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Amperometry is a commonly used electrochemical method for studying the process of exocytosis 
in real-time. Given the high precision of recording that amperometry procedures offer, the volume 
of data generated can span over several hundreds of megabytes to a few gigabytes and therefore 
necessitates systematic and reproducible methods for analysis. Though the spike characteristics of 
amperometry traces in the time domain hold information about the dynamics of exocytosis, these 
biochemical signals are, more often than not, characterized by time-varying signal properties. Such 
signals with time-variant properties may occur at different frequencies and therefore analyzing them 
in the frequency domain may provide statistical validation for observations already established in the 
time domain. This necessitates the use of time-variant, frequency-selective signal processing methods 
as well, which can adeptly quantify the dominant or mean frequencies in the signal. The Fast Fourier 
Transform (FFT) is a well-established computational tool that is commonly used to find the frequency 
components of a signal buried in noise. In this work, we outline a method for spike-based frequency 
analysis of amperometry traces using FFT that also provides statistical validation of observations on 
spike characteristics in the time domain. We demonstrate the method by utilizing simulated signals 
and by subsequently testing it on diverse amperometry datasets generated from different experiments 
with various chemical stimulations. To our knowledge, this is the first fully automated open-source 
tool available dedicated to the analysis of spikes extracted from amperometry signals in the frequency 
domain.
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Amperometry is a commonly used method for studying the process of exocytosis in real time. It is useful in 
analyzing exocytosis because it offers high sensitivity, excellent temporal resolution, precise quantification of 
released neurotransmitters, and enables direct observation of the kinetics of secretory events as it happens1–3. 
Amperometric traces are generated by the oxidation of catecholamines released by a cell close to the microelectrode 
tip. The exocytosis process has been well-studied and typically progresses in the following molecular steps: 
steps: 1 Opening of the fusion pore resulting in the detection of the Pre-Spike Foot or PSF (indicated by the 
foot parameters Ifoot, Qfoot, tfoot in Fig. 1) steps: 2 Expansion of the fusion pore resulting in massive release of 
catecholamines shown as a spike in the amperometric recording (steep rising phase characterized by trise in Fig. 
1) steps:3 A decay phase caused by the pore closure ((double) exponential falling phase characterized by tfall 
in Fig. 1). The frequency and shape of amperometry spikes and their sequence contain information about the 
dynamics of the release process, while their areas correspond to the total charge or the number of molecules 
released4,5. Statistical analysis of these spikes can offer insights into patterns and correlations across different 
samples, with high reliability and generalisability for relatively modest time and resource costs.

The microelectrode material is chosen based on it allowing high-throughput fabrication, fine spatial 
resolutions and fast analysis rates for single-cell analysis - most often this is carbon6. Spikes generated during 
the exocytosis process may contain information about cell types or activity states of the cell. These spikes exhibit 
large temporal variability, and also depend on the type of stimulation used to induce exocytosis by the cell. 
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Usually, the falling phase of a spike can be fitted by a single or double exponential function due to the diffusion 
mechanism. Quantification of electroactive neurotransmitters (e.g. catecholamines) can be accomplished using 
different techniques based on amperometry. Single cell amperometry (SCA) was first introduced by Wightman 
and colleagues in the 1990s7. It employs a carbon microelectrode that is placed on a single cell in buffer with the 
assistance of a microscope. A reference electrode is located nearby in the same solution. The cell is (chemically) 
stimulated, after which it releases neurotransmitters from vesicles docked at the cell membrane. Since a constant 
potential is applied, the neurotransmitters are oxidized at the working electrode, leading to current “spikes” 
when this data is plotted versus time. Integration of these signals gives the charge Q, which, using Faraday’s law, 
allows quantification of the number of molecules involved in the “spike”8.

Another amperometric method, which does not measure the number of released molecules, but uses the same 
amperometric principle to quantify the contents of the vesicles that store neurotransmitters is VIEC (Vesicle 
Impact Electrochemical Cytometry). VIEC allows isolated vesicles to adsorb to a microelectrode which then 
burst stochastically, after which the electroactive contents are oxidized on the electrode surface. Similar to SCA, 
the number of molecules can then be quantified by examining the resulting current spikes9,10. Intracellular VIEC 
(IVIEC), employs a nanotip electrode that is inserted into a single cell11. This allows quantification of vesicular 
content inside a cell. By combining with SCA and comparing the number of molecules, different exocytotic 
modes can be investigated (e.g., kiss and run, partial release, and full release). Indeed, it has been found that 
exocytosis is a highly modulated process, and that partial release of vesicular content is preferred over all-or-

Figure 2.  Relationship between spike shape and mean frequency: Consider two spikes coming out of an 
amperometric trace, s1representing a high frequency oscillation (hence a thin spike) and s2 representing a 
low frequency oscillation (and hence a wide spike). We expect that the wider the curve, the lower is the mean 
frequency i.e. fmean(s1) > fmean(s2).

 

Figure 1.  Spike parameters in the time domain: an amperometric spike is characterized by the Pre-Spike Foot 
(PSF), rising phase, spike and the falling phase. Here Imax is the peak current, trise is the rise time (from 25% to 
75% of Imax), t1

2
 is the half peak width, Ifoot is the PSF current, tfoot is the PSF duration, Qspike is the charge of 

the spike and Qfoot is the charge of the PSF.
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nothing exocytosis both in vitro and in vivo8,9,12–14. Vesicle impact electrochemical cytometry offers a direct 
quantification of vesicular catecholamine storage in isolated vesicles. VIEC is similar to IVIEC, but instead of 
in situ quantification of vesicle content in a living cell, vesicles are isolated and collected as a suspension in an 
intracellular physiological buffer to perform electrochemical cytometry15.

Not unlike modern electrophysiological experiments, amperometry experiments also involve the acquisition, 
display, and analysis of data16. Given the high precision during recording amperometry, the volume of data 
generated can span over several hundreds of megabytes to a few gigabytes. Several well-structured programs 
that facilitate the analysis of such data exist in the electrochemistry community, the most commonly used being 
IgorPro QuantaAnalysis software5. QuantaAnalysis is a mature software dedicated to the analysis of amperometry 
traces that allows digital filtering and analysis of the current noise, spike identification, calculation of over 20 
spike kinetic parameters, and visualization. The most commonly measured spike characteristics include the 
area under the spike (such as Qspike or Qfoot), spike maximal height (Imax) and spike width (t1

2
) at half its height 

(where I = Imax
2 ) as illustrated in Fig. 1.

Along with this, the QuantaAnalysis software outputs several other spike parameters in a matrix form 
(similar to that shown in Fig. 7B) that enables spike-wise or average characterization of specific traces. However, 
the QuantaAnalysis software involves semi-manual intervention for identifying thresholds for spikes extraction, 
selecting baseline intervals, and data manipulations in Excel. Furthermore, each amperometric trace has to 
be handled separately in QuantaAnalysis, which significantly affects the efficiency of the process. In addition, 
applications of neurochemistry to amperometry and their applications in single-cell analysis, is still a maturing 
area and because of the complex nature of the data, methods to analyze traces may vary considerably from lab to 
lab, thereby making it difficult to compare observations from different sources17.

Further, though one can argue that the spike characteristics of amperometry traces in the time domain hold 
information about the dynamics of exocytosis, these biochemical signals are more often than not characterized 
by time-varying signal properties (i.e. from the statistical perspective, they are non-stationary). Such signals 
with time-variant properties may occur at different frequencies and it may be difficult to catch subtle differences 

Figure 7.  Analysis of amperometry traces: (A) a comparison between the workflow adopted by the “state-
of-the-art” method, which uses QuantaAnalysis to analyze time-domain spike parameters of the trace, and 
the proposed “frequency analysis” method, which analyzes the spikes in the frequency domain. (B) shows an 
overview of the output time, current and charge parameters in the time domain. (C) shows an overview of 
the output parameters in the frequency domain, mean frequencies and their median within each trace. The 
frequency analysis method provides a statistical validation for the state-of-the-art.
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in their patterns by only using time-domain observations. This necessitates the use of time-variant, frequency-
selective signal processing methods as well, which can ably quantify the dominant or mean frequencies in the 
signal.

The Fast Fourier Transform (FFT) is a well-established computational tool that is commonly used to find the 
frequency components of a signal buried in noise18–23. It is based on the Fourier Analysis method which states 
that any periodic function can be represented as an infinite enumerable sum of trigonometric functions24. FFT 
is a method for efficiently computing the Discrete Fourier Transform (DFT) of time series and facilitates power 
spectrum analysis and filter simulation of signals. All these measures are time-variant. Frequency analysis has 
found itself a wide variety of applications including digital image processing reconstruction, numerical solution 
of differential equations, multiple time series analysis, and filtering among many others25–28. In the biomedical 
signal processing community, the FFT is widely used in Electroencephalogram (EEG), Magnetoencephalography 
(MEG), EMG (Electromyogram), functional Multineuron Calcium Imaging (fMCI), analysis of calcium 
fluorescence traces, and Diffusion Tensor Imaging (DTI) data29,30.

In this work, we develop a method for spike-by-spike frequency analysis of amperometry traces and show 
that in addition to gaining information on the key frequencies, this method can provide statistical validation of 
observations made on traces in the time domain. We motivate this method through the relationship of spike 
width and mean frequency wherein thin spikes that arise out of high-frequency oscillations are expected to 
have higher mean frequency compared to their wider counterparts (such as that in the illustration Fig. 2). 
Amperometry traces show a variety of spike shapes intra-trace and inter-traces whose statistics usually remain 
consistent across a given stimulation and cell type. Hence it provides a very interesting field of research for 
frequency analysis methods. In addition, the frequency analysis pipeline dedicated for amperometry traces that 
we implemented in Python is available open-source (refer to supplementary section).

Frequency-domain analysis reveals distinct characteristics of vesicle fusion and neurotransmitter release, 
including the speed of exocytosis and the stability of the fusion pore. These insights help differentiate exocytosis 
modes and assess the influence of external factors on cellular behavior. The mean frequency is defined as the 
energy-weighted average of the frequency components within a spike, calculated using the Fast Fourier Transform 
(FFT). This value represents the central tendency of the spike’s frequency content, providing a summary measure 
of its oscillatory behavior.

The paper is organized as follows: first, we motivate the idea of frequency analysis with simulated signals as a 
proof-of-concept, followed by outlining the key results for the aforementioned candidate datasets, and then we 
summarize the work and give brief conclusions. Finally, we go in-depth about the FFT and briefly describe the 
package implementation. Further details on the experimental methods for data generation, dataset attributes, 
and frequency analysis program may be found in the supplementary information section.

Results and discussion
Overview of the datasets
We demonstrate the method by utilizing simulated signals and subsequently test it on diverse amperometry 
datasets generated through different experiments under different stimulation conditions. Simulated signals 
or artificial spike trains were generated through spikes modeled with a linear rise and Gaussian decay. The 
three candidate datasets we chose to explore in the frequency domain are steps: 1 Hofmeister series dataset31, 
steps: 2 Dimethyl Sulfoxide (DMSO) dataset32, and steps: 3 Electrodes dataset (first presented in this study). 
The Hofmeister series dataset makes an excellent candidate to demonstrate that the spike-by-spike frequency 
analysis method preserves time-domain spike characteristics. The investigation of the relationship between 
inorganic anions and exocytosis was carried out by He et al.31 and it was shown that anions regulate pore 
geometry, opening duration, and pore closure in the exocytosis process.

Specifically, when chromaffin cells were stimulated by counteranions along the Hofmeister series (from 
Cl−, Br−, NO−

3 , ClO−
4 , SCN−) in K+ solution, the spike width (including trise, t1

2
 and tfall) increases and the 

PSF parameters (including Nmolecules, Nfoot
Nevents

 and Ifoot where N is the number of molecules and I is the current) 
decreases in the Hofmeister order while the number of spike events appears to be similar across all stimulations. 
With the stimulation of chaotropic anions (such as SCN−), the expansion and closing time of the fusion pore 
is longer when compared to that of kosmotropic ions (such as Cl−). The Hofmeister series dataset has therefore 
been well-studied in the time domain.

Another compound, DMSO has also been shown to affect the fusion pore opening rate and increase 
neurotransmitter content while leaving vesicular contents unchanged. Unlike for example, the Hofmeister 
series, DMSO affects only the rising phase, trise. The DMSO dataset was generated through IVIEC experiments 
conducted on chromaffin cells using a nanotip electrode. Analysis of control and 0.6% DMSO datasets in the time 
domain has been established and hence makes an interesting dataset for frequency analysis. We also demonstrate 
frequency analysis methods on the electrode dataset which constitute VIEC experiments on chromaffin vesicles 
using three electrode materials: carbon, platinum, and gold. Sample amperometric traces of all the above datasets 
are shown in Fig. 18, 19 and 20 of the supplementary section.

Hypothesis verification using simulated signals
To verify the hypothesis of the relationship between spike shape and mean frequency, we generated simulated 
signals that mimic the behavior of the Hofmeister ions in the time domain. Simulated to mimic the amperometry 
spikes, the artificial spikes consist of a linear rising segment and a Gaussian decay. Note that Gaussian decay 
models an exponentially decaying amperometry spike which simulates the signal decay more accurately 
compared to Dirac delta spikes.

Scientific Reports |        (2024) 14:25142 4| https://doi.org/10.1038/s41598-024-76665-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The artificially generated set of spike trains mimics the behaviors of the Hofmeister series dataset observed 
in the time domain, e.g. kosmotropic anions in the Hofmeister series cause thin spikes (hence high-frequency 
oscillations) in comparison to the wide spikes (low-frequency oscillations) of the chaotropic ions. In other 
words, in the time domain, the median of the spike width, t1

2
, of the artificial spikes increases in average along 

the “Hofmeister” order (see Fig. 3).
Thus we artificially assigned each anion type in the artificial data with a range of width that does not overlap 

with the others, as can be seen in Fig. 3A. Since the number of samples generated per artificial data category 
was sufficient and homogeneous across categories, we see that the width of standard error of mean bar is quite 
short and relatively consistent across all categories along with high standard error. In addition, for a detailed 
description of artificial data generation procedure refer to the supplementary section.

We found that the averaged mean frequency of the artificially generated spike trains decreases along the 
Hofmeister order with no exception, which is consistent with the observations on real data. Since a thinner 
sine function oscillates with a higher frequency, a kosmotropic anion like Cl− will behave similarly, as can be 
seen from Fig. 3B. Relationship between spike shape and frequency and their influences on spike morphology 
with explanations on spike detection, and comparison of corresponding sine wave frequency components and 
Gaussian decay model is discussed in detail in the supplementary section.

Figure 4.  FFT on the Hofmeister dataset. Left: Spike characteristics due to different anion stimulation in the 
time domain shown by t1/2. Right: Spike characteristics in the frequency domain shown by median of mean 
frequency, fmean. The averaged median of mean frequency (shown with solid bar) shows a clear dependency 
on the stimulating anion, i.e. it decreases along the Hofmeister-order (here from left to right) except for the 
anion ClO−

4 , which also showed its abnormality during the time-domain analysis. Additionally, the cross-cell 
standard error of mean of the median of t1/2 and the median of mean frequency are denoted by the error bars. 
Bars represent the mean of the medians of t-half across multiple datasets, with error bars representing the 
standard error of the mean of the medians.

 

Figure 3.  FFT on simulated signals: (A) Spike characteristics in the time domain shown by median of t1/2
. (B) Spike characteristics in the frequency domain shown by median of mean frequency, fmean. Hofmeister-
like arrangement of mean frequency in the simulated spike trains (“art” stands for artificial). Standard error of 
mean of the median of t1/2 and the median of mean frequency are shown by the error bars. Bars represent the 
mean of the medians of t-half across multiple simulated signals, with error bars representing the standard error 
of the mean of the medians.....
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Comparison across datasets
The mean frequency was selected as a representative metric for spike analysis as it captures the central tendency of 
the frequency components within each spike, weighted by their amplitudes. While the distribution of frequencies 
for an individual spike may not be normal, the mean frequency provides a consistent and interpretable summary 
of the overall oscillatory behavior of the spike. This choice allows for a robust comparison of spikes across 
different experimental conditions, without assuming normality in the underlying frequency distribution. The 
median of the mean frequency represents the overall frequency content of the spike and can be associated with 
different time-domain parameters, such as t-rise or t-half, depending on the experimental conditions. This 
relationship reflects the influence of exocytosis dynamics on the frequency components of the spike. In new 
data, this frequency indicator can be used to infer shifts in vesicle fusion dynamics or exocytosis duration based 
on how it correlates with known time-domain parameters.

Given that the distribution of t-half (spike width) values is often non-normal, we use the median as a measure 
of central tendency. The median is more robust to outliers and skewed distributions compared to the mean, 
making it an appropriate choice for summarizing the spike width across different experimental conditions.

To compare across different datasets or experimental conditions, we compute the mean of the medians of 
t-half. This allows us to provide an overall summary of the central tendency of spike widths across multiple 
experimental trials.

The standard error of the mean of the medians is calculated to estimate the variability in the mean of the 
median t-half values across experimental repetitions. This measure helps assess the precision of the estimate and 
ensures that any observed differences between conditions are statistically meaningful.

Although the individual t-half values are non-normally distributed, the Central Limit Theorem (CLT) justifies 
the use of the mean of the medians and the calculation of standard error. The CLT states that the distribution of 

Figure 6.  FFT on the electrodes dataset. Left: Spike characteristics due to different electrodes in the time 
domain shown by t1/2. Right: Spike characteristics in the frequency domain shown by median of mean 
frequency, fmean. Standard error of mean of the median of t1/2 and the median of mean frequency are shown 
by the error bars. Bars represent the mean of the medians of t-half across multiple datasets, with error bars 
representing the standard error of the mean of the medians.

 

Figure 5.  FFT on the DMSO dataset. Left: Spike characteristics for control and 0.6% DMSO in the time 
domain shown by trise (25–100%). Right: Spike characteristics in the frequency domain shown by median of 
mean frequency, fmean. Standard error of mean of the median of t1/2 and the median of mean frequency are 
shown by the error bars. Bars represent the mean of the medians of t-half across multiple datasets, with error 
bars representing the standard error of the mean of the medians.
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the sample mean (in this case, the mean of medians) will approximate normality with a sufficiently large sample 
size, allowing us to calculate the standard error and make valid statistical inferences.

Observations on the amperometry datasets
In the time domain, the mean of medians of spike width of the Hofmeister dataset traces increases in the 
Hofmeister order, however with the exception of the nitrate ion (left panel of Fig. 4). In the frequency domain, 
the mean frequency decreases along with the Hofmeister order, or increases exactly in the opposite order due to 
the inverse relationship between spike shape and mean frequency. The atypical ordering between the chlorate 
ion and nitrate ion is captured in the frequency domain as well (right panel of Fig. 4). Our use of median-based 
statistics, along with the calculation of the standard error of the mean of the medians, ensures robust and reliable 
comparisons of spike characteristics across experimental conditions, accounting for the inherent variability in 
biological data.

DMSO incubation influences only certain spike characteristics, specifically, it increases trise. This is evident 
from the median of spike width in the time domain, where the control group shows a lower mean of the median 
value of trise compared to DMSO. In the frequency domain, DMSO shows lower mean frequency on average 
(Fig. 5). Similar observations can be made on our third and final candidate, i.e. the electrodes dataset (Fig. 6).

The standard error of mean error bars per category, and the corresponding standard errors, reflect the effect 
of sample sizes (5–10 each category), as can been seen for example, in the electrodes dataset that has poor sample 
sizes. The datasets used here as candidates along with their respective sample sizes and other attributes are 
summarized in the supplementary section.

This method is therefore amenable for statistical validation of any amperometry dataset in the frequency 
domain. However, it is important to note that (as can been seen from the electrodes dataset), the sample size and 
length of measurements play a key role as well. Too few samples or too short measurements per category may not 
be sufficient for statistical tests of frequency analysis, and may result in extremely low standard error of means.

Although a workaround for this issue of large error bars might be removing outliers, this is highly 
discouraged since this would reduce the credibility of the observations made - in particular when the sample 
size is small. The procedure outlined herein is available as an open-source tool specifically dedicated to the 
analysis of amperometry signals in the frequency domain. The program implementation is also detailed in the 
supplementary section.

In this work, we have outlined a method for spike-based frequency analysis of amperometry traces that also 
provides statistical validation of observations on spike characteristics in the time domain. To our knowledge, 
this is the first fully automated open-source tool available for analyzing amperometric spikes in the frequency 
domain. We have shown that the time-domain information could be retrieved from spike-based frequency 
analysis. The proposed method provides a more systematic way of analyzing amperometry data compared to 
IgorPro QuantaAnalysis which involves manual interventions with the GUI and on Excel.

We have outlined quite a diverse set of amperometry datasets that illustrates the relationship between spike 
shape and mean frequency. Although a few steps of the frequency analysis method are user-dependent (such 
as data filtering and cut-off factor), the majority of our program is fully automated and has provided consistent 
results on different amperometric datasets. However, the frequency analysis implementation is a Python package 
that is not as mature as IgorPro QuantaAnalysis software which, for instance, has functionalities to handle 
the separation of overlapping spikes automatically. Further, the package does not have a GUI and interaction 
happens through a Command Line Interface. In addition, this method may not be suitable for datasets that have 
too few traces.

Though with Fourier Transform methods it is possible to evaluate all the frequencies in a signal, the time 
at which they occur cannot be determined since the signal is represented only in the frequency domain. This 
bottleneck may be overcome by using methods such as wavelet analysis which can represent a signal in the time 
and frequency domain at the same time33,34. Using discrete wavelet analysis on the detected spikes will give the 
time localization of the key frequency levels as well.

Methods
State-of-the-art amperometry data analysis workflow
As motivated in the introduction, amperometry traces are one-dimensional waveforms (or signals) that can also 
be treated in the frequency domain, thereby making frequency analysis an alternative to the traditional time-
domain methods. The traditional analysis is usually done by using the mature spike-based amperometric data 
analysis software IgorPro QuantaAnalysis. In the state-of-the-art QuantaAnalysis workflow, amperometry traces 
are imported into the program, and traces are pre-processed using filters wherever necessary.

Subsequently, the pre-processed data is used to identify spikes based on a pre-defined threshold. This is then 
followed by statistical analysis and visualization of over 20 representative spike characteristics, including time 
parameters, such as trise, tfall and t1

2
; current parameters, such as Imax and Ifoot; and charge parameters, such as 

Qfoot and Qspike (as shown in top sequence of workflow in Fig. 7A and illustrated in Fig. 1). In addition, the spike 
characteristics of all spikes in an amperometry trace are written out by the QuantaAnalysis program to a table 
similar to that shown in Fig. 7B.

Frequency analysis workflow
In the “frequency analysis” workflow shown in the bottom sequence of Fig. 7A, similar pre-processing is done by 
removing unstable data caused by poor device alignment, followed by low-pass filtering for noise removal. Few 
signals could be exceptions to automated pre-processing and may require manual intervention. This may include 
cases where there are artifacts (e.g. “spike” clusters occurring from time to time, and the presence of noise arising 
due to the type of electrodes used in the experiment.
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Spike clusters are defined as groups of spikes that occur in rapid succession, such that the intervals between 
consecutive spikes are significantly shorter than usual. While these spikes do not physically overlap, their close 
temporal proximity can cause baseline recovery issues and shape distortions. Analyzing spike clusters presents 
several difficulties. First, baseline recovery between spikes may be incomplete, leading to errors in detecting the 
start and end points of individual spikes. Second, the proximity of spikes can distort their amplitude and shape, 
complicating the calculation of key parameters such as spike width and mean frequency. Finally, frequency 
analysis of closely spaced spikes can result in overlapping frequency components, making it harder to accurately 
extract the oscillatory characteristics of each spike. As a result, manual intervention is often required to correctly 
segment and analyze spikes within clusters.

Signal “jumps” at the beginning of the signal were for instance observed in the electrodes dataset, perhaps 
due to poor alignment of the measuring instruments. This may lead to unrealistic spikes that may crash the 
program. In addition, we also observed spike clusters occasionally occurring in the datasets, wherein hundreds 
or even thousands of spikes occur sequentially. Such clusters can cause significant bias when evaluating the spike 
statistics. These anomalies were observed with varying probabilities of occurence for all datasets we analyzed, 
usually caused by poor device alignment.

In these exceptional cases, we recommend manual handling of these traces; for instance by ignoring the 
starting segment of the traces that contain artifacts or by ignoring spikes identified as belonging to a cluster. 
Once this is done, the standard deviation of the baseline, σbase and local maxima are determined. Then each local 
maximum is analyzed and compared with a pre-defined threshold factor ×σbase. Using this threshold, spikes are 
identified and extracted, followed by the application of Fast Fourier Transform (FFT) on each spike (the FFT 
method is discussed in more detail in the latter part of this section).

Using FFT, the mean frequency of each spike can be calculated in the frequency domain. Subsequently, the 
means of median of the mean frequencies of all spikes (and corresponding standard deviation) can be used for 
statistical analysis of the traces (as shown in Fig. 7C). This pipeline in the frequency domain, outlined above, 
is implemented as an end-to-end Python package that takes in raw amperometry trace and outputs the mean 
frequencies and their statistics. A more detailed treatment of the package implementation is outlined in the 
supplementary section.

Fourier transform
Amperometry traces are signals that are sampled discretely in time, hence we require a Discrete Fourier Transform 
(or DFT) for frequency analysis. The DFT is a commonly used method in signal processing to convert a signal 
in the time domain into a frequency spectrum, enabling us to characterize the mean or dominant frequency 
properties of the signal. Mathematically, a Fourier Transform breaks down a non-linear function into a linear 
superposition of simple basis functions, such as sines and cosines, whose summation reconstructs the original 
signal.

The basis function herein must form an orthonormal base to ensure linear independence, which are 
the complex exponentials in the Fourier Transform. In terms of computational cost, a DFT requires O(N 2) 
operations, which gets quite expensive for a large number of sampling points. The Fast Fourier Transform 
method numerically divides the DFT into smaller DFTs thereby bringing down the number of operations to 
complexity of O(N logN).

Consider a periodic sinusoidal signal, f (t) = A sin(2πωt), where A is the amplitude of the signal and ω is the 
angular frequency of the signal. A Fourier Transform of this signal is exactly supported at ω and −ω. For such a 
signal, if the waveform oscillates rapidly as a function of time, it is referred to as a high frequency signal (such as 
s1 in Fig. 2), else if it varies slowly then it is referred to as low frequency signal (such as s2 in Fig. 2).

In the case of linear superposition of multiple signals, such as the one illustrated in Fig. 8, Fourier Transform 
can reveal the constituent trigonometric functions at different frequencies decomposed from these signals. The 
discrete Fourier transform transforms a sequence of N complex numbers, xn into another sequence of numbers, 
Xk, which is given by,

	
xn =

1

N

N−1∑
k=0

Xk exp
2πjkn
N

and

	
Xk =

N−1∑
n=0

xn exp
−2πjkn

N

where N is the number of time samples we have from the trace; n is the current sample we are considering; 2πkN  
is the current frequency (0 to (N − 1) Hz) and Xk is the amount of frequency k in the signal (constituted by 
amplitude and phase). A non-oscillating shift only changes the coefficient X0. Therefore the baseline shift can 
be neglected by ignoring the 0 Hz component in FFT. Please note that usually a factor of 1N  is used in the inverse 
transform from frequency to the time domain. Alternatively, one could apply the factor 1√

N
 to both DFT and 

inverse DFT.
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Main and mean frequency
For our analysis of amperometry traces, the frequency is in the range of [0, fsampling]. The experimental data 
were recorded with a sampling frequency, fsampling = 10 kHz, therefore the Nyquist frequency is one-half of the 
sampling frequency i.e. 5 kHz. When considering only the frequency components below the Nyquist frequency, 
the resulting discrete-time signal can be exactly reconstructed without distortion (known as aliasing).

The main frequency that comes out of the analysis is the one with the largest amplitude, whereas the mean 
frequency is calculated as the energy averaged frequency, fmean =

∑
k∗amp(Xk)

2∑
amp(Xk)

2 . Note that analyzing the full-
time series (including baseline) would show no characteristic frequencies apart from a peak at around 0 Hz 
(refer supplementary section). However, doing a spike-based frequency analysis gives true insight into the mean 
frequency range of the traces.

Once this implementation for frequency analysis is established, it is straightforward to observe the reflection 
of spike shape (thin or wide) on the mean frequency. The relationship between spike shape and mean frequency 
has been motivated by way of simulated signals in the conclusions section. It can also be shown analytically using 
high- and low-frequency triangular signals in the time domain as objects for Fourier Transform (detailed in the 
supplementary section).

Data availability
Raw data were generated at the University of Gothenburg, Sweden. Associated publications have been cited in 
the manuscript with detailed description in the supplementary section. The data that support the findings of this 
study are available from the corresponding author, J.K., upon reasonable request.
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