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Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify
unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or
other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to
map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for 34 brain regions recently reported in the
ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score
regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks
(GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used
for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs, although
sensitivity analyses indicated that other structures were plausible. The multivariate GWASs of the GIBNs identified 74 genome-wide
significant (GWS) loci (p < 5 × 10−8), including many previously implicated in neuroimaging phenotypes, behavioral traits, and
psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder
(BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater
genetic risk of these disorders. A negative genetic correlation was observed between attention deficit hyperactivity disorder
(ADHD) and major depressive disorder (MDD). CT GIBNs displayed a negative genetic correlation with alcohol dependence. Even
though we observed model instability in our application of genomic SEM to high-dimensional data, jointly modeling the genetic
architecture of complex traits and investigating multivariate genetic links across neuroimaging phenotypes offers new insights into
the genetics of cortical structure and relationships to psychopathology.
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INTRODUCTION
A number of different neurobiological markers have been
employed in conjunction with various organizational schemes
to map the human cortex. It is possible that individual differences
in regional cortical surface area (SA) and cortical thickness (CT)
may drive factors that affect each person and each region
independently. However, the covariance structure of regional SA
and CT reveals that individual differences are systematically
coordinated within communities of brain regions, fluctuate in

magnitude together within a population, may be instantiated as
structural covariance networks (SCN) [1], and partially recapitulate
established organizational schemes [2–5]. For instance, SCN
organization is consistent with topological patterns of cortical
maturation observed throughout developmental stages from
childhood and adolescence into early adulthood [6], and the
same patterns are then targeted by neurodegenerative diseases
in late life [7, 8]. Second, brain regions with highly correlated CT
or SA often represent networks that perform dedicated cognitive
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processes [1, 9, 10]. Third, regions within SCNs tend to be directly
connected by white matter tracts. Indeed, about 40% of SCN
connections show convergent white matter fiber connections,
although other relationships captured by SCNs are distinct from
fiber connectivity [5].
The correlation structure between regions represented by a SCN

is influenced by both the environment and genetics. The genetic
factors underlying structural correlations closely resemble func-
tional and developmental patterns [4, 5, 11]. We will refer to these
patterns of genetic correlations between brain regions as
genetically informed brain networks (GIBNs). Genetic correlations
of CT and SA regions have been examined in twin studies [12, 13].
These genetic influences were recapitulated in over 400 twin pairs,
to show that the cortex is organized genetically into communities
of structural and functional regions, is hierarchical, modular, and
bilaterally symmetric [11]. Their genetically informed parcellation
identified 12 spatially contiguous regions that qualify as GIBNs.
While twin studies have laid important groundwork regarding

genetic correlations of the brain, they have several limitations.
First, twin studies do not provide specific genetic variants
associated with genetically correlated regions [11]. Second, twin
studies rely on the equal environment assumption, which may be
invalid for some traits. Third, quantifying the genetic correlation
between CT/SA and assembling a well-powered cohort of low
prevalence traits such as schizophrenia (0.5% prevalence) [14] or
bipolar disorder (1% prevalence) [15] is extremely difficult due to
the rarity of pairs with twins affected by one or both traits.
Recently, genetic correlations between brain regions derived from
GWAS results have been applied to estimate the contribution of
common genetic variation to CT/SA heritability [16]. This method
confers several advantages over twin studies as they do not have
the same assumptions, allow effect-size estimation for individual
variants, and have the ability to test genetic correlations with
other traits in different populations. These SA and CT GWAS results
reveal pleiotropy and genetic correlation across many neuroima-
ging phenotypes [17, 18].
Genomic structural equation modeling (gSEM) is a multivariate

statistical method that can leverage the genetic architecture of
multiple genetically correlated phenotypes to derive relatively few
latent phenotypes, which describe the observed genetic correla-
tion and elucidate loadings of multiple phenotypes onto the
latent phenotype [19]. Therefore, gSEM applied to GWAS offers a
genetically informed clustering of the cortex that may be
neurobiologically distinct from functional and cytoarchitectural
parcellations [6, 20]. Multiple regions that have significant loadings
on a particular factor define the brain regions that can be
described as GIBN. Importantly, gSEM can be used to estimate the
strength of association between genetic variants and each latent
factor in a multivariate GWAS of each GIBN using GWAS summary
statistics for the individual traits. Thus, gSEM provides a
description of the underlying genetic architecture of the traits
being examined and effect size estimates for specific SNPs and
their association with the latent factors.
In the present study, we sought to elucidate the genetic

architecture of 34 regional SA and CT phenotypes reported in the
ENIGMA-3 GWAS of over 50,000 primarily healthy individuals. We
hypothesized that gSEM might identify cortical SA networks
consistent with the clusters described by Chen et al. [11], along
with other viable solutions. The genetic correlations reported in
Grasby et al. [18], were stronger within major anatomical lobes
than across lobes. Thus, while we predicted gross lobar structure
may be reflected by GIBNs, we further predicted that GIBNs may
represent regions corresponding to functional networks, canonical
resting-state networks (RSN), fiber tract networks, and other
neurobiological systems [6, 11]. We hypothesized that most
genetic variants discovered by the ENIGMA-3 cortical GWAS would
influence GIBNs. We also sought to discover novel genetic markers
and links between known genetic variants and GIBNs.

Our motivation for the present analysis was that there is robust
evidence of disrupted cortical structure and function for most
psychiatric disorders [21, 22]. We also know psychiatric disorders
are polygenic and there is significant genetic correlation between
disorders [23–27]. We further hypothesized genetic correlations
between GIBNs and major neuropsychiatric disorders that are
stronger than correlations between global measures of SA or CT.

METHODS
Data
We used the results of the ENIGMA-3 cortical GWAS as reported in Grasby
et al. [18]. that identified genetic loci associated with variation in cortical
SA and CT measures in 51,665 individuals, primarily (~94%) of European
descent, from 60 international cohorts. All subjects provided informed
consent to participate in study procedures approved by the local ethics
board or IRB. The present study was deemed exempt by the Duke
University IRB reviewed as Protocol ID: Pro00079963 and Protocol Title:
Trauma and Genomics Modulate Brain Structure across Common
Psychiatric Disorders. In ENIGMA-3, phenotype measures were extracted
from structural MRI scans for 34 regions defined by the Desikan-Killiany
atlas using gyral anatomy, which establishes coarse partitions of the cortex
[28]. This study analyzed global measures of total cortical SA and average
CT, as well as 34 regional measures of SA and CT averaged across left and
right hemisphere structures to yield 70 distinct phenotypes. Multiple
testing correction in the ENIGMA-3 GWAS was based on 70 independent
phenotypes with a GWS threshold of P ≤ 8.3 × 10−10. We accessed the
GWAS summary results for the 34-regional bilateral analyses. The primary
GWAS analyses presented in Grasby et al. adjusted for global SA and mean
CT. However, we utilized alternate results without global adjustments, as
the global-adjusted results produce multiple negative genetic correlations
between regions (see Supplementary Figs. S1 and S2), which might be
artifactual and lead to uninterpretable factor loadings. Regional SA and CT
metrics were analyzed separately due to computational limitations and
because negative genetic correlations between SA and CT could
complicate model interpretation [16, 18, 29].

Ethics approval and consent to participate
All subjects provided informed consent to participate in study procedures
approved by the local ethics board or IRB. The present study was deemed
exempt by the Duke University IRB reviewed as Protocol ID: Pro00079963
and Protocol Title: Trauma and Genomics Modulate Brain Structure across
Common Psychiatric Disorders.

Analysis
Our analyses were performed using the GenomicSEM R package [19]. The
gSEM was performed twice, once for 34 SA regions and once for 34 CT
regions. The gSEM fitting process includes an exploratory factor analysis
(EFA) stage and a confirmatory factor analysis (CFA) stage. In gSEM, these
steps are usually not performed on the basis of independent cohorts. Many
gSEM studies include the same GWAS data in both EFA and CFA [30–33].
To avoid overfitting, other studies split the chromosomes into two distinct
sets, usually odd-numbered autosomal chromosomes and even autosomal
chromosomes, and use one for EFA and the other set for CFA [34–37] and
sensitivity analysis [38]. In this study, we chose the second strategy and
analyzed odd chromosomes in the EFA and even chromosomes in the CFA.
Whereas SEM often fits multiple models corresponding to a priori
hypotheses built on theoretical models, we took a hypothesis-free (data
driven) approach. In the EFA, we fit models allowing for 1 to 10 factors, for
each of SA and CT. Scree plots were examined to ensure that 10 factors
would be sufficient (see Figs. S3 and S4). In the EFA step, positive factor
loading estimates greater than a pre-specified threshold from the EFA
were carried forward to the CFA to be re-estimated, and the remaining
loading parameters were set to zero [39]. As there was no consensus on
factor loading cutoffs [19, 40], we tested two thresholds: 0.3 and 0.5. Cross-
loadings were allowed if they exceeded the threshold. Factors that loaded
on only a single region were removed as single regions do not constitute
factors. Therefore, some models with a large number of factors ended up
as redundant and were not carried forward to CFA as the investigation of
single regions was already carried out by Grasby et al. [18]. We additionally
ran a sensitivity analysis in which EFA was run using the even
chromosomes and CFA was performed using the odd chromosomes to
determine if order affected the final model.
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The Akaike Information Criteria (AIC) was used as our primary measure
of model fit. For our purposes, a model which minimized the AIC was
deemed optimal. Standardized root-mean square residual (SRMR), model
χ2, and Comparative Fit Index (CFI) were also calculated. A lower SRMR
indicates a better model fit, with SRMR < 0.1 is indicative of acceptable fit,
and SRMR < 0.05 is indicative of excellent fit [19]. A higher CFI indicates
better model fit. A CFI > 0.9 is indicative of a good fit, and a CFI > 0.95 is
indicative of excellent fit [19]. As opposed to regression modeling, where
significant statistics represent the strength of association between the
predictors in the response, genomic SEM, a significant χ2 statistic
represents a lack of fit between the observed genetic covariance matrix
and the covariance matrix implied by the model [19]. However, with large
sample sizes, the χ2 statistics can be significant regardless of the model,
which is not informative. We found all χ2 statistics were highly significant
(p ~ 0), and therefore not reported.
The top-performing factor models in the CFA were further optimized by

successive removal of non-significant factor loadings, which is considered
standard practice [41]. We additionally fit a model as part of the CFA step
to account for the observed correlation between the factors. Specifically,
we fit a bifactor model where a “total” CT or SA factor was added, which
loaded on all regions, a second bifactor+ model where a total CT or SA
factor loaded on all regions and the GWAS results from the corresponding
average CT or total SA GWAS from Grasby et al. [18], and a multi-level
model where all EFA factors loaded onto a 2nd order factor. The bifactor
and bifactor+ models failed to converge and the multilevel models failed
to improve model fit in all cases; hence these results are not reported.

GIBN overlap with alternate networks and parcellations
To explore the possible relevance of GIBNs to other parcellations of the
cortex, we used Dice’s Coefficient to measure percent volume overlap. We
used permutation testing to determine the significance for each Dice’s
coefficient by estimating the probability that the magnitude of overlap
occurred by chance. We used 1000 iterations of populating a given
network with randomly selected brain regions, calculating its Dice’s
coefficient relative to the parcellation of interest, and then comparing the
GIBNs true Dice’s coefficient to the null distribution of 1000 Dice’s
coefficients. The relative position of Dice’s coefficient for a particular GIBN-
to-parcellation comparison within the probability distribution provided the
significance. False Discovery Rate (FDR) was used to correct for multiple
testing with GIBNs, receptors, networks, and clusters.
First, we conducted a quantitative analysis of the overlap between

GIBN’s and 7 canonical RSNs reported by Yeo and colleagues [42]. We
quantitatively analyzed the overlap between GIBNs and networks based on
20 neuroreceptor density maps of Hansen et al. [43]. We calculated Dice’s
coefficient between each the 4 CT and 6 SA GIBNs and both high and low
neuroreceptor densities defined by the top 20%, and bottom 20% receptor
densities for serotonin-1a (5-HT1a), serotonin-1b (5HT-1b), serotonin-2a (5-
HT2a), serotonin-4 (5-HT4), serotonin-6 (5-HT6), serotonin transporter (5-
HTT), alpha-4 beta-2 nicotinic (α4β2), cannabinoid type-1 (CB1), dopamine
D1 (D1), dopamine D2 (D2), dopamine transporter (DAT), fluorodopa
(fDOPA), gamma-aminobutyric acid A (GABAa), histamine type-3 (H3),
muscarinic acetylcholine (M1), metabotropic glutamate receptor-5
(mGluR5), opioid (MOR), norepinephrine (NorEpi), N-methyl-D-aspartic acid
(NMDA), vesicular acetylcholine transporter (VachT).

Multivariate GWAS analysis
Using the GIBNs from our best-fitting model, we used gSEM to generate a
multivariate GWAS of each GIBN. The GenomicSEM package sumstats
program was used to perform the GWAS, with options set for a linear
model (continuous outcome) and default parameters for the ‘info’ and
‘maf’ filters (info ≤ 0.6, MAF ≤ 0.01). MAF was determined based on 1000 G
Phase3 EUR reference panel. The GWS associations (p < 5 × 10−8) for each
GIBN were compared to the significant SNPs reported by Grasby et al. with
and without the global correction. The FUnctional Mapping and
Annotations (FUMA) package [44] was used to annotate results from each
GIBN GWAS, including annotating SNPs to specific genes, identifying
independent loci, and identifying potential functional variants. FUMA was
run using LD in the 1000 G Phase3 EUR reference panel and the default
FUMA parameters.
While CT and SA were examined separately, both for computational

limitations and conceptual reasons, we used the multivariate GWAS results
to estimate the genetic correlation between CT GIBNs and SA GIBNs,
hypothesizing that they would be consistent with the negative genetic
correlation between average CT and total SA [16]. Additionally, to examine

the degree to which the CT and SA GIBNs genetically resembled the overall
CT and SA measures, we estimated the genetic correlation between each
GIBN and the average CT and total SA (uncorrected for ICV) as reported in
the Grasby et al.

Polygenicity analysis
We examined the significant SNPs from the GIBN GWAS, as well as SNPs in
LD using FUMA to test for functional associations with established
behavioral traits and major neuropsychiatric disorders. First, we examined
whether observed variants from the GWAS recapitulated GWS SNPs from
previous GWASs of neuroimaging traits including cortical GWASs and
other structural neuroimaging parameters [17, 45–50]. We also looked for
SNPs that were significant in GWASs of 12 neuropsychiatric disorders from
the Psychiatric Genomics Consortium (PGC): ADHD [51], alcohol depen-
dence [52], anorexia nervosa [53], autism spectrum disorder [54], bipolar
[55], cannabis use [56], MDD [57], obsessive-compulsive disorder (OCD)
[58] posttraumatic stress disorder (PTSD) [59], schizophrenia [60],
Tourette’s syndrome [61], and anxiety [62]. Finally, FUMA was used to
functionally annotate loci that overlapped with previously published
GWAS results.

Genetic correlation with psychopathology
We used cross-trait LDSC to identify links between psychiatric disorders
and CT-derived GIBNs as well as psychiatric disorders and SA-derived
GIBNs [63]. We estimated the genetic correlation between CT- and SA-
derived GIBNs and neuropsychiatric disorders using their GWAS summary
statistics [63]. To limit our need for a multiple testing correction, we limited
our analyses to the 12 neuropsychiatric disorders noted above. A false
discovery rate corrected p value (PFDR) was used to correct for the number
of GIBNs [10] and disorders [12].

RESULTS
Model fit
The SA-derived 6-GIBN solution resulted in the best overall model
fit to the genetic covariances generated from the GWAS summary
statistics (AIC= 22,712,604, CFI= 0.920, SRMR= 0.062). See Sup-
plementary Table S1 for fit statistics for each evaluated model. The
6 SA-derived GIBNs (SA1-SA6) loaded on 24 of the 34 brain regions
[18]. The standardized estimates for the 6 SA-derived GIBN models
(standardized factor loadings) are presented in Supplementary
Table S2 and Fig. 1A. The GIBNs generally encompass contiguous
brain regions and many correspond to known neuroanatomical
features. SA1 contains loadings for inferior temporal, isthmus
cingulate, postcentral, precuneus, superior parietal, supramarginal,
and temporal pole. SA2 contains loadings for caudal anterior
cingulate, caudal middle frontal, medial orbitofrontal, paracentral,
and rostral anterior cingulate. SA3 contains loadings for banks
superior temporal sulcus (STS), inferior parietal, and middle
temporal. SA4 contains loadings for pars opercularis, pars orbitalis,
and pars triangularis, SA5 contains loadings for cuneus, lateral
occipital, lingual, and pericalcarine, and SA6 corresponds to the
auditory cortex. The 6-factor model indicated substantial correla-
tion between GIBNs (rg= 0.61 to 0.91) as reported in Supplemen-
tary Table S3.
The CT-derived 4-GIBN solution resulted in the best model fit

(AIC= 17761928, CFI= 0.932, SRMR= 0.077; Supplementary Table
S4). Significant non-zero loadings for CT-derived GIBNS loaded on
25 of the 34 brain regions from Grasby et al. See Supplementary
Table S5 for the estimated loadings that are visualized in Fig. 1B.
As observed with SA models, the CT-derived GIBNs generally
encompassed contiguous cortical regions. CT1 contains loadings
for banks STS, caudal middle frontal, inferior parietal, paracentral,
pars opercularis, post-central, pre-central, precuneus, rostral
middle frontal, superior frontal, superior parietal, and supramar-
ginal cortices. CT2 contains loadings for the caudal anterior
cingulate, frontal pole, insula, lateral orbitofrontal, medial orbito-
frontal, pars orbitalis, rostral anterior cingulate, and rostral middle
frontal. CT3 contains loadings for banks STS, superior temporal,
and temporal pole. CT4 contains loadings for cuneus, lateral
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occipital, parahippocampal, and pericalcarine cortices. The CT-
derived GIBNs were moderately to highly correlated (rg= 0.67 to
0.87; Supplementary Table S6).
Factor diagrams for SA- and CT-derived GIBNs are presented in

Fig. 2. Consistent with prior work, the SA-derived GIBNs were
largely distinct from CT-derived GIBNs, although some regional

overlap exists. For example, SA5 and CT4 are both 4-region GIBNs,
with 3 overlapping regions.
We then performed a sensitivity analysis by switching the order

of the chromosomes, with the even chromosomes used in the EFA
and the odd chromosomes used in the CFA. See Supplementary
Tables S7–S12 for fit statistics and model estimates. The best

Fig. 1 Genetically Informed Brain Networks (GIBNs). Genomic structural equation modeling (gSEM) jointly modeled the genetic architecture
of (A) cortical surface area (SA), and (B) cortical thickness, for 34 brain regions based on GWAS results of Grasby et al. [18]. The model
generated 6 genetically informed brain networks (GIBNs) from SA phenotype measures. The color overlay on cortical regions represents the
magnitude of the factor loadings indicated in the color gradient (yellow= high; blue= low). Subsequent GWAS identified several genome-
wide significant hits (p < 5 × 10−8) associated with each GIBN.

Fig. 2 Graph of genomic structural equation modeling (gSEM) results. The blue circles, numbered from 1 to 32, represent the cortical
surface area (SA) and cortical thickness (CT) of regions defined by the Desikan–Killiany atlas in the figure legend. Two separate gSEMs were
carried out on A Latent SA variables, indicated by green circles, representing the genetic contributions from regional SA, which are specified
by thick green lines and arrows. Thin green lines connect genetically related SA variables with their genetic correlation strength (rg) indicated
in green boxes. B Latent CT variables, indicated by red circles, represent the genetic contributions from regional CT, which are specified by
thick red lines and arrows. Thin red lines connect genetically related CT variables with their genetic correlation strength (rg) indicated in red
boxes. SA surface area, CT cortical thickness, GIBN genetically informed brain network.
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fitting model from this sensitivity analyses had seven SA GIBNs
and four CT GIBNs, with very similar, but slightly worse CFI fit
statistics than the model described above (SA CFI= 0.89 and
SRMR= 0.064, vs CFI of 0.92 and SRMR of 0.62 for the original SA
GIBNs; CT CFI= 0.86 and SRMR= 0.077 vs CFI of 0.93, SRMR=
0.077 for the original CT GIBNs; AIC are not comparable).
Interestingly, even though the fit was similar, the factor structure
differed substantially from our original runs, although there were
points of correspondence. For example, SA factor 2 from the
7-factor sensitivity analysis model corresponds to SA5 of the
original model. The CT1 and CT2 GIBNs from the original runs
were subsets of larger regions identified as CT1 and CT2 in the
sensitivity analysis. We decided to continue the investigation of
the SA and CT GIBNs from our original models based on CFI and
SRMR, but we note that the sensitivity analyses indicate other
solutions may be viable alternatives to this factor structure.

Overlap of SA GIBNs and twin-derived genetic SA
parcellations
We computed Dice’s coefficients (DCs) and corresponding p
values between the SA GIBNs and the 12 SA correlation networks
reported by Chen et al. [11]. Our results (Fig. 3) showed a high
overlap between SA2 and the posterolateral temporal (DC= 0.205,
pFDR= 0.02), SA4 and pars opercularis (DC= 0.219, pFDR= 0.02),
SA4 and anteromedial temporal network (DC= 0.256, pFDR=
0.02), SA4 and pars opercularis network (DC= 0.219, pFDR= 0.02),
SA4 and anteromedial temporal network (DC= 0.259, pFDR=
0.02), and SA6 and superior temporal network (DC= 0.211,
pFDR= 0.02).

Overlap of GIBNs and RSNs
The Dice’s coefficients and corresponding p values of GIBNs and
the Yeo et al. [42] 7 RSNs (Fig. 4) showed that CT4 and SA5 had
relatively high overlap with the visual network (CT4:DC= 0.353,
pFDR= 0.008; SA5:DC= 0.424, pFDR= 0.008), while CT1 and SA3
had high overlap with the DMN (CT1:DC= 0.232, pFDR= 0.008,
SA3:DC= 0.249, pFDR= .008, CT1 and SA1 with DAN (CT1:DC=
0.159, pFDR= 0.008; SA1:DC= 0.232, p= 0.008), CT1 and CT2 with

FPN (CT1:DC= 0.210, pFDR= 0.008; CT2:DC= 0.225, pFDR= 0.008),
and SA6 with SMN (DC= 0.247, pFDR= 0.008.

GIBN overlap with high/low neuroreceptor density regions
We examined the overlap between CT and SA GIBNs and regions
of highest (top 20%; Fig. 5A) and lowest (bottom 20%, Fig. 5B)
neuroreceptor densities. We found that CT1 overlapped a region
of high neuroreceptor densities for many types of neuroreceptors
and a region of low fDOPA receptor density. CT2 and SA2
overlapped regions of high 5-HT1a, 5-HT4, and 5HTT receptor
density. SA5 overlapped the high 5HTT receptor-density region.
(Fig. 5A).

GWAS of GIBNs
To identify specific genetic variants that may be influencing the
GIBNs, we performed a multivariate GWAS on each SA- and CT-
derived GIBN. Manhattan plots for SA- and CT-derived GIBN
GWASs, their associated quantile-quantile (QQ) plots, and genomic
inflation factors (λ) are provided in Supplementary Figs. S5–14. We
observed moderate p value inflation (λ values between 1.06 and
1.16). However, the single-trait LD Score regression intercepts for
SA- and CT-derived GIBNs were all less than 1.02, indicating that
the apparent inflation was likely due to polygenicity. A total of
5,843 GWS (p < 5 × 10−8) variants were associated with the GIBNs.
FUMA [44] mapped these variants to 74 independent regions,
including 64 loci associated with the 6 SA-derived GIBNs and 10
loci associated with the 4 CT-derived GIBNs. A phenogram [64] of
the genetic associations is presented in Fig. 6. A list of all GWS loci
is provided in Table S13. Except for two novel SNPs, all others were
previously identified in Grasby et al. [18]. in either the analyses
adjusted for global SA/CT or the unadjusted analyses. The first
novel SNP, rs3006933, near the genes SDCCAG8 and AKT3 on
chromosome 1, was associated with SA1 (p= 4.08 × 10−9). The
other novel SNP, rs1004763, on chromosome 22 in the vicinity of
the gene SLC16A8, was associated with CT2 (p= 3.41 × 10−08).
Notably, many of the 75 GWS loci associated with GIBNs were not
associated with global measures, but only with individual CT/SA

Fig. 3 Genetic parcellation of twin brains. We examined the
percent volume overlap as measured by Dice’s coefficients for the
overlap between 6 SA GIBNs and the 12 clusters reported by Chen
et al. [11] derived from twin brain data. *FDR-corrected p values for
percent volume overlap with 12 clusters are indicated by an asterisk.
SA surface area, CT cortical thickness, GIBN genetically informed
brain network.

Fig. 4 Canonical resting-state networks. Percent volume overlap
(Dice’s coefficients) between GIBNs (4 CT and 6 SA) and canonical
resting-state networks for the 7-network parcellation scheme by Yeo
and colleagues (2011). *FDR-corrected p values for percent volume
overlap between GIBNs and 7 canonical resting-state networks. VN
visual network, SMN somatomotor network, DAN dorsal attention
network, VAN ventral attention network, LN limbic network, FPN
frontoparietal network, DMN default mode network, SA surface area,
CT cortical thickness, GIBN genetically informed brain network.
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regional measures, and half (37 out of 75) were more significantly
associated with the GIBNs than the corresponding global
measures. Using FUMA we found no significant enrichment of a
particular tissue type in either CT- or SA-derived GIBNs and no
enriched expression of developmental genes or regulators.

Genetic correlation between CT and SA
Although CT and SA regions were analyzed separately, we
examined the genetic correlation between CT and SA using LDSC
analysis of the GIBN GWAS results. The mean genetic correlation
between SA GIBNs and CT GIBNs is −0.22 (−0.43 to −0.08; Table
S14), whereas the mean genetic correlation between the 6 SA
GIBNs is 0.77 (0.61 to 0.91; Table S3) and the mean genetic
correlation between the 4 CT GIBNs is 0.76 (0.71 to 0.87; Table S6).
The dramatically lower correlation between CT and SA compared
to within SA and compared to within CT GIBNs supports separate
gSEM analyses of CT and SA phenotypes.

LDSC analysis of genetic correlation
We examined the genetic correlation between CT and SA GIBNs
and psychiatric disorders. The LDSC analysis of SA GIBNs is
reported in Table S15 and Figure S15. ADHD exhibited a significant
negative genetic correlation with all SA-derived GIBNs except SA4
(rg=−0.13 to −0.20, p= 3.29 × 10−6 to 0.0038, pFDR= 0.00040 to

0.039). Significant positive genetic correlations were observed
between bipolar disorder and SA1, SA2, SA4, and SA5 (rg=0.10 to
0.14, p= 3.00 × 10−4 to 0.0047, pFDR= 0.012 to 0.043). Interestingly,
we observed significant genetic correlations between MDD and
SA-derived GIBNs, but in the opposite direction as bipolar disorder.
We found a significant negative correlation between MDD and
SA6, which was not associated with bipolar disorder (rg=−0.10,
p= 0.0011, pFDR= 0.17). Negative correlations were non-significant
after multiple-testing correction between MDD SA1-SA3, and SA5
(rg=−0.057 to −0.080, punc= 0.0090 to 0.046), while SA4 was not
genetically correlated with MDD (p= 0.12). SA4 was significantly
correlated with cannabis use disorder (rg=0.15, p= 4.00 × 10−4,
pFDR= 0.012), while SA2 correlation with cannabis use was non-
significant (rg=0.11, punc= 0.011).
Fewer genetic correlations were significant between CT-derived

GIBN regions and psychiatric disorders (Table S16 and Figure S16).
CT3 and CT4 were negatively correlated with alcohol use disorder,
exhibiting the strongest correlations with any traits that we
examined (CT3 rg=−0.35, p= 3 × 10−4, pFDR= 0.012; CT4 rg=
−0.31, p= 7 × 10−4, pFDR= 0.014). We found a negative nominally
significant correlation between alcohol use disorder and CT1
(rg=−0.18, punc= 0.035, pFDR= 0.22). CT3 had a positive nomin-
ally significant correlation with OCD (rg=0.22, punc= 0.0091,
pFDR= 0.078).

Fig. 5 Receptor density. Dice’s coefficients and corresponding p values between each of the 4 CT and 6 SA GIBNs and neuroreceptor density.
The 20 receptors included serotonin 1a (5-HT1a), serotonin 1b (5-HT1b), serotonin 2a (5-HT2a), serotonin 4 (5-HT4), serotonin 6 (5-HT6),
serotonin transporter (5-HTT), alpha-4 beta-2 nicotinic (α4β2), cannabinoid type 1 (CB1), dopamine D1 (D1), dopamine D2 (D2), dopamine
transporter (DAT), fluorodopa (fDOPA), gamma aminobutyric acid A (GABAa), histamine type 3 (H3), muscarinic acetylcholine (M1),
metabotropic glutamate receptor 5 (mGluR5), opioid (MOR), norepinephrine (NorEpi), N-methyl-D-aspartic acid (NMDA), vesicular
acetylcholine transporter (VAchT). In Hansen et al. [43] and the 10 GIBNs maps were used to calculate Dice’s coefficient and corresponding
FDR-corrected p values for A the highest 20% receptor density, and B the lowest 20% receptor density (* FDR-corrected p value < 0.05). The
results, consisting of 200 Dice’s coefficients (20 receptors × 10 GIBNs), are displayed in heatmaps. SA surface area, CT cortical thickness, GIBN
genetically informed brain network.
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The global measures for thickness and SA are genetically
correlated to many of the same psychopathology traits as the
GIBNs, but the genetic correlations with global measures are
almost always less significant than the genetic correlations with
the most strongly associated GIBNs. The details of these results are
provided in Tables S15 and S16.

DISCUSSION
The goal of the present study was to leverage the pleiotropic
architecture of the human cortex to investigate genetic factors
underlying CT and SA, and to identify further links between the
genetics of CT, SA, and psychopathology. We applied gSEM to jointly
model the genetic architecture of 34 brain regions using results from
the ENIGMA-3 GWAS [18]. The process was undertaken with gSEM
to generate several possible solutions, from which the best-model fit
was selected. This solution organized brain regions to optimally
assign genetic pleiotropy to 6 SA- and 4 CT-derived latent factors,
which we have termed genetically informed brain networks (GIBNs).
The GIBNs we generated may be compared to similar structures

generated from twin studies. Using 400 twin pairs, Chen et al.
generated twelve genetically-informed clusters from vertex-based
SA measures [11]. Chen et al. [11]. reported heritability estimates
and genetic correlations between genetically informed parcels
that are more consistent with classical anatomically-defined sulcal
and gyral boundaries, Brodmann definitions, and cytoarchitectural
patterns than our GIBNs. The slight differences in model fit
between potential alternating models from our main analyses and
sensitivity analyses indicate that this is one of several viable
solutions with similar fit statistics. Even so, it is instructive to
examine ways this solution corresponds to prior parcellations of

the cortex based on genetic correlation as determined in twin
studies as well as neurobiological and functional parcellations.
The best-fitting SA-derived GIBNs overlap with several canonical

RSNs, such as visual network and SA5 (Dice’s coefficient=0.424),
which is composed of cuneus, lateral occipital, lingual, and
pericalcarine cortices [42]. Twin-based non-linear multidimen-
sional heritability estimates are among the highest for the visual
network (left h2m= 0.53; right h2m= 0.45) and auditory network
(left h2m= 0.44; right h2m= 0.60) [65]. SA6, which includes
superior and transverse temporal cortices, overlaps the auditory
cortex from twin-derived genetic parcels (Dice’s coefficient=
0.211; Fig. 3). The functional specializations of the human auditory
cortex [42], which include parts of the lateral prefrontal cortex,
Broca’s area, and subcentral regions, are needed for human
vocalization and language [66, 67]. The dorsal attention network
(DAN), which directs voluntary allocation of attention, has
substantial overlap with SA1 (Dice’s coefficient= 0.232, Fig. 4)
that is comprised of superior parietal, supramarginal, postcentral,
precuneus, isthmus cingulate, and inferior temporal regions. A
noteworthy omission from SA1, an important feature of the DAN,
are the frontal eye fields (FEF) [68]. Since FEF is not a FreeSurfer
parcellation output, it may be poorly represented in the ENIGMA
cortical GWAS. The DAN has relatively high twin heritability
estimates (left h2= 0.45; right h2= 0.40) [65]. SA4 partially
overlaps (Dice’s coefficient=0.259) the frontoparietal network
(FPN), which includes pars opercularis, pars orbitalis, and pars
triangularis, but lacks the critical temporoparietal structures [69]
(Fig. 4). One advantage of using gSEM and identifying GIBNS as a
strategy is that it allows us to align the genetic correlation of
clusters of regions with neurobiological features such as
connectivity and gene expression, and implicates specific GIBN-

cor�cal thickness

surface area
Fig. 6 SNPs for GIBNS derived from surface area and cortical thickness. Phenogram of GWS SNPS associated with six genetically informed
brain networks (GIBNs) derived from surface area (SA) and four GIBNs derived from the cortical thickness (CT).
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associated genetic variants and the degree to which they align
with other traits such as psychopathology.
The overlap of GIBN GWS loci with prior GWAS of neuroimaging

phenotypes or psychiatric disorders firmly points to the relevance
of GIBN-related (multi-regional SA and CT) variants to brain
structure and cognition. First, we note that novel variant
rs3006933 has been previously associated with subcortical
volumes [70]. Novel variants rs3006933 and rs1004763 [17, 48]
have been associated with neuroimaging phenotypes of corpus
callosum white matter microstructure [71]. A comparison of our
GIBN GWAS with published psychiatric disorder GWAS results
found that multiple SNPs linked to SA-derived GIBNs were also
implicated in a GWAS of schizophrenia [60]. Specifically, we
identified a cluster of 4 loci in the CRHR1 gene strongly associated
with SA-derived GIBNs (rs62057153 associated with SA1) in our
GWAS (p= 5.22 × 10−17 to 8.45 × 10−21). We also observed an
association between CT1 and rs11692435 (p= 1.17 × 10−12), a
schizophrenia-related locus, within the ACTR1B gene. Finally, CT-
and SA-derived GIBNs were associated with schizophrenia risk
variants in the SLC39A8 gene; namely rs13107325 was associated
with CT5 and rs13135092 was associated with SA5. No other traits
had GWS variants associated with any of the GIBNs.
Many GIBN-associated SNPs have been associated with other

cognitive, behavioral, neuroanatomical, neurofunctional, and
neuropsychiatric phenotypes. In addition to rs3006933 noted
above [16], SA6-linked locus rs9909861 [72] and SA5-linked SNP
rs7570830 [16] have been associated with subcortical volumes.
Multiple loci associated with SA-derived GIBNs that encompass
temporal, parietal, and temporo-parietal association cortices,
including the SA1-linked locus rs10109434 [73], the SA3-linked
SNP rs2299148 [74], and the SA6-linked locus rs9909861 [74–78]
have been implicated in academic attainment and cognitive
ability. Regions in SA6, namely superior temporal gyrus, and SA3,
namely supramarginal gyrus were the most strongly linked to
academic attainment in the UKB sample [79]. The same regions
were reported independently in the Queensland Twin Imaging
and HCP samples [80]. The SA5-linked locus rs6701689 has been
reported for risk tolerance [81]. However, a role for SA5 in risk
tolerance is unsupported. Risk tolerance is linked to cerebellar,
midbrain, and prefrontal cortical anatomy, as well as glutamater-
gic and GABAergic neurotransmission [81, 82]. The CT4-associated
locus rs13107325 has been associated with many traits including
schizophrenia [83–90], bipolar disorder [87, 88], Parkinson’s
disease [89, 90], sedentary behavior [70, 91] and risk taking [81],
as well as cognition, intelligence, and educational attainment
[74–78, 92]. CT4 includes the parahippocampal and fusiform gyri,
which have firmly established links to schizophrenia [93] and
sedentary behavior [94].
Behavioral traits and neuropsychiatric disorders showed distinct

genetic correlations with SA-derived GIBNs that differ markedly
from correlations with CT-derived GIBNs. CT3, located in the
middle and superior temporal cortices, and CT4, located in the
visual perceptual cortex, were strongly negatively correlated with
alcohol use disorder. This divergent relationship between CT-
derived and SA-derived networks is consistent with the ENIGMA-3
cortical GWAS where a similar pattern of positive and negative
correlations between total brain SA and behavioral traits/disorders
was found, but average CT correlations with behavioral traits/
disorders were non-significant [18]. Specifically, the ENIGMA-3
GWAS found that total SA was significantly positively correlated
with cognitive function, educational attainment, Parkinson’s
disease, and anorexia nervosa, but significantly negatively
correlated with MDD, ADHD, depressive symptoms, neuroticism,
and insomnia. In addition, the SA-derived GIBNs showed distinct
genetic relationships to several psychiatric disorders. Several SA-
derived GIBNs (SA1, SA2, SA4, SA5) were positively correlated with
bipolar disorder, whereas SA-derived GIBNs (SA1, SA2, SA3, SA5,
SA6) were negatively correlated with MDD, buttressing prior

evidence that MDD and Bipolar are distinct conditions with
diverging genetics [27]. While the relationship between these SA-
derived GIBNs and MDD converge with the findings from the
ENIGMA total SA results, the relationship with bipolar disorder was
novel. Thus, GIBNs may provide additional power to detect
genetic relationships when their strength across cortical regions is
heterogenous.
Interestingly, although several GIBN-associated SNPs were

associated with schizophrenia, no GIBNs were significantly
genetically correlated with schizophrenia (rg=0.029 to 0.034;
p values > 0.30). While this may be counterintuitive, genetic
correlation between phenotypes predicts an overlap in SNPs,
but the reverse may not be true. A genetic correlation could be
zero when many variants affect both traits, but the direction of
effects are uncorrelated across variants [95].
There is ample evidence that genetic variants that influence SA

are distinct from genetic variants that influence CT [18]. The results
of Panizzon et al. [29] and Grasby et al. [18] compared to van der
Meer et al. [16] are focused on different, albeit related measures.
van der Meer et al. [16] primarily focused on the overlap of
individual genetic variants associated with CT and SA and only
secondarily on their genetic correlation. By contrast, Panizzon
et al. [29] focused on genetic correlation from twin data, which
means genetic marker associations were not available. Grasby
et al. [18] was focused primarily on GWAS results and secondarily
on reporting genetic correlations between CT and SA. Indeed, the
results of van der Meer [16] are completely consistent with the
results of Grasby et al. [18], with the former reporting a genetic
correlation between SA and CT of – 0.26, and the latter of – 0.32.
However, van der Meer et al. [16] reports that the 4016 out of 7941
causal variants are shared between CT and SA. Therefore, the
relatively high genetic overlap, but low genetic correlation, is due
to a mixture of opposing and agreeing effects from variants.
Genetic variation affecting gene regulation in progenitor cell
types, present in fetal development, affects adult cortical SA [96].
An increase in proliferative divisions of neural progenitor cells
leads to an expanded pool of progenitors, resulting in increased
neuronal production and larger cortical SA, which is more
prevalent in gyrencephalic species (e.g. humans, primates) [97].
By contrast, loci near genes implicated in cell differentiation,
migration, adhesion, and myelination are associated with CT. Our
findings suggest this distinction holds for SA-derived compared to
CT-derived GIBNs. We hypothesize that the unique genetic
correlations of SA-derived GIBNs and CT-derived GIBNs with
behavioral traits/disorders may be explained by the distinct
developmental functions of their associated genes [98].

Limitations
A number of limitations deserve consideration in interpreting the
present findings. First, we note that even with the large sample
size of the Grasby et al. [17, 18] GWAS, there were many models
that fit approximately as well as our final model in terms of the
number of GIBNs and the clustering of the regions. Our sensitivity
analyses, in which the order of the chromosomes in the EFA and
CFA were switched provided alternate solutions. Many of these
solutions had similar CFI and SRMR scores, indicating acceptable
fit according to the CFI and SRMR criteria, but none had a
consistently excellent fit. This may be an artifact of the number of
regions examined and the dimensionality of the model. Therefore,
our set of GIBNs should be considered a working model rather
than the only possible genetic parcellation of the cortex. This
model is useful, in that it allows us to generate a set of genetic
associations with a smaller number of tests than considering each
of the regions individually.
There are also other limitations to consider. We only examined

genetic correlation with a handful of traits to reduce the multiple
testing burden, but note that there are other traits worthy of
interest, but beyond the scope of this manuscript. This also
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includes traits like insomnia and restless sleep, given the reported
genetic relationship between psychiatric disorders and diurnal
sleep patterns [32]. Other traits such as Parkinson’s and
Alzheimer’s disease would also be of interest [99, 100]. There are
other analyses that can be run to further interpret the multivariate
GWAS results, including Mendelian Randomization to support a
causal relationship between cortical structure and psychiatric
disorders and neurological traits. However, given the instability of
the model estimates in the sensitivity analyses, and large number
of models with similar fit indices, we think it is premature to
exhaustively investigate the characteristics of these GIBNs. It is
likely the factor structure we have presented will be supplanted in
the future as higher spatial resolution genetic associations
become available. The present gSEM was based on the GWAS
results of Grasby et al. [17, 18], which averaged left and right
hemisphere phenotypic measures. Additionally, Grasby et al.
examined the 34 cortical regions as defined by the Desikan-
Killiany atlas. A high-resolution GWAS of the cortex would allow
more flexibility and redefining parcellation boundaries informed
by genetic pleiotropy and likely yield GIBNs which correspond
more closely to anatomical and functional boundaries. However,
simultaneously analyzing GWAS results for each of 100 s or 1000 s
of vertices would present a computational challenge without
major advances in gSEM methodology. Therefore, the GIBNs we
presented here are a proof-of-concept that genetic correlation can
be used to enhance the interpretation of high-dimensional GWAS
results and provide novel insights into the relationship between
neuroimaging phenotypes and psychiatric disorders.

Conclusion
We harnessed the pervasive pleiotropy of the human cortex to
realize a genetically-informed parcellation that is neurobiologically
distinct from functional, cytoarchitectural, and other established
cortical parcellations, yet harbors meaningful topographic simila-
rities to other network schemas. Strong genetic correlation
between GIBNs and several major neuropsychiatric conditions,
coupled with clear confirmation that nearly all GIBN-associated
SNPs play a role in cognitive, behavioral, neuroanatomical, and
neurofunctional phenotypes, begins to expose the deeply
interconnected architecture of the human cortex. Applying gSEM
to model the joint genetic architecture of complex traits and
investigate multivariate genetic links across phenotypes offers a
new vantage point for mapping genetically informed cortical
networks, although with limitations that must be carefully
considered when results are interpreted.
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github.com/GenomicSEM/GenomicSEM. The ldsc package is publicly available at
https://github.com/bulik/ldsc. The results of the multivariate GWASs of the CT- and
SA-derived GIBNs are available at https://pgc-ptsd.com/about/workgroups/imaging-
workgroup/. All methods were performed in accordance with relevant guidelines and
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