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Epithelial ovarian carcinoma (EOC) is the most fatal among female reproductive system tumors. 
The immune tumor microenvironment and ubiquitin-proteasome pathway are closely related to 
the proliferation, invasion, and response to chemotherapy in EOC. However, their specific roles in 
EOC have not been fully elucidated. Therefore, we aimed to recognize potential prognostic markers 
and novel therapeutic targets for EOC. We constructed the ubiquitin-related signature risk model 
comprising HSP90AB1, FBXO9, SIGMAR1, STAT1, SH3KBP1, EPB41L2, DNAJB6, VPS18, PPM1G, 
AKAP12, FRK, and PYGB, specifically for patients with EOC. The high-risk model presented a worse 
prognosis, primarily associated with the B-cell receptor signaling pathway, ECM receptor interaction, 
focal adhesion, and actin cytoskeleton regulations. Analysis of the immune landscape revealed a 
higher abundance of B cells, M2 macrophages, neutrophil CD4 T cells, cancer-associated fibroblasts, 
macrophage neutrophils, and fibroblasts in the high-risk group. It also exhibited lower tumor mutation 
burden, mRNAsi, and EREG-mRNAsi and reduced sensitivity to other chemotherapy drugs, except 
dasatinib. These findings serve as a valuable indicator for personalized treatment strategies and clinical 
stratification in managing patients with EOC. Additionally, our study will serve as a foundation for 
future mechanistic research to explore the association between the ubiquitin-proteasome pathway 
and EOC.

The mortality rate for ovarian cancer (OC) surpasses those of other female reproductive system tumors. The 
National Center for Health Statistics (NCHS) reported that OC ranks as the fifth most common female tumor 
and accounts for 5% of female deaths1. This disease poses a significant threat to the health of women. Epithelial 
ovarian carcinoma (EOC) is a heterogeneous disease marked by variations in molecular composition and 
histological features, accounting for approximately 90% of all OC cases2. EOC tends to develop deep within 
the pelvic cavity and exhibits limited early clinical manifestations, leading to delayed diagnosis in most patients 
until the disease has advanced significantly. Moreover, patients with EOC exhibit a high rate of postoperative 
recurrence and frequently show chemotherapy resistance3,4. Consequently, EOC has the highest mortality rate 
among all gynecological malignancies1. Thus, identifying valuable diagnostic biomarkers, therapeutic targets, 
and prognostic factors for patients with EOC is crucial.

Protein ubiquitination serves as a signaling mechanism for various cellular processes, including proteasomal 
degradation, cell cycle regulation, and transcriptional regulation5–9. In EOC, the ubiquitin-proteasome pathway 
closely interconnects with proliferation, invasion, and chemotherapy responses, and many E3 ubiquitin ligases 
exhibit abnormal expression patterns. These include the regulation of BRCA1, a gene associated with OC, 
and p53, a tumor suppressor. Additionally, E3 ubiquitin ligases interfere with the ERK pathway, ERBB2gene 
expression, and cyclin-dependent cell cycle regulation process10. The ubiquitin-proteasome pathway alters the 
tumor microenvironment (TME), influencing anti-tumor activity and tumor migration in OC. For instance, 
UBR5, which has a key role in the ubiquitin proteasome pathway, promotes the recruitment and activation of 
tumor-associated macrophages through chemokines and cytokines and is critical to the progression of OC11.

The TME encompasses tumor cells and the surrounding fibroblasts, immune and inflammatory cells, 
interstitial cells, glial cells, microvessels, and infiltrating biomolecules. Three features characterize the TME: 
hypoxia, chronic inflammation, and immunosuppression. These elements are interconnected, forming a 
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complex network of mechanisms crucial in tumor development. Epithelial ovarian carcinoma is characterized 
by a highly immunosuppressive TME and distant metastasis. Single-cell RNA sequencing (scRNA-seq) in EOC 
has revealed its TME map and cell characteristics12. Ovarian cancer cells disrupt the function of dendritic 
cells (DCs) by disrupting their activation, antigen presentation ability, differentiation, and recruitment; thus, 
they evade immune control13. In the advanced stages of EOC, macrophages with M2-like phenotypes, which 
possess a low tumor-killing activity and high potential to promote immune suppression, tumor cell invasion, 
angiogenesis, and metastasis, are recruited14–16. Cross-talk between OC cells and TME components is related 
to tumor growth promotion and metastasis and the reprogramming of innate and adaptive immune responses. 
Despite increasing recognition of the involvement of the ubiquitin pathway and TME in OC, a specific scoring 
model has not yet been developed to accurately assess this connection. Constructing a risk score model based 
on ubiquitin-related genes would enable the prediction of overall survival (OS) and immunotherapy response in 
patients with EOC. Moreover, it would aid oncologists in developing more effective immunotherapy strategies 
for targeted treatment.

Regarding clinical utility, the prognostic model serves as a convenient tool for assessing OS and recurrence 
risk, and it holds the potential to contribute to personalized treatment for patients17. Advancements in research 
have facilitated the identification of patient subgroups with poor prognosis. This has promoted the exploration 
of alternative treatment strategies tailored for such patients, offering valuable insights into clinical treatment 
approaches18. Accordingly, this study aimed to determine potential prognostic markers and new therapeutic 
targets for EOC.

In the present study, we obtained differentially expressed genes (DEGs) by screening out RNAseq data from 
tissues of patients with EOC, using The Cancer Genome Atlas (TCGA) database, and normal tissues, using 
the Genotype-Tissue Expression (GTEX) database. These DEGs were intersected with 4299 ubiquitin-related 
genes of Genecards to establish a risk model for differential expression of ubiquitin-related genes (DEURGs). 
Clinical features, pathway enrichment, immune status, messenger RNA dry stemness (mRNAsi), epigenetically 
regulated mRNAsi (EREG-mRNAsi), tumor mutation load, and drug sensitivity were used to analyze the 
differences between the high- and low-expression groups of risk models. This study verifies the dependability of 
the risk model and the importance of predicting the prognosis of EOC, addresses that there is no effect of large-
scale ubiquitination related genes on the prognosis of EOC, and will help oncologists develop more effective 
immunotherapy strategies by deepening the understanding of the mechanisms underlying immune infiltration 
in the TME in patients with EOC.

Results
Prognosis and TME Characteristics in Gene Clusters of a Ubiquitin-Related Risk Model in EOC.

We explored the biological behavior of the molecular patterns in the ubiquitin-related risk model. 
Subsequently, differential expression analyses were conducted. Using common DEGs, unsupervised clustering 
was presented. The TCGA-EOC cohort was classified into three gene clusters (Fig. 1A). We further investigated 
the prognostic implications of ubiquitin-related gene clusters by assessing OS. The results showed that patients 
in gene cluster A exhibited a longer OS than those of other clusters. However, patients in gene clusters B and 
C had a pessimistic prognosis (Fig. 1B). Gene cluster A exhibited the lowest risk scores among all the clusters 
(Fig. 1C).

Subsequently, we explored whether these three gene clusters exhibited distinct TME features. The results 
showed that cluster B exhibited a low immunological score (Fig. 1D). CIBERSORT analysis revealed that cluster 
B had the highest proportion of resting memory CD4 T cells and monocytes among all the clusters (Fig. 1E). The 
TIMER algorithm revealed that CD4 T cell and macrophage levels were highest in cluster C (Fig. 1F). The MCP-
Counter algorithm indicated that in cluster B, the expression levels of the B lineage, neutrophils, and endothelial 
cells were higher than those in the others. However, fibroblasts had the highest expression levels in cluster C 
(Fig. 1G). Overall, the consistency observed between prognostic and TME features across the three gene clusters 
suggested the reliability and validity of this classification.

Construction of Ubiquitin-Related Signature for Patients with EOC.
We employed the limma package in R software to detect DEGs between normal and EOC tissues, with the 

aim of identifying genes implicated in TME regulation. The volcano plot depicted 6123 DEGs, with 3,073 and 
3,050 upregulated and downregulated genes, respectively (Fig.  2A). A Venn plot was constructed depicting 
the number of DEGs and their intersection with ubiquitin-related genes in EOC (Fig. 2B). These overlapping 
genes were subsequently utilized as inputs for LASSO-Cox regression analysis. The LASSO and multivariate 
Cox analyses were performed on 1,530 ubiquitin-related genes in the TCGA cohort. This process was used for 
identifying the best risk genes to evaluate the prognoses of EOC patients. Figure 2C and D show the resulting 
variation trajectories of the respective variables in which LASSO regression analysis was conducted. Overall, 
twelve cancer-ubiquitin-related genes were selected: HSP90AB1, FBXO9, SIGMAR1, STAT1, SH3KBP1, EPB41L2, 
DNAJB6, VPS18, PPM1G, AKAP12, FRK, and PYGB. Analysis of the GEPIA website showed that there was no 
high probability of multicollinearity among genes (supplementary Table 3). Univariate Cox regression analysis 
of EOC patients revealed that seven factors (HSP90AB1, FBXO9, SIGMAR1, STAT1, SH3KBP1, DNAJB6, and 
PPM1G) exhibited a hazard ratio (HR) < 1, indicating a protective effect. Conversely, EPB41L2, VPS18, AKAP12, 
FRK, and PYGB were observed as risk factors, with HR > 1 (Fig.  2E). This was based on the median of the 
risk score derived from the risk formula that categorized patients into low- and high-risk groups. In the GEO 
database, there is no probe that covers all genes of the risk model, which cannot be externally verified. Therefore, 
in the TCGA database, the EOC patients were randomly divided into test and training groups at a ratio of 6:4 to 
validate the accuracy of the model. The Kaplan-Meier survival curves in the training and test cohorts indicated 
that patients categorized in the high-risk group exhibited a lower survival rate than those in the low-risk group 
(Fig. 2F–H). The ROC analysis revealed that the training group exhibited potential in predicting OS among 
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patients in the TCGA cohort (AUC values of 0.737, 0.762, and 0.793 for 1-, 3-, and 5-year OS, respectively; 
[Fig. 2I]). Among the risk features in the test group, the 1-year OS had a high AUC value (Fig. 2J). The 3- and 
5-year OS rates in the entire group showed a high AUC value, suggesting that the modified risk model exhibited 
superior early prediction accuracy (Fig. 2K). IHC staining of DEURGs was performed using the HPA database 
(Fig. 3A–K). Additionally, no protein FBXO9 expression was observed in the HPA database. The expression of 
DEURGs in high grade serous ovarian cacinoma (HGSOC) and normal tubal epithelial tissues was analyzed 
using qRT-PCR in 54 tissues (Fig. 4A–L, supplementary Table 4).

Establishment and Validation of a Nomogram Combined with Clinical Characteristics.
Based on the median of the risk score derived from the risk formula that categorized patients into low- and 

high-risk groups, the high-risk group exhibited more deaths among the training, test, and whole sets, suggesting 
that the clinical outcomes of low-risk patients were superior to those of high-risk patients, meanwhile, differences 

Fig. 1.  Analyzing Prognosis and TME characteristics using Ubiquitin-Related risk model gene clusters for 
HGSOC. Consensus clustering matrix when k = 3. (B) OS curve comparison among the three clusters. (C) 
Distribution of risk score among the three clusters. (D) Estimation of immune, stromal, and estimate scores 
among the three clusters using the ESTIMATE algorithm. (E) Estimation of immune cell proportions among 
the three clusters using the CIBERSORT algorithm. (F) Estimation of immune cell proportions among the 
three clusters using the TIMER algorithm. (G) Estimation of immune cell proportions among the three clusters 
using the MCP-Counter algorithm.
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Fig. 2.  Construction of the Ubiquitin-Related Signature for Patients with OC. (A) Volcano map illustrating the 
differential expression of 6,123 genes in normal and OC tumor tissues. Red and blue dots denote upregulated 
and downregulated genes in tumor tissue, respectively. (B) Correlations between the signature and the 
five genes. The Venn diagram illustrates overlapping genes for two screening datasets. Overall, 1,530 genes 
were identified as ubiquitin-related genes.  (C, D) LASSO regression analysis in the TCGA database. The 
determination of ‘lambda’ for selecting optimal gene signature. (E) Forest plot illustrating the prognostic ability 
of the 12 ubiquitin-related genes included in the risk signature for OC. (F–H) Kaplan–Meier survival analysis 
of patients with OC in different groups. (I–K) ROC curves evaluate the specificity and sensitivity of 1-, 3-, and 
5-year OS based on the risk score from TCGA datasets.
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in the expression levels of the same gene within the risk model between high-risk and low-risk groups were 
also shown. (Fig. 5A–C). We considered the risk score as an independent protective factor (p < 0.001, 95% CI 
HR: 2.003–3.033) (Fig. 5D). Moreover, even after adjusting for age, stage, and grade, this association remained 
statistically significant (p < 0.001, 95% CI HR: 1.883–2.897) (Fig. 5E). To quantitatively predict the probability 
of survival, we constructed a nomogram that integrated the risk score and clinical characteristics (Fig.  5F). 
The nomogram achieved a C-index of 0.632. The calibration plots and ROC curves indicated the satisfactory 
performance of the derived nomogram. Similarly, the nomogram model indicated that the AUC values for 
the 1-year, 3-year, and 5-year OS predictive ability were 0.927, 0.928, and 0.912, respectively (Fig. 5G, H). By 
employing the ROC curve to compare the predictive value of various factors (including nomogram, risk score, 
age, grade, and stage) the nomogram showed excellent predictive capacity (Fig. 5I). Combining risk scores with 
clinical characteristics in the nomogram showed high specificity and sensitivity in predicting survival. These 
nomograms suggest the strong potential of the constructed risk model for prognostic prediction in patients with 
EOC.

Analyzing Biological Pathways and Functional Enrichment in the Ubiquitin-Related Signature.
We conducted KEGG pathway and GO analyses by using GSEA to explore the underlying mechanisms 

contributing to the varied outcomes stratified by the risk model. The GO analysis, encompassing19–21 biological 
processes, molecular functions, and cellular components, contend that numerous functions and processes in 

Fig. 3.  Construction of the Ubiquitin-Related Signature for Patients with OC. Immunohistochemical staining 
of DEURGs in HPA. The expression of (A) HSP90AB1, (B) SIGMAR1, (C) STAT1, (D) SH3KBP1, (E) 
EPB41L2, (F) DNAJB6, (G) VPS18, (H) PPM1G, (I) AKAP12, (J) FRK, and (K) PYGB in the HPA.
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low-risk patients were chiefly associated with metabolic-related biological processes and protein synthesis 
(Fig. 6A–C). The KEGG pathway enrichment analysis revealed that the top five considerably pathway terms 
in the low-risk group included DNA replication, oxidative phosphorylation, proteasomes, and spliceosomes 
(Fig. 6D). However, patients in the high-risk group were primarily concentrated in B cell receptor signaling 
pathway, ECM receptor interaction, focal adhesion, and regulation of the actin cytoskeleton (Fig.  6D). 
Furthermore, the hallmark pathway analysis revealed that E2F targets, MYC targets, V1, the G2M checkpoint, 
and oxidative phosphorylation were predominantly concentrated among low-risk patients. Conversely, high-
risk patients exhibited dominance in signaling pathways that promote tumor progression, including epithelial-
mesenchymal transition, TGF-β signaling, TNFα signaling via NFκB, and UV response DN (Fig. 6E). These 
findings characterized the ubiquitin-associated risk model, affirming its potential mechanism for assessing the 
prognosis of patients with EOC.

Different TME and Immune Status in the Risk Score.
The correlation between the risk model and tumor-infiltrating immune cells was investigated to elucidate its 

correlation with immune-related biological pathways. The TCGA cohort was quantified using the ESTIMATE 
algorithm for immune, stromal, and infiltrating immune cells. The results showed a lower immune score in the 
low-risk group, suggesting infiltration of TME immune cells increased (Fig. 7A).

The CIBERSORT algorithm revealed a lower proportion of monocytes and macrophage M2 in the low-
risk group (Fig. 7B). The study revealed a significant association between a low monocyte count and favorable 
survival outcomes, specifically regarding OS and progression-free survival (PFS) in patients with EOC. We 
further analyzed the risk model in the two subgroups to elucidate specificity differences among invasive immune 
cells. The CIBERSORT algorithm revealed that the high-risk group exhibited substantially higher numbers of 
B cells and macrophages (Fig. 7C). The MCP-Counter algorithm indicated that the high-risk group exhibited 
higher expression levels in neutrophils and fibroblasts than those of the low-risk group (Fig. 7D). The quantiSeq 
algorithm showed that the high-risk group had a greater percentage of B cells, M2 macrophages, and neutrophils 
(Fig. 7E). Moreover, the EPIC algorithm indicated a higher abundance of CD4 + T cells and cancer-associated 
fibroblasts (CAFs) in the high-risk group compared to those in the low-risk group (Fig. 7F).

Correlation Between mRNAsi, EREG-mRNAsi, Tumor Mutation Burden, and Risk Model.
We evaluated the relationship between stemness index (mRNA expression based-index, mRNAsi and 

epigenetically regulated mRNAsi, and EREG-mRNAsi) and the risk models. Gene expression is reflected by 
mRNAsi. The findings revealed that patients in the low-risk group exhibited higher mRNAsi and EREG mRNAsi 
expression levels than those of the high-risk group (Fig. 8A). Using TIDE to assess tumor immune dysfunction 

Fig. 4.  Construction of the Ubiquitin-Related Signature for Patients with OC. The RNA expression of 
DEURGs through qRT-PCR. The expression of (A) HSP90AB1, (B) FBXO9,(C)SIGMAR1, (D) STAT1, (E) 
SH3KBP1, (F) EPB41L2, (G) DNAJB6, (H) VPS18, (I) PPM1G, (J) AKAP12, (K) FRK, and (L) PYGB, p < 0.05 
indicates differential expression.
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Fig. 5.  Establishment and Validation of a Nomogram Combining Clinical Characteristics. (A–C) Prognosis 
value of the 12 ubiquitin-related genes model in the training, test, and entire sets. This includes displaying 
the predictive model, survival time, survival status, and heatmap illustrating the 12 genes. (D–E) Univariate 
and multivariate Cox regression analyses evaluating the prognostic value of the risk model score and clinical 
features. (F) Development of a clinical prognostic nomogram for predicting 1-, 3-, and 5-year survival. (G) 
Calibration curves illustrate the performance of the nomogram predictions for 1-, 3-, and 5-year survival. 
(H–I) Time-dependent ROC curve analyses assessing the ability to predict OS using risk scores and clinical 
features.
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and rejection, the results showed elevated scores within the high-risk group. A high TIDE score proposes a 
greater potentiality of evading immune surveillance and a lower success rate for immunotherapy (Fig. 8B).

The KM analysis of the TMB subtype revealed that the low-risk group exhibited a higher tumor mutation 
burden (TMB) score than that of the high-risk group. Patients with higher TMB scores universally experienced 
a better prognosis than those with lower TMB scores (Fig.  8C, D). Generally, the higher the TMB in most 
tumor cells, the more neoantigens that may be produced, leading to increased tumor immunogenicity. This 
suggests greater potential benefits from PD-1/PD-L1 immune checkpoint inhibitor (ICI) treatments. Patients in 
the low-risk group demonstrated a survival benefit regarding the TMB score despite having significantly lower 
performance (Fig. 8E). Consequently, we examined mutations in different risk subgroups. Somatic mutation 
distribution among low- and high-risk patients from the TCGA cohort was specifically evaluated. Additionally, 
we ranked the top 20 genes associated with each mutation. Figure 8F shows mutations frequency was higher 
in patients with low-risk scores (99.21%) than in those with high-risk scores (98.33%). Although the TMB was 
similar, the frequency of the top five mutated genes differed among various groups. In the high-risk group, they 
were TP53 (93%), TTN (25%), CSMD3 (13%), MUC16 (11%), and USH2A (11%). Conversely, the low-risk 
group showed TP53 (94%), TTN (28%), RYR2 (11%), CSMD3 (10%), and FAT3 (10%).

Correlation Between the Ubiquitin-Related Signature and Drug Sensitivity.
To assess the practicality of the risk score in clinical therapy, we analyzed the sensitivity to chemotherapeutic 

drugs in the subtype groups using the GDSC(genomics of drug sensitivity in cancer). The results showed that 

Fig. 6.  Biological Pathways and Functional Enrichment Analysis of the Ubiquitin-Related Signatures. (A–C) 
GO enrichment analysis, (D) KEGG enrichment analysis, and (E) hallmark pathway analysis.
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patients in the low-risk group demonstrated lower IC50 values for 5-fluorouracil, cisplatin, cyclophosphamide, 
docetaxel, oxaliplatin 1089, paclitaxel, sorafenib, and topotecan (Fig. 9A–C, E–I). Conversely, patients in the 
high-risk group exhibited a lower IC50 value for dasatinib than that of the low-risk group (Fig. 9D). These findings 
have significant implications; for instance, the low-risk group may exhibit more sensitivity to molecular-targeted 
drugs and common chemotherapeutic agents. However, dasatinib showed a therapeutic significance in high-risk 
groups. These findings indicate that the risk model can predict drug sensitivity in patients with EOC to some 
extent.

Discussion
Epithelial ovarian carcinoma is a highly aggressive tumor of the female reproductive system. Its incidence rises 
annually, and it ranks as the leading cause of mortality among malignant tumors of the female reproductive tract, 
being typically diagnosed at an advanced stage and exhibiting a high recurrence rate1,3.

Fig. 7.  Varied TIME and immune status based on Risk Scores. (A) Comparison of immune scores and 
ESTIMATE scores between low- and high-risk patients using the ESTIMATE algorithm. (B) Estimation of 
immune cell proportions in low- and high-risk patients employing the CIBERSORT algorithm. (C) Estimation 
of immune cell proportions in low- and high-risk patients using the TIMER algorithm. (D) Estimation of 
immune cell proportions in low- and high-risk patients using the MCP-Counter algorithm. (E) Estimation 
of immune cell proportions in low- and high-risk patients utilizing the quantiseq algorithm. (F) Estimation 
of immune cell proportions in low- and high-risk patients using the EPIC algorithm. *p < 0.05; **p < 0.01; 
***p < 0.001.
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The ubiquitin-proteasome system serves as one of the crucial mechanisms for degrading intracellular 
oncoproteins and tumor suppressor proteins. Moreover, it is the primary regulator of protein expression9,22. 
Recent findings highlight the significance of ubiquitin-related genes as potential therapeutic targets in cancer 
management. Recently, prognostic signatures derived from ubiquitin-related targets have been discovered in 
clear cell renal cell carcinoma, triple-negative breast cancer, hepatocellular carcinoma, and prostate cancer23–26. 
In this study, unsupervised clustering was conducted based on DEGs. A TCGA-EOC cohort was divided into 
three gene clusters. The results showed that cluster A exhibited longer OS time; cluster B showed low immune 

Fig. 8.  Relationships between risk model, mRNAsi, EREG-mRNAsi, and tumor mutation burden.  (A) 
Differences of the stemness index in distinct risk groups. (B) Variations in the dysfunction index among 
distinct risk groups. (C) Differences in TMB among distinct risk groups. (D) Survival curve comparison 
between high and low TMB groups. (E) Survival curve based on risk score and TMB. (F) Waterfall plots 
illustrating the somatic mutations in high- and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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scores, the highest B lineage levels, and more neutrophils and endothelial cells. Furthermore, cluster C exhibited 
the highest T cell CD4 and macrophage levels. A comprehensive analysis was conducted to examine the clinical 
significance and characteristics of the TME associated with ubiquitin-related genes in EOC. Furthermore, a risk 
model of ubiquitin-related diseases was introduced to assess the proteasome pathway in individuals. This model 
may enhance our understanding of immune infiltration in the TME and aid oncologists in developing more 
effective and targeted immunotherapeutic strategies.

By analyzing the mRNA expression profiles of ubiquitin-related genes, we established a molecular pattern 
risk model to predict the prognosis of patients with EOC. Firstly, we utilized the limma package to identify 
differentially expressed genes (DEGs) between epithelial ovarian carcinoma and normal ovarian tissues, 
revealing 3,073 upregulated and 3,050 downregulated genes, respectively, that potentially contribute to EOC 
progression. Subsequently, we aimed to identify differential genes related to the regulation of ubiquitination 
modification. Leveraging the GeneCards database, we procured a list of 4,299 ubiquitin-associated genes. We 

Fig. 9.  Analysis of the Correlation Between the Ubiquitin-Related Signature and Drug Sensitivity. Association 
between the Ubiquitin-Related signature risk model and drug sensitivity, encompassing chemotherapeutics 
and molecular targeting drug. (A) 5-Fluorouracil, (B) Cisplatin, (C) Cyclophosphamide, (D) Dasatinib, (E) 
Docetaxel, (F) Oxaliplatin, (G) Paclitaxel, (H) Sorafenib, (I), and Topotecan. IC50: half-maximal inhibitory 
concentration.
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employed a Venn diagram to intersect these ubiquitin-related genes with our differentially expressed ones, 
yielding 1,530 genes that were uniquely differentially expressed between cancer and normal tissues and are 
linked to ubiquitination. These genes may have a direct role in the progression of EOC. Given the absence of 
an efficacious prognostic model for ovarian cancer, we aspire to devise a ubiquitination-based risk prognostic 
model that can forecast EOC progression and patient outcomes with heightened accuracy and efficacy. To this 
end, univariate cox regression analysis was used to search for differentially expressed ubiquitin-related genes 
associated with prognosis, which may play a role in both tumor progression and tumor prognosis.

Further through the LASSO and multivariate Cox analyses, we established a prognostic signature for EOC 
that incorporates several ubiquitin-related genes: HSP90AB1, FBXO9, SIGMAR1, STAT1, SH3KBP1, EPB41L2, 
DNAJB6, VPS18, PPM1G, AKAP12, FRK, and PYGB. The risk model demonstrated strong performance in 
predicting survival and employed to observe the TME landscape and anti-tumor drug sensitivity. The heat shock 
protein 90-kDa alpha, class B member 1 (HSP90AB1), belongs to the HSP family and functions as a molecular 
chaperone27. In native and vitrified-thawed human ovarian cortical tissues, HSP90AB1maintains stable expression 
at the protein and RNA levels28. F-box-only protein 9 (FBXO9) exhibits varying expressions and functions across 
different human cancer types, regulating the stability and activity of oncogenes and tumor suppressor genes29. 
Previous studies have demonstrated the association of FBXO9 with advanced tumor type, histological severity, 
tumor stage progression, and advanced tumor metastasis in OC. These findings suggest that FBXO9functions as 
a potential tumor suppressor in OC30. In HepG2 cells, Sigmar1 overexpression has demonstrated the capacity 
to inhibit cell proliferation, enhance cell apoptosis, and reduce NF-κB levels, indicating that it exerts protective 
effects31. Our IHC analysis revealed that elevated STAT1levels correlated positively with longer OS and PFS in 
patients with OC32–35. Tumor cells employ various mechanisms to evade immune destruction, such as alterations 
in antigen, reduced immunogenicity, changes in TME, and diminished immune response36. STAT1has been 
associated with enhancing immune responses by upregulating cytotoxic immune cells such as cytotoxic T 
lymphocytes and natural killer (NK) cells37,38. SH3KBP1is involved in the complex responsible for regulating 
EGFR endocytosis. In EOC, the loss of this gene is detected in 70% of resistant tumors39. EPB41L2 consistently 
showed overexpression in the initial tumor samples of subsequent non-responders across various PFS cut-
off times in OC. Persistently high expression of EPB41L2 is associated with a marked deterioration in PFS, 
suggesting that elevated initial EPB41L2expression correlates with shorter subsequent PFS40. According to the 
UniProtKB database (www.uniprot.org/uniprot/O75190), two types of DNAJB6 transcript variants exist: 1 and 2. 
These variants possess distinct DNAJB6 mRNA 3’ untranslated regions. circPLEKHM3 can function as a ceRNA 
for miR-9, leading to the downregulation of DNAJB6expression and subsequently suppressing the proliferation 
and migration abilities of OC cells41. VPS18is recognized for its pivotal role in vesicle-mediated protein transport 
to lysosomes, encompassing endocytic membrane transport and autophagy pathways42,43. Moreover, VPS18 is 
markedly linked to treatment response in OC44. PPM1Gbelongs to the metal-dependent protein phosphatase 
(PPM) family, which is implicated in various diseases, such as dysfunction, tumors, and metabolic diseases45. 
PPM1Gfunctions by dephosphorylating pre-mRNA splicing factors, thereby affecting protein diversity46. 
Consequently, impairing PPM1Gfunction might stimulate cancer progression through its effect on pre-mRNA 
splicing45. Additionally, AKAP12belongs to the kinase scaffolding protein family, anchoring protein kinases A 
and C to the plasma membrane47. AKAP12 expression positively correlated with the IC50 value of sorafenib in 
EOC. This finding suggests that patients with high AKAP12levels may exhibit resistance to anti-VEGF inhibitor 
therapy48. Fyn-related kinase (FRK) belongs to the BRK family, originally known as RAK49,50, and it functions as 
a tumor promoter or suppressor in various cancers49. The overexpression of FRK overexpression was reported 
to enhance the proliferation, migration, and invasion abilities of OC cells51. Additionally, PYGBcan regulate 
the biological characteristics of a variety of cancer cells, including their proliferation and invasion abilities, 
apoptosis, and metastasis phenotypes52–57. PYGBexpression is upregulated in OC tissues, and a high level of its 
expression is significantly associated with poor prognosis in patients with OC58.

Analysis of the KEGG pathway and GSEA revealed that the low-risk group exhibited enrichment in DNA 
replication, oxidative phosphorylation, proteasomes, and spliceosomes. The high-risk subgroup mainly showed 
enrichment for cytoskeletal regulation. In approximately 50% of high grade serous ovarian carcinoma (HGSOC) 
cases, alterations in homologous recombination genes, which play crucial roles in DNA repair pathways, are 
observed. Therapeutic strategies for OC, combining paclitaxel and carboplatin with DNA-damaging agents 
tailored to specific gene alterations, could benefit patients with recurrence in OC59. Findings from a previous 
study have indicated a close relationship between the reliance of ovarian tumor cells on oxidative phosphorylation 
(OXPHOS) and the survival and proliferation of cancer-derived stem cells60. Therefore, OXPHOS plays a key role 
in OC tumorigenesis; thus, targeting OXPHOS may serve as a promising therapeutic strategy for OC treatment. 
The ubiquitin-proteasome system serves as a crucial mechanism for degrading intracellular oncoproteins and 
tumor suppressor proteins. Moreover, it functions as the primary regulator of protein expression9,22, which is 
involved in controlling tumor-related cellular processes, such as cell proliferation, apoptosis, gene transcription, 
and receptor downregulation5–8. Several proteasome system inhibitors have demonstrated an effect on the 
proliferation, migration, and invasion abilities of OC cells. For example, YSY01A, a proteasome inhibitor, 
enhanced cisplatin cytotoxicity in cisplatin-resistant human OC cells61. Moreover, the proteasome inhibitor 
PS-341 decelerates the growth of ES-2 OC xenografts in immunodeficient mice62. Alternative splicing (AS) is 
essential for normal development, and the regulated expression of splicing factors holds significance in cancer 
development and progression. Numerous AS markers have been identified in OC, including the aberrant 
expression of the splicing factors SRSF3 and SFPQ63. The cytoskeleton provides structural support for cells, 
serving as a physical link between the extracellular biochemical, physical, and physiological environments and 
the cell surface. This linkage extends to intracellular signaling pathways and nuclear events that regulate processes 
such as apoptosis, contact inhibition, proliferation, and anchorage-independent growth64,65. During cancer 
development, alterations in cellular architecture bolster cell plasticity, modulating cell-cell interactions and 
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dynamic adhesion. These changes enhance the motility and invasion abilities of cancer cells64,66. Consequently, 
in the high-risk group, the progression of EOC may be promoted via the regulation of this pathway, potentially 
worsening the prognosis.

The findings from the chemotherapeutic drugs in the GDSC database suggest that the low-risk group may 
exhibit higher sensitivity to standard chemotherapeutic agents and molecular-targeted drugs. FBXO9 may 
regulate the degradation of proteins involved in chemoresistance67. In EOC, STAT1 activation can influence the 
tumor microenvironment, potentially modulating responses to immunotherapy combined with chemotherapy. 
Chemotherapy-induced inflammation and immune cell infiltration may be altered by STAT1 status, impacting 
drug efficacy33. SH3KBP1 may regulate endocytosis and degradation of membrane receptors crucial for drug 
transport and chemosensitivity-modulating signaling pathways. A high-resolution CGH study of 40 stage 
III ovarian cancer samples treated with paclitaxel/carboplatin found that DNA alterations in SH3KBP1 and 
SH3GL2 impacted their activity, with losses in either locus occurring in 70% (14/20) of resistant cases39. EPB41L2 
through cell adhesion and migration, potentially influencing metastasis and treatment resistance40. PYGB is 
involved in glycogen metabolism, which may impact the energy available for cells to respond to stress caused 
by chemotherapy. However, dasatinib holds a therapeutic significance for high-risk patients. Recent in vitro 
experiments demonstrated that knockdown PYGB in LUSC (lung squamous cell carcinoma) cells enhances their 
sensitivity to chemotherapy drugs, including dasatinib68. Also proposes a new regimen for chemotherapeutic 
drug treatment in high-risk groups. These genes, through their diverse functions in signal transduction, protein 
homeostasis, and metabolism, can modulate the drugs sensitivity of EOC.

In our study, the CIBERSORT algorithm revealed that the low-risk group showed a lower M2 ratio of 
monocytes to macrophages, warranting further discussion. The TME constitutes a complex ecosystem 
comprising tumor, invasive immune, and stromal cells intertwined with non-cellular components. Various cell 
and functional phenotypes, coupled with dynamic interactions within and between these components, influence 
tumor biology and potentially result in different immunotherapy responses12. Monocytes exert an influence on 
other immune cells in the TME. They regulate the recruitment and function of lymphocytes within TME through 
paracrine signaling, interacting with the adaptive immune system, and they serve as antigen-presenting cells69. 
Studies have demonstrated that monocytes isolated from the peripheral blood or peritoneal fluid of patients 
with OC, upon in vitro activation, diminished the ability of antibody-dependent cells to phagocytose and engulf 
tumor cells70. This helps to explain the correlation between monocyte count and OC outcomes in this study.

Tumor-associated macrophages (TAMs), including types 1 (M1) and 2 (M2) macrophages, have distinct anti- 
and pro-tumor functions, respectively. These macrophages are pivotal in innate and adaptive immune responses 
influencing cancer cell growth. TAMs exhibiting the M2 phenotype are associated with a poorer prognosis in 
patients with cancer than those with the M1 phenotype.

Notably, TAMs facilitate OC progression across various stages of disease development. They play roles in 
immune escape by tumor cells, migration, invasion, and metastasis of cancer cells, along with angiogenesis71. 
M2-like TAMs contribute to OC progression by exerting significant immunosuppressive effects on immune 
cells within the TME, consequently enabling cancer cells to evade attacks. The immunosuppressive function of 
M2-like TAMs strongly correlates with STAT3protein overactivation. This activation subsequently upregulates 
IL-10 and IL-6 production71, aligning with our observation of elevated M2-like TAMs in the high-risk group.

In the present study, the low-risk group displayed a higher TMB; the TMB denotes counts of mutations per 
megabase (mut/Mb) of DNA sequence in a specific cancer72. As the number of detected mutations and new 
epitopes increase, one or more of these neoantigens are likely to become immunogenic, potentially triggering a 
T cell response. We analyzed 20 cancer types in 6,035 patients from the TCGA database. The findings revealed 
that TMB significantly affected the OS in 14 cases, based on the effect of TMB on OS. They were categorized into 
TMB-worse (eight cancer types), TMB-better (six cancer types), and TMB-similar (six cancer types) groups, 
with higher TMB being associated with poorer, better, or similar OS, respectively. In the context of TMB, EOC 
belongs to the TMB-better group, signifying that a higher TMB indicates a better prognosis73. Substantial evidence 
suggests a strong association between somatic mutations in solid tumors are strongly and immunotherapy. The 
survival effects observed in the high-low expression TMB group remain generally consistent across the two 
FDA-approved panels [68], which was consistent with our findings. Despite the recent accelerated approval by 
the US Food and FDA for the anti-PD-1 drug pembrolizumab in treating TMB solid tumors74and advancement 
in blood tests for evaluating TMB, numerous challenges persist in the further development of TMB as a clinical 
biomarker. We anticipate the use of this therapy in patients with EOC by incorporating multiple variables into 
the composite biomarker. This integration will enhance the accuracy of predicting ICI outcomes and fully 
harness the potential benefits of immunotherapy75.

Methods.

Study aim
This study aimed to recognize potential prognostic markers and novel therapeutic targets for EOC.

Data collection
Transcriptomic information, clinical data, and somatic mutation data of EOC (n = 375) and normal ovarian 
tissues (n = 88) were obtained from TCGA and the GTEx databases. Patients with incomplete clinical information 
were removed. Data were downloaded from the public database Xena website (https://xena.ucsc.edu/). Quantile 
normalization was used to eliminate systematic differences in large scale RNA-Seq samples from GTEx and 
TCGA. Overall, 4299 ubiquitin-related genes with a relevance score > 2 were obtained from GeneCards (https://
www.genecards.org/).(supplementary Table 1). Immunohistochemical (IHC) data obtained from the Human 
Protein Atlas (HPA) website (http://www.proteinatlas.org/) was included for validation purposes.
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Identifying differentially expressed ubiquitination-related genes
The limma R package, which was obtained from the Bioconductor (https://www.bioconductor.org/), was 
employed to screen DEGs. The DEGs were then filtered based on a filtering threshold of absolute Log2(Fold 
change) > 1 and false discovery rate (FDR) < 0.05.(supplementary Table 2).

The differentially expressed ubiquitin-related genes (DEURGs) were achieved by determining the 
intersections using Venn diagrams.

Signature construction
The prognostic DEURGs were screened using univariate Cox regression analysis. The performance of the 
patients in the TCGA database were evaluated by randomly dividing the data set into training and test sets, 
and training and test were performed iteratively. For further gene selection, minimum absolute contraction and 
selection operator (LASSO) regression was utilized. The selected genes served as inputs for stepwise regression. 
Subsequently, a ubiquitin-associated risk score (UBrisk) was constructed using multivariate Cox regression 
analysis. UBrisk was developed based on HSP90AB1, FBXO9, SIGMAR1, STAT1, SH3KBP1, EPB41L2, DNAJB6, 
VPS18, PPM1G, AKAP12, FRK, and PYGB. Following that, the risk score of each patient was used in the following 
formula to calculate the risk:

The risk score =
∑ n

i=1Coefficient (mRNAi)× Expression (mRNAi)
According to the median risk score the patients were divided into low-risk and high-risk groups. Kaplan–

Meier curves were plotted to compare the OS between the training, test, and entire sets by using the R package 
named ‘survival’. Additionally, time-dependent receiver operating characteristics (ROC) curve analyses were 
constructed, including 1-, 3-, and 5-year survival groups, to use the R package named ‘survivalROC’, which 
indicated the specificity and sensitivity of risk characteristics. The area under the curve (AUC) was counted. 
Subsequently, it was used to determine the ROC effects.

RNA extraction and quantitative reverse transcription polymerase chain reaction analyses
Total RNA was extracted from the cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to 
the manufacturer’s instructions. Extracted RNA was converted to cDNA using a miScript II RT kit (QIAGEN, 
Hilden, Germany), and quantitative polymerase chain reaction (qPCR) was performed using a miScript 
SYBR Green PCR kit (QIAGEN). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 
was performed using a QuantiFast SYBR Green PCR kit (QIAGEN) in accordance with the manufacturer’s 
instructions. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the endogenous control and 
RNA expression was quantified using the 2-ΔΔCt method. Primers were purchased from Sangon Biotech 
(Shanghai, China). The primers were as follows:

GAPDH forward, 5′-​C​C​T​T​C​A​T​T​G​A​C​C​T​C​A​A​C​T​A​C​A​T​G​G-3′; GAPDH reverse, 5′-​C​T​C​G​C​T​C​C​T​G​G​A​A​
G​A​T​G​G​T​G-3′.

HSP90AB1 forward, 5′-​T​G​G​A​G​A​G​G​A​G​G​A​G​G​T​G​G​A​G​A​C-3′; HSP90AB1 reverse, 5′-​A​G​G​C​A​T​C​A​G​A​A​G​
C​A​T​T​A​G​A​G​A​T​C​A​A​C-3′.

FBXO9 forward, 5′-​C​T​G​G​A​C​A​A​C​A​T​A​G​C​A​A​G​A​C​C​T​C​A​T​C-3′; FBXO9 reverse, 5′-​A​A​G​T​G​A​T​C​C​T​C​C​T​G​
C​C​T​T​A​G​C​C-3′.

SIGMAR1 forward, 5′-​C​T​C​T​T​C​T​A​T​A​C​T​C​T​T​C​G​C​T​C​C​T​A​T​G​C-3′; SIGMAR1 reverse, 5′-​C​T​G​C​C​C​G​C​T​C​
C​T​G​T​C​T​A​T​C​C-3′.

STAT1 forward, 5′-​T​C​T​C​T​G​C​C​C​G​T​T​G​T​G​G​T​G​A​T​C-3′; STAT1 reverse, 5′-​A​C​A​T​G​G​T​G​G​A​G​T​C​A​G​G​A​A​
G​A​A​G​G-3′.

SH3KBP1 forward, 5′-​C​A​T​C​G​A​C​G​T​A​G​G​C​T​G​G​T​G​G-3′; SH3KBP1 reverse, 5′-​C​C​T​T​C​C​T​T​T​T​C​A​A​A​G​T​
C​C​G​G​T​G-3′.

EPB41L2 forward, 5′-​G​C​A​G​C​A​G​C​A​G​C​A​G​C​A​G​T​G-3′; EPB41L2 reverse, 5′-​G​T​T​C​T​T​C​C​T​C​C​A​C​C​T​C​T​T​
C​T​T​C​A​T​A​C-3′.

DNAJB6 forward, 5′-​T​G​C​C​T​C​G​C​T​G​C​T​G​A​G​A​C​A​C-3′; DNAJB6 reverse, 5′-​C​T​C​T​G​C​T​T​C​T​G​C​T​T​C​T​T​C​
C​T​C​T​T​G-3′.

VPS18 forward, 5′-​G​G​T​G​A​G​G​T​C​C​A​G​C​A​G​G​T​G​A​G-3′; VPS18 reverse, 5′-​G​C​A​T​A​C​A​G​T​G​A​C​A​G​C​A​G​G​
T​A​G​T​T​G-3′.

PPM1G forward, 5′-​C​A​C​C​G​A​G​G​A​G​G​C​T​G​A​A​G​A​G​G-3′; PPM1G reverse, 5′-​C​A​C​C​G​C​T​G​T​T​G​T​A​C​C​A​C​
T​G​T​C-3′.

AKAP12 forward, 5′-​A​G​T​C​A​G​A​G​T​C​A​A​C​C​G​C​A​G​T​G​G-3′; AKAP12 reverse, 5′-​A​G​T​G​G​A​A​C​C​T​T​C​T​A​C​
C​T​C​A​A​C​A​G​T​C-3′.

FRK forward, 5′-​T​A​G​C​A​C​C​T​C​C​A​G​C​C​A​C​A​G​A​A​A​G-3′; FRK reverse, 5′-​G​T​C​A​G​C​A​C​C​A​A​C​T​C​A​C​C​A​T​A​
C​T​T​C-3′.

PYGB forward, 5′-​G​C​A​C​G​C​A​G​C​A​G​C​A​C​T​A​C​T​A​C-3′; PYGB reverse, 5′-​A​T​G​G​C​T​T​C​A​T​C​G​C​A​G​G​C​A​T​T​
C-3′.

Nomogram construction
Variables, including UB risk score, age, grade, and stage, were matched with clinical outcomes to proceed 
univariate and multivariate Cox regression analyses. Multivariate Cox regression analysis was performed on 
prognostic related variables to explore independent prognostic variables. A nomogram was constructed using 
the variables above to prognosticate the probability of 3-, 5-, and 7-year survival. Calibration and ROC curves 
were used to assess clinical efficacy and discriminative accuracy of the nomogram model.
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Enrichment analysis
According to the median risk score, the patients were divided into low-risk and high- risk groups. Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and hallmark pathway analyses were 
conducted using GSEA software (version 4.3.2). Gene sets, including c5.go.bp, c5.go.cc, c5.go.mf, c2.cp.kegg, 
and hallmarks were collected from the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea). The 
filtering criteria included a normalized enrichment score |>1, a P-value < 0.05, and an FDR < 0.25.

Immune Infiltration analysis
The expression data (ESTIMATE) algorithm was employed to estimate stromal and immune cell proportions 
within malignant tumors. Subsequently, three distinct immune-related scores—stromal, immune, and estimate 
—were calculated. Variations in immune cell infiltration levels, depicting differences in the immune landscape, 
were compared between the high- and low-risk groups utilizing CIBERSORT, TIMER, MCP-Counter, quantiseq, 
and EPIC through the IBOR R-package.

Stemness Index and Tumor Mutational Burden (TMB) analysis
RNA-Seq data from pluripotent stem cell samples were downloaded from the Progenitor Cell Biology Consortium 
database. Subsequently, one-class logistic regression algorithms were utilized to calculate the mRNAsi and EREG 
mRNAsi for each patient with OC.

Drug sensitivity analysis
The Genomics of Drug Sensitivity in Cancer (GDSC) website (https://www.cancerrxgene.org/) was used to 
identify the molecular features of cancers that predict the response to anticancer drugs. Connectivity scores for 
the half-maximal inhibitory concentration (IC50) were calculated to determine drug sensitivity. A lower score 
(0 < IC50 < 1) indicated higher drug effectiveness for the high- and low-risk groups.

Cluster analysis
Ubiquitin-related molecule subtypes were recognized by conducting cluster analysis using the ‘Non-negative 
matrix factorization’ package. This analysis was based on prognosis-related DEURG expression. Following this, 
survival analysis was performed to compare the prognoses among the three clusters.

Statistical analysis
Statistical analyses were performed using the R software (4.3.1). The Wilcoxon test was employed to analyze the 
differences in median values between the two groups. To screen independent prognostic factors, univariate and 
multivariate Cox regression analyses were utilized. The correlation Coefficient between variables was analyzed 
by Pearson analysis using the GEPIA website (http://gepia.cancer-pku.cn/index.html) to detect multicollinearity. 
The significance of the KM analysis was assessed using the log-rank test. The Spearman’s method was utilized to 
evaluate the correlation between the expression levels of the two genes. The prediction accuracies of the risk and 
nomogram models were evaluated using calibration, C-index, and ROC curves. Statistical significance was set at 
p < 0.05. *p < 0.05; **p < 0.01; ***p < 0.001.

Conclusions
In the present study, we drastically analyzed the clinical significance and features of TME features associated 
with ubiquitin-related genes in EOC. We established the ubiquitin-related signature risk model, comprising 
HSP90AB1, FBXO9, SIGMAR1, STAT1, SH3KBP1, EPB41L2, DNAJB6, VPS18, PPM1G, AKAP12, FRK, and 
PYGB, specifically for patients with EOC. We conducted an analysis combining clinical characteristics to 
verify and enrich the pathways, immune status, mRNAsi, EREG-mRNAsi, tumor mutation burden, and drug 
sensitivity. The risk model used in this study was based on the GTEx database, GeneCards website, and TCGA 
data, with a large sample size and relatively complete clinical information. Our model relies on specific genes that 
are more cost-effective and clinically practical, assisting clinicians in determining the prognosis of individual 
patients. However, owing to insufficient verification samples, the verification work cannot be carried out, and 
the reliability of the verification results is difficult to be guaranteed owing to the lack of multi-centers and large 
sample population for evaluation. Furthermore, a risk model of ubiquitin-related diseases was introduced to 
assess the proteasome pathway in individuals. This model may aid in improving the understanding of TME 
immune infiltrations and help oncologists in determining more effective immunotherapeutic strategies.

Data availability
The datasets used in this study is available from the corresponding author upon reasonable requests.
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