a key regulator of tumorigenesis in the ascending colon of patients with PSC.
5-ASA therapy can effectively attenuate the expression of miR-155 involved in the pathogenesis of high microsatellite 
instability.
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Introduction

Colorectal carcinoma (CRC) is not a uniform disease, 
although it can be distinguished by a range of genomic and 
epigenomic modifications [1]. Recently, the mechanism 
underlying CRC tumorigenesis has been linked to miRNAs 
[2]. These are a class of small (~ 20 nucleotides), endog-
enous, non-coding RNAs that modulate gene expression by 
binding to the 3’-UTR of the target mRNA, leading to either 
its degradation or repression of protein translation. miRNAs 
may possess either tumour-suppressive or oncogenic activ-
ity, depending on their target genes [3]. The important role 
of miRNAs in the immune response has been highlighted 
by studies in which the deregulation of miRNAs was shown 
to accompany diseases involving excessive or uncontrolled 
inflammation [4]. However, research into the role of miR-
NAs in the pathogenesis of susceptibility to colon carcino-
genesis in patients suffering from cholestatic liver disease 
such as primary sclerosing cholangitis (PSC) is insufficient. 
In the course of PSC disease, bile duct enlargement, fibro-
sis and inflammatory infiltration of the extrahepatic and 
intrahepatic bile ducts have been observed [5]. The disorder 
that most commonly accompanies PSC is ulcerative colitis 
(UC). The presence of PSC with concomitant UC (PSC/UC) 
substantially raises the risk of colon cancer [6]. This risk is 
thought to be 4–10 times greater than the risk of developing 
CRC in patients with UC without PSC, and it develops at a 
much younger age than in patients with UC alone. Further-
more, in the majority of PSC/UC patients who developed 
CRC, the tumours are located on the right side of the colon, 
unlike in patients with UC alone, where the tumours occur 
more frequently on the left side of the colon [7]. Two main 
mechanisms by which colorectal cancer develop is chro-
mosomal instability (CIN) that includes loss of APC, 18q 
and p53, or microsatellite instability (MSI) which occurs in 
approximately 15% of sporadic colorectal cancers [8, 9].

Previous studies have suggested that miR-155 func-
tions as an oncogenic miRNA in human cancers [10]. High 
expression levels of miR-155 have been found to cor-
relate with the poor prognosis of colorectal cancer [11], 
and, depending on its target genes, miR-155 can potenti-
ate oncogenic activity in the colon [12, 13]. In our previous 
studies, we have suggested that miR-155 is a key regulator 
of tumorigenesis in patients with PSC [14, 15]. Moreover, 
miR-155 can regulate the expression of mismatch repair 
(MMR) genes to influence genomic stability in CRC [16]. 
MMR proteins are nuclear enzymes that form heterodimers 
that bind to areas of abnormal DNA and initiate its removal. 
Loss of MMR proteins leads to the accumulation of DNA 
replication errors, which is termed microsatellite instability 
(MSI) [17]. The term MSI-H refers to high microsatellite 
instability in which > 30% of the microsatellite marker panel 

is mutated (two or more of the five markers, i.e., MLH1, 
MSH2, MSH6, PMS1 or PMS2) [18, 19]. In our previous 
study, we found a correlation between the upregulation of 
miR-155 and the downregulation of MMR genes in different 
parts of the colon in PSC patients [14, 15].

5-aminosalicylic acid (5-ASA) therapy is commonly 
used in UC patients [20]. It reduces the signs and symptoms 
of the disease and brings long-term remission [21]. 5-ASA 
penetrates the colon mucosa easily and reduces the produc-
tion of prostaglandins [22, 23]. It also restores the expres-
sion of µ-protocadherin (a protein expressed by colorectal 
epithelial cells that is downregulated upon malignant trans-
formation) and promotes the sequestration of β catenin (a 
protein involved in the regulation and coordination of cell-
cell adhesion and gene transcription) to the plasma mem-
brane [24–27]. Although previous research has suggested 
that treatment with 5-ASA might be chemo-preventive for 
colorectal cancer [28, 29], the molecular mechanisms under-
lying the effect of this drug are not entirely understood.

PSC patients with concomitant UC are often addition-
ally treated with 5-ASA. Our previous study [30] using 
human intestinal epithelial cell lines indicated that 5-ASA 
therapy can effectively attenuate the expression of miR-
155 involved in tumorigenesis. Therefore, this study aimed 
to examine potential new strategies for the prevention of 
H-MSI CRC development in individuals with PSC. Given 
that we have previously found the overexpression of miR-
155 in the ascending colon of patients with PSC [14], and 
that miR-155 can inhibit the expression of MMR genes and 
suppress genomic stability in CRC [16], we investigated the 
possible role of miR-155 modulation by 5-ASA in prevent-
ing MSI-H.

Materials and methods

Cell culture

The human colon carcinoma cell lines CACO-2 (HTB-
37™) and HT-29 (HTB-38™) were purchased from the 
American Type Culture Collection. NCM460D (normal 
mucosal epithelial cells) were obtained from INCELL Inno-
vative Life Science Solutions (Cell License Material Trans-
fer Agreement #204). All cells were cultured in accordance 
with the manufacturer’s recommendations and incubated in 
a humidified atmosphere of 5% CO2 at 37 °C.

Cell transfection

Transient transfections with miR-155Mimic (Ambion 
mirVana® miR-155Mimic, hsa-miR-155; ID: MC28440; 
Thermo Fisher Scientific, Waltham, MA, USA) were 
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performed using Lipofectamine RNAiMAX reagent (Invit-
rogen, Carlsbad, CA, USA). A standard or reverse transfec-
tion protocol was selected based on preliminary experiments 
according to cell type, high transfection efficiency and low 
cellular toxicity. Cells with Lipofectamine (vehicle-treated 
cells) were used as the control group for transfected cells. 
In a standard transfection protocol, the cells were seeded 
into a 6-well plate and transfected on day two. In the reverse 
transfection protocol, cells were added directly to a 6-well 
plate containing a mixture of transfection solutions of miR-
155Mimic, Lipofectamine RNAiMAX and Opti-MEM 
Reduced Serum Medium (Gibco, Paisley, UK).

Cell treatments

To investigate the effect of 5-ASA (5-ASA, mesalamine 
99%, ID: A3537-25G; Sigma-Aldrich, Saint Louis, MO, 
USA) on MMR via miR-155, cells were exposed to 5-ASA 
(1000 µM dose in CACO-2 and HT-29 cells and 200 µM 
in NCM460D) for the next 24 h and 48 h after transfection 
with miR-155Mimic. An appropriate dose of 5-ASA (200–
1000 µM) was chosen based on colorimetric MTT assays 
conducted in every cell line. 5-ASA dissolved as a 100 mM 
stock solution in DMSO (Sigma-Aldrich, St. Louis, MO, 
USA; Cat #D2650-5 × 5ML, CAS: 67-68- 5) was protected 
from light according to the manufacturer’s instructions. 
Seventy-two hours after transfection, the cells were lysed 
and stored at − 80 °C until molecular analyses could be con-
ducted. Experiments were repeated at least three times, and 
the untreated cells were used as negative controls for 5-ASA 
stimulated/non-transfected cells.

For lipopolysaccharide (LPS) experiments, CACO-2 
cells were treated with 1, 5 and 10 µg/ml of LPS. The LPS 
doses were selected based on literature data [31–34]. After 
24 h, the cells were harvested, washed with PBS, and centri-
fuged for 5 min at 800 rpm. Cell pellets were collected and 
stored at -80 °C.

RNA and miRNA expression analysis

Total RNA was extracted from cell pellets using the RNeasy 
Mini kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s protocol. For further gene expression analysis, 
cDNA synthesis was carried out using the SuperscriptTM 
IV RT kit (Invitrogen, Thermo Fisher Scientific) and miRNA 
cDNA was synthesised using the TaqMan Advanced miRNA 
cDNA synthesis kit (Applied Biosystems, Waltham, MA, 
USA). TaqMan Gene Expression assays were used to mea-
sure the transcripts of MLH1 (Hs00179866_m1), MSH2 
(Hs00954125_m1), MSH6 (Hs00943000_m1) and the ref-
erence 18 S ribosomal RNA (Hs99999901_s1). The expres-
sion of miR-155 (002623_mir) and miR-16 (477860_mir) 

used as endogenous controls were measured using TaqMan 
Advanced miRNA assays and TaqMan Fast Advanced Mas-
ter Mix (Applied Biosystems). Data were analysed using 
7500 software v2.0.2. (Applied Biosystems) and the rela-
tive amounts of transcripts were calculated using the 2-ΔΔCt 
method.

Immunoblotting

Proteins were extracted from cell pellets by homogenisation 
with lysis buffer (RIPA buffer) supplemented with protease 
inhibitors (Roche, Basel, Switzerland) and phosphatases 
(PhosSTOP EASYpack; Roche, Basel, Switzerland). A total 
of 30 µg of proteins were used in the experiments. Proteins 
were electrophoresed on 10% SDS-polyacrylamide gels 
and applied to a PVDF polyvinylidene membrane (Thermo 
Scientific, Rockford, IL, USA) under semi-dry transfer con-
ditions (Hoefer, Inc., Holliston, MA, USA). After blocking 
with 5% skimmed milk, the membranes were incubated for 
2.5 h at room temperature with primary antibodies MLH1: 
4C9C7 (Cell Signaling Technology, Inc., Danvers, MA, 
USA), MSH2: D24B5 (Cell Signaling Technology, Inc.), 
and MSH6: 3E1 (Cell Signaling Technology, Inc.) at a con-
centration of 1:2000. They were then incubated with perox-
idase-conjugated anti-mouse secondary antibodies (1:5000) 
(Jackson ImmunoResearch Laboratories, Inc, code: 115-
035-146) or anti-rabbit secondary antibodies (1:5000) 
(Boster antibody and ELISA experts, code: BA1054). Pro-
tein loading was normalised to anti-glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) (1:5000, sc-25,778 + HRP; 
Santa Cruz). Bands were visualised using a chemilumines-
cence detection system (Chemiluminescent HRP Substrate, 
Millipore, MA, USA) and quantified using the MicroChemi 
2.0 system and GelQuant software (Maale HaHamisha, 
Jerusalem, Israel).

Statistical analysis

StatView software version 5.0 (SAS Institute, Cary, NC, 
USA) and GraphPad Prism version 7.0 software (GraphPad 
Software, San Diego, CA, USA) were used for the statisti-
cal analyses. Comparisons between groups were performed 
with one-way analysis of variance (ANOVA) or the non-
parametric Mann-Whitney test. All graphs were generated 
using GraphPad Prism. Data are represented as mean ± stan-
dard error of the mean from at least three independent 
experiments. A p-value < 0.05 was considered statistically 
significant (*, p < 0.05; **, p < 0.01; ***, p < 0.005; and 
****, p < 0.001).
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with both 1 and 5 µg/ml of LPS (1.49 ± 0.19, p = 0.042 and 
1.46 ± 0.189, p = 0.046, respectively) and a 2.3-fold increase 
with 10 µg/ml of LPS (2.3 ± 0.411, p = 0.005) (Fig. 1a). As 
the close link between miR-155 and the MMR system has 
been previously demonstrated [16], we checked how miR-
155 influenced the levels of MMR genes in LPS-stimulated 
CACO-2 cells. After 24 h of CACO-2 incubation with 1, 
5 and 10 µg/ml of LPS, we investigated the expression of 
MMR genes, including MLH1, MSH2, and MSH6 at the 
mRNA (Fig. S1), and protein levels. An immunoblot analy-
sis showed that all doses of LPS, i.e., 1, 5 and 10 µg/ml, 

Results

LPS-induced miR-155

Since miR-155 is upregulated in PSC [14] and inflamma-
tion is associated with PSC development, we first tested 
whether LPS as a pro-inflammatory agent could affect the 
expression of miR-155 in human intestinal CACO-2 cells. 
For this purpose, cells were incubated for 24 h with different 
doses of LPS, i.e., 1, 5 and 10 µg/ml. The analysis showed 
that the expression of miR-155 led to a 1.4-fold increase 

Fig. 1 The elevated expression of miR-155 and 
the reduced level of MSH2, MLH1 and MSH6 
proteins in CACO-2 cells after LPS treatment. 
The expressions of miR-155 in CACO-2 cells 
after treatment with different doses of LPS (1, 
5 and 10 µg/ml) were measured by quantita-
tive PCR (real-time PCR) (a). Western blot 
analysis revealed MSH2, MLH1 and MSH6 
protein levels in CACO-2 cells treated with LPS 
(1, 5 and 10 µg/ml) (b). Results are presented 
as mean ± standard error of the mean (n = 3); 
*p < 0.05, ** < 0.01 vs. controls
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was confirmed in normal colon (NCM460D (p < 0.0001)) 
and tumorigenic cells (HT-29, p = 0.0002; and CACO-2 
(p = 0.001) (Fig. 2a). Previous results [14] have shown that, 
in NCM460D, the response to miR-155 overexpression leads 
to significant inhibition of MLH1, MSH2,and MSH6 mRNA 
levels compared to non-transfected cells. In this study, we 
conducted further experiments and examined the MMR pro-
tein levels after transfection of miR-155Mimic (Fig. 2b). In 
non-tumorigenic NCM460D cells, the response to miR-155 
led to a significant downregulation of MLH1 (1.03 ± 0.04 in 
control (CRT) vs. 0.7 ± 0.04 in miR-155Mimic, p = 0.002), 
MSH2 (1.03 ± 0.04 in CRT vs. 0.4 ± 0.07 in miR-155Mimic, 
p = 0.002) and the MSH6 protein (1.03 ± 0.04 in CRT vs. 
0.5 ± 0.03 in miR-155Mimic, p = 0.0002) (Fig. 2b). The 

significantly diminished the level of MLH1 (0.6 ± 0.04, 
p = 0.01; 0.6 ± 0.04, p = 0.007; and 0.6 ± 0.1, p = 0.006, 
respectively), MSH2 (0.6 ± 0.08, p = 0.002; 0.6 ± 0.06, 
p = 0.001; and 0.6 ± 0.07, p = 0.002, respectively) and 
MSH6 proteins (0.79 ± 0.05, p = 0.04; 0.75 ± 0.08, p = 0.04; 
and 0.69 ± 0.1, p = 0.017, respectively) (Fig. 1b).

miR-155 significantly downregulated core MMR 
proteins

To determine the relationship between miR-155 and the 
DNA MMR system, transient transfection with miR-
155Mimic was performed, and the levels of MLH1, MSH2 
and MSH6 mRNA were examined. Successful transfection 

Fig. 2 The effect of miR-155 
overexpression on MMR protein 
levels. The upregulation of 
miR-155 after transient transfec-
tion with miR-155-5pMimic 
molecules was confirmed 
in different colon cell lines: 
NCM460D, HT-29 and CACO-2 
(a). NCM460D and HT-29 cells 
responded to miR-155 overex-
pression and decreased MLH1, 
MSH2 and MSH6 protein levels 
were observed. In CACO-2 
cells, only MLH1 responded 
to miR-155-5pMimic (b). Data 
are present as mean ± stan-
dard error of the mean. Gene 
expression levels of micro RNA 
were normalised to the refer-
ence miR-16, and the levels of 
each protein were normalised 
to GAPDH. Statistical analyses 
were performed using ANOVA 
or the Mann-Whitney test. Mimic 
(miR-155-5pMimic).*p < 0.05 vs. 
controls, **p < 0.01 vs. con-
trols, ***p < 0.001 vs. controls, 
****p < 0.0001 vs. controls
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MSH2 (1.12 ± 0.2 in 5-ASA with miR-155Mimic vs. 
0.4 ± 0.07 in miR-155Mimic, p = 0.002) and MSH6 
(1.12 ± 0.07 in 5-ASA with miR-155Mimic vs. 0.5 ± 0.03 
in miR-155Mimic, p = 0.001) in NCM460D cells (Fig. 4a). 
Similarly to normal colon cells, the overexpression of 
miR-155 in the HT-29 cell line (Fig. 4b) led to the strong 
downregulation of MMR, which was reversed by 5-ASA 
treatment. Thus, all examined MMR protein levels, MLH1 
(0.7 ± 0.07 in miR-155Mimic vs. 1.4 ± 0.22 in 5-ASA with 
miR-155Mimic, p = 0.004), MSH2 (0.05 ± 0.04 in miR-
155Mimic vs. 1.3 ± 0.2 in 5-ASA with miR-155Mimic, 
p = 0.002) and MSH6 (0.6 ± 0.006 in miR-155Mimic vs. 
1.4 ± 0.1 in 5-ASA with miR-155Mimic, p = 0.0014) was 
increased in miR-155Mimic positive cells after 5-ASA 
co-treatment. Results from the CACO-2 cell line (Fig. 4c) 
showed that 5-ASA treatment elevated levels of MLH1 
(0.7 ± 0.07 in miR-155Mimic vs. 1.9 ± 0.8 in 5-ASA with 
miR-155Mimic, p = 0.05), MSH2 (0.86 ± 0.17 in miR-
155Mimic vs. 2.0 ± 0.2 in 5-ASA with miR-155Mimic, 
p = 0.005) and MSH6 (0.8 ± 0.2 in miR-155Mimic vs. 
2.0 ± 0.5 in 5-ASA with miR-155Mimic, p = 0.03) in miR-
155 transfected cells. 5-ASA alone did not change the pro-
tein levels of MLH1, MSH2 or MSH6 in any of the colon 
cell lines. Thus, 5-ASA’s effect on MMR is manifested 
through the mechanism of the miR-155 pathway. Our results 
uncovered no significant differences in MMR mRNA levels 
in the colon cell lines (Fig. S3).

Discussion

Our in vitro study using human intestinal epithelial cells 
has indicated that 5-ASA can potentially inhibit miR-155 
expression induced by inflammation imitated by LPS treat-
ment or by transient transfection with miR-155Mimic. 
Moreover, we have shown that co-treatment with 5-ASA 
not only suppressed miR-155 but also led to the increased 
expression of MMR protein levels. This study highlights the 
chemo-protective effects of 5-ASA, which can potentially 
be used in the colon of patients with PSC.

Patients with PSC have an increased risk of developing 
primary bile duct cancer and CRC [5, 35]. The risk of devel-
oping CRC in PSC patients with concurrent UC is 14% at 
10 years and 31% at 20 years, compared to a steady risk of 
2.3% in patients without concurrent UC [35, 36]. Prolonged 
exposure to high levels of bile acids can lead to the gen-
eration of genomic instability, the development of apoptosis 
resistance and, ultimately, cancer [37]. Our previous study 
confirmed the effect of toxic lithocholic and glycochenode-
oxycholic acids or LPS on miR-155 expression in HT-29 
and NCM460D cell lines [14] and human cholangiocytes 
[38]. Furthermore, it has been postulated that the expression 

downregulation of the MMR protein was also observed in 
tumorigenic HT-29 cells (1.0 ± 0.06 in CRT vs. 0.7 ± 0.05 
in miR-155Mimic, p = 0.03 for MLH1; 1.0 ± 0.06 in CRT 
vs. 0.5 ± 0.04 in miR-155Mimic, p = 0.003 for MSH2; 
and 1.0 ± 0.06 in CRT vs. 0.6 ± 0.01 in miR-155Mimic, 
p = 0.002 for MSH6). In contrast, in CACO-2 cells, the 
enhanced expression of miR-155 was accompanied by 
a downregulation of only one of the MMR proteins, i.e., 
MLH1 (1.0 ± 0.06 in CRT vs. 0.7 ± 0.07 in miR-155Mimic, 
p = 0.04)(Fig. 2b).

5-ASA effectively induces MMR via miR-155

Recently, we showed that the expression level of miR-155 
following 24 h treatment with 5-ASA was significantly 
suppressed in CACO-2 cell lines [30]. This phenomenon 
was confirmed in NCM460D and HT-29 cell lines in this 
study. We found that in normal colon cells, 5-ASA sig-
nificantly reduced both the basal level of miR-155 expres-
sion (1.03 ± 0.03 in CRT vs. 0.9 ± 0.1 in 5-ASA, p = 0.02; 
Fig. 3a) and after transfection with miR-155Mimic 
(593.7 ± 73.6 in miR-155Mimic vs. 289.8 ± 69.2 in 5-ASA 
with miR-155Mimic, p = 0.001; Fig. 3a). In HT-29 cells, 
the expression of miR-155 was also reduced after 5-ASA 
exposure in miR-155 transfected cells (22350.2 ± 7470.9 
in miR-155Mimic vs. 2818.6 ± 690.4 in 5-ASA with miR-
155Mimic, p = 0.0006) and non-stimulated cells (1.03 ± 0.03 
in CRT vs. 0.7 ± 0.1 in 5-ASA, p = 0.03) (Fig. 3b). These 
results prompted us to further investigate the functional role 
of 5-ASA in MMR modulation.

In normal colon cells, miR-155 overexpression led to 
a significant downregulation of MLH1 (1.03 ± 0.03 in 
CRT vs. 0.5 ± 0.05 in miR-155Mimic, p = 0.0002), MSH2 
(1.03 ± 0.03 in CRT vs. 0.4 ± 0.06 in miR-155Mimic, 
p = 0.0001) and MSH6 mRNA levels (1.03 ± 0.03 in CRT 
vs. 0.4 ± 0.1 in miR-155Mimic, p < 0.0001) (Fig. 3c). This 
reduction was also evident following 5-ASA treatment in 
cells transfected with miR-155Mimic (MLH1: 1.03 ± 0.03 
in CRT vs. 0.4 ± 0.05 in 5-ASA with mimic 155, p < 0.0001; 
MSH2: 1.03 ± 0.03 in CRT vs. 0.3 ± 0.03 in 5-ASA with 
miR-155Mimic, p < 0.0001; and MSH6 mRNA levels: 
1.03 ± 0.03 in CRT vs. 0.2 ± 0.02 in 5-ASA with miR-
155Mimic, p < 0.0001).

An analysis of the relative expression of MMR genes in 
the HT-29 and CACO-2 cells (Fig. S2) exhibited no differ-
ences; therefore, we conducted further experiments at the 
MMR protein level in NCM460D, HT-29 and CACO-2 cell 
lines.

The immunoblot analysis confirmed the influence of 
5-ASA on the MSI profile. 5-ASA blocked the miR-155-in-
duced inhibition of MLH1 (1.12 ± 0.13 in 5-ASA with miR-
155Mimic vs. 0.7 ± 0.04 in miR-155Mimic, p = 0.007), 
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The overexpression of miR-155 after LPS treatment was 
previously demonstrated in mouse and human cells [39], 
which suggests that this microRNA plays a role in the innate 
immune response.

In our previous study, we transiently transfected human 
epithelial cell lines with miR-155Mimic to investigate the 

of miR-155 is increased in inflammation-induced cancer 
cells [39]. In this study, we found that miR-155 expression 
was significantly elevated in human intestinal epithelial 
CACO-2 cells incubated with LPS. Our study demonstrates 
that in LPS-treated CACO-2 cells, miR-155 is overex-
pressed and associated with reduced MMR protein levels. 

Fig. 3 The effect of 5-ASA on miR-155 and 
MMR gene expression MicroRNA-155 expres-
sion decreased significantly after exposure 
to 5-ASA in transfected and non-transfected 
NCM460D (a) and HT-29 cells (b). The MMR 
genes’ (MLH1, MSH2 and MSH6) relative 
expression was reduced after 5-ASA with or 
without miR-155-5pMimic in NCM460D cells 
(c). Data are present as mean ± standard error of 
the mean. Micro RNA expression levels were 
normalised to the reference miR-16. Statistical 
analyses were performed using ANOVA or the 
Mann-Whitney test. Mimic (miR-155-5pMimic). 
*p < 0.05 vs. controls, **p < 0.01 vs. controls, 
***p < 0.001 vs. controls, ****P < 0.0001 vs. 
controls, # p < 0.05 vs. Mimic

 

1 3

579



M. Adamowicz et al.

(HT-29), the response to miR-155 overexpression is less 
pronounced [14]. It has been speculated that the negative 
regulation of MMR expression by miRNA is due to transla-
tional inhibition [16]. It is not unusual that an abundance of 
mRNA transcripts does not reliably predict changes in pro-
tein expression. Thus, an analysis of protein levels is impor-
tant for providing a functional context to interpret genomic 
abnormalities [40]. Therefore, in this study, we analysed 
the effect of miR-155 overexpression on the protein lev-
els of MLH1, MSH2 and MSH6 in three human intestinal 
epithelial cells (NCM460D, CACO-2 and HT-29). We con-
firmed that miR-155 may regulate components of the MMR 
machinery [14] and, consequently, rates of MSI [41–43].

We further examined a possible mechanism of 5-ASA 
action. Recent studies have proposed 5-ASA as a candidate 
compound for chemo-prevention due to a reduction in the 
incidence and multiplicity of intestinal tumours in Msh2 
loxP/loxP Villin-Cre mice [44]. To gain insight into the molec-
ular effects of 5-ASA during tumorigenesis, the expressions 
of miR-155, MMR mRNA and proteins were evaluated after 
drug exposure in miR-155-transfected human epithelial cell 
lines. The miR-155-dependent effect of 5-ASA on MLH1, 
MSH2 and MSH6 proteins was confirmed in three cell lines. 
These novel observations have not been previously reported. 
Other authors have observed the effect of 5-ASA on miR-
206 expression [45]. An analysis of colon biopsy tissues has 
uncovered significantly lower expression of miR-206 in UC 
patients who received a higher dose of 5-ASA. Those results 
were confirmed in the human colon cancer cell line-HT-29, 
as an almost two-fold decrease in miR-206 expression was 
observed 4 h after 5-ASA treatment.

Interestingly, our study clearly shows that, in contrast 
to CACO-2 and HT-29 cell lines, in NCM460D cells, both 
mRNA and protein levels of MMR were modulated by 
5-ASA. Apart from the various dominant cancer cells used 
for in vitro studies, normal human cell lines are of particular 
importance in the context of CRC [46]. The value of the 
non-tumorigenic NCM460 cell model as a control in anti-
tumour strategies targeting colon adenocarcinoma has been 
previously described [47]. Our findings have established the 
suitability of NCM460D cells as an in vitro model system for 
investigating the details of drug-miRNA-MMR pathways.

MSI-H CRCs are associated with many diseases, includ-
ing Lynch syndrome (caused by autosomal dominant muta-
tions to the major MMR genes MLH1, MSH2, MSH6 or 
PMS2 and the EPCAM gene that inactivates MSH2) [49, 
50]. We previously demonstrated the involvement of miR-
155 in chronic inflammation in the colons of PSC-UC 
patients and the relationship with MSI-H CRC markers [14]. 
In this study, for the first time, we show the drug-miRNA-
MMR relationship in colon cell lines in vitro. A phase II 
clinical trial using 2000 mg mesalamine (5-ASA) for the 

relationship between MMR mRNA expression and miR-155 
[14]. The results from normal colonic cells (NCM460D) 
confirmed that, similar to normal, non-tumorigenic tissue, 
the upregulation of miR-155 results in the significant down-
regulation of MLH1, MSH2 and MSH6 mRNA expres-
sion [14]. However, in human colon adenocarcinoma cells 

Fig. 4 Levels of MLH1, MSH2 and MSH6 proteins after 5-ASA 
with or without miR-155Mimic transfection in intestinal epithelial 
cells. 5-ASA restored MMR protein level after induction of miR-155 
in NCM460D (a) HT-29 (b) and CACO-2 (c). Data are presented as 
mean ± standard error of the mean. The levels of each protein were 
normalised to GAPDH. Statistical analyses were performed using 
ANOVA or the Mann-Whitney-test. Mimic (miR-155-5pMimic). 
*p < 0.05 vs. controls, **p < 0.01 vs. controls, ***p < 0.001 vs. con-
trols, ****p < 0.0001 vs. controls, # p < 0.05 vs. Mimic
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