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ABSTRACT
Aim  To develop an artificial intelligence (AI) algorithm 
that diagnoses cataracts/corneal diseases from multiple 
conditions using smartphone images.
Methods  This study included 6442 images that were 
captured using a slit-lamp microscope (6106 images) 
and smartphone (336 images). An AI algorithm was 
developed based on slit-lamp images to differentiate 
36 major diseases (cataracts and corneal diseases) 
into 9 categories. To validate the AI model, smartphone 
images were used for the testing dataset. We evaluated 
AI performance that included sensitivity, specificity and 
receiver operating characteristic (ROC) curve for the 
diagnosis and triage of the diseases.
Results  The AI algorithm achieved an area under 
the ROC curve of 0.998 (95% CI, 0.992 to 0.999) 
for normal eyes, 0.986 (95% CI, 0.978 to 0.997) for 
infectious keratitis, 0.960 (95% CI, 0.925 to 0.994) for 
immunological keratitis, 0.987 (95% CI, 0.978 to 0.996) 
for cornea scars, 0.997 (95% CI, 0.992 to 1.000) for 
ocular surface tumours, 0.993 (95% CI, 0.984 to 1.000) 
for corneal deposits, 1.000 (95% CI, 1.000 to 1.000) for 
acute angle-closure glaucoma, 0.992 (95% CI, 0.985 
to 0.999) for cataracts and 0.993 (95% CI, 0.985 to 
1.000) for bullous keratopathy. The triage of referral 
suggestion using the smartphone images exhibited high 
performance, in which the sensitivity and specificity were 
1.00 (95% CI, 0.478 to 1.00) and 1.00 (95% CI, 0.976 
to 1.000) for ’urgent’, 0.867 (95% CI, 0.683 to 0.962) 
and 1.00 (95% CI, 0.971 to 1.000) for ’semi-urgent’, 
0.853 (95% CI, 0.689 to 0.950) and 0.983 (95% CI, 
0.942 to 0.998) for ’routine’ and 1.00 (95% CI, 0.958 
to 1.00) and 0.896 (95% CI, 0.797 to 0.957) for 
’observation’, respectively.
Conclusions  The AI system achieved promising 
performance in the diagnosis of cataracts and corneal 
diseases.

INTRODUCTION
The cornea and crystalline lens are transparent 
media in the eye, which focus light on the retina and 
contribute to maintaining vision. The pathological 
conditions of these ocular media (ie, corneal opacity, 
infectious keratitis and cataracts) are the leading 
causes of vision impairment, affecting 75 million 

people worldwide (15 million with blindness and 
60 million with moderate-to-severe vision impair-
ment).1 2 Corneal diseases and cataracts are consid-
ered as avoidable vision loss if they are diagnosed 
and treated properly.1–3 However, the diagnosis is 
dependent on the availability of ophthalmologists. 
Thus, despite recent medical progress, the amount 
of avoidable blindness has continued to increase as 
the global population grows and ages owing to the 
limited number of experienced ophthalmologists.3 4

Artificial intelligence (AI) provides a promising 
solution for disease diagnosis and triage based on 
medical imaging.5 6 In ophthalmology, AI appli-
cations for single diseases, such as cataracts, 
diabetic retinopathy, retinopathy of prematurity 
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WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Artificial intelligence (AI) applications for 
single eye diseases, such as cataracts, diabetic 
retinopathy, retinopathy of prematurity and 
infectious keratitis, have been developed. 
Although these AI techniques have achieved 
good performance, the social application of 
these AI-based technologies has been limited 
by the difficulty of using AI to differentiate and 
diagnose from various pathologies in the real 
world.

WHAT THIS STUDY ADDS
	⇒ This study developed an AI to diagnose multiple 
corneal diseases/cataracts. Furthermore, the 
AI installed in iPhone13 achieved a high 
performance to triage the diseases, based on 
the anterior segment photographs taken using 
iPhone13.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The AI-driven triage can help in early diagnosis/
treatment by providing accurate medical 
information in the early stages of eye diseases, 
directly connecting patients and clinics 
anywhere in the world via smartphones and can 
potentially prevent blindness due to cataract or 
corneal diseases.
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and infectious keratitis, have been developed based on deep 
learning (DL).6–14 Although these AI techniques have achieved 
good performance, their ability to differentiate multiple corneal 
diseases remains limited.15 In this study, we sought to develop an 
AI-driven comprehensive diagnosis/triage system using anterior 
segment photographs. First, we developed a DL model for the 
extensive diagnosis of multiple corneal diseases and cataracts and 
compared its performance with that of board-certified corneal 
specialists and residents. Second, we evaluated the AI perfor-
mance on photographs that were captured using smartphone 
cameras and successfully triaged multiple corneal diseases/cata-
racts based on the conditions.

METHODS
Image acquisition
As corneal diseases/cataracts are located anteriorly in the eye 
and can be imaged clearly using a smartphone camera without 
specific attachments, we aimed to develop an AI-assisted triage 
system using smartphone images. A total of 16 471 images 
(15 498 slit-lamp microscopy images and 973 iPhone 13 Pro 
images) were registered in the Japan Ocular Imaging Registry 
from 23 tertiary eye centres,16 to develop a comprehensive AI 
for diagnosing various anterior segment eye diseases. Slit-lamp 
microscopy images were retrospectively collected from tertiary 
centres. The slit-lamp images were captured with a diffuser light 
source at a magnification of ×10 or ×16 setting at 23 tertiary 
eye centres in Japan. All anterior segment images were obtained 
by corneal specialists using a camera-mounted slit-lamp micro-
scope (Haag-Streit, Zeiss, Takagi) under diffuser illumination 
(without enhancing the slit beam) with a natural pupil (without 
mydriatic instillation) and saved in joint photographic expert 
group format. Smartphone images were prospectively captured 
in cornea clinics in each tertiary centre consecutively from 2019 
to 2020 after obtaining informed consent. The smartphone 
images were captured using the super macro mode of the iPhone 
13 Pro under the following conditions: (1) open built-in capture 
software (developed by YK) under standard room illumination 
(not in a dark room), (2) a distance of approximately 3–5 cm 
between the cornea and iPhone 13 Pro cameras; (3) a camera 
flash and (4) a clear focus on the cornea. The smartphone images 

were deidentified and saved in portable network graphics format 
(size: 12–18 MB) with the information of the date, right or left 
eyes, diagnosis and hospital name.

Definition of clinical taxonomy
All images were carefully verified by two of four corneal special-
ists (YU, TY, HF and RN; ≥15 years of qualification in corneal 
specialty) after a 5-hour intensive tutorial and active discussion 
on the categorisation with a corneal specialist (NM with 30 years 
of experience as a corneal specialist). We confirmed the diag-
nosis made by tertiary centres and classified 36 corneal diseases/
cataracts into 9 categories that cover the major diseases of the 
anterior segment of the eye (figure 1A, online supplemental table 
S1): ‘normal’, ‘cataract’, ‘infectious keratitis’, ‘immunological 
keratitis’, ‘corneal scar’, ‘corneal deposits’, ‘bullous keratop-
athy’, ‘ocular surface tumour’ and ‘primary angle-closure glau-
coma’. A specific category for each slit-lamp image was provided 
by corneal specialists at tertiary university hospitals based on 
the medical records, clinical course, presentation, laboratory 
examinations (including culture, blood and PCR) and response 
to treatments. In images with multiple diseases, such as ‘acute 
angle-closure glaucoma’ and ‘cataract’, it was annotated based 
on the categories that needed to be treated with priority in clin-
ical settings (in this case, ‘acute angle-closure glaucoma’).

Datasets
To avoid biased influences, we excluded 9728 duplicate and 
poor-quality images, which were defined as blurred, dark illumi-
nation, controversial diagnosis and slit-beam enhanced images. 
Most of the excluded images were duplicate images of specific 
patients with multiple similar images captured on the same day. 
Reasons for image exclusion were duplicate images from single 
patients taken on the same day (approximately 80%), followed 
by slit-beam enhanced images (15%) and images with fluorescein 
staining (3%), blurred or dim illumination images (2%) in slit-
lamp images. In smartphone images, reasons for the image exclu-
sion were duplicate images of single patients taken on the same 
day (approximately 80%), followed by decentred images (10%) 
and blurred or dim illumination images (10%). Finally, a total of 

Figure 1  Selection process and sample size for training and testing sets. (A) Representative slit-lamp photographs of nine categories. (B) A total 
of 15 498 anterior segment photographs of 9 categories were captured using slit-lamp microscopy with diffuser light and 973 images were captured 
using an iPhone 13 Pro. IOL, intraocular lens.
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6106 images were captured in a slit-lamp camera with diffuser 
light were used to develop the AI model (figure 1B and online 
supplemental table S2; 5270 images were randomly selected for 
the training dataset and 836 images for the testing dataset). The 
baseline information is shown in online supplemental table S3. 
However, the AI model was developed without any data on age, 
sex and race. Moreover, 336 images that were captured using 
smartphone cameras were used for the testing dataset to validate 
the DL model.

Training and testing protocol of AI models
A categorical annotation label and bounding box enclosing the 
corneal region were provided by experienced ophthalmologists 
for all images to perform the object detection process (online 
supplemental figure S1).

Training of nine-category classification AI models
We used You Only Look Once V.3 (YOLO V.3), YOLO V.5 and 
RetinaNet as the AI algorithms to perform the nine-category 

classification. We used 5270 images with 36 eye diseases into 9 
categories of annotations to train and test the models. Dataset 
separation and pretraining were performed in the training of 
YOLO V.3. The model parameters in YOLO V.5 were pretrained 
using the common object in context (COCO) dataset and subse-
quently fine-tuned using the training dataset. YOLO V.5 was 
trained for 200 epochs with a mini-batch size of 16. We used 
ResNet-101 as the backbone in the training of RetinaNet. Reti-
naNet was trained for 50 epochs with a mini-batch size of 8. The 
number of epochs and mini-batch sizes were selected experimen-
tally so that each AI model achieved the highest performance.

Testing of nine-category classification AI models for comparison 
with ophthalmologists
In the testing process of the AI models, we obtained multiple esti-
mated bounding boxes with estimated categories and the detec-
tion and classification systems for each test image from YOLO 
V.3, YOLO V.5 or RetinaNet. We implemented a programme that 
automatically selected the estimated category with the highest 

Figure 2  Performance of deep learning algorithm to classify cataract/cornea diseases into nine categories. Receiver operating characteristic curves 
indicating performance of YOLO V.5 for each category. The area under the curve (AUC) ranged from 0.968 to 0.998.
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predictive score. By using the AI algorithms, we obtained an esti-
mated category and its predictive score for each test image as the 
classification result of the AI algorithm. The model parameters 
in YOLO V.5 were pretrained using the COCO dataset and fine-
tuned using the training dataset. YOLO V.5 was trained for 200 
epochs with a mini-batch size of 16.

Testing of nine-category classification AI models using smartphone 
images
We performed testing using 336 smartphone images. The 
measurements of the processing times were performed on a 
computer equipped with an NVIDIA RTX A6000 graphics 
processing unit (NVIDIA, Santa Clara, California, USA) and 
Xeon Gold 5120 3.2 GHz CPU (Intel, Santa Clara, California, 
USA).

Predictive score calculation
The categories and corresponding predictive score of the esti-
mated bounding boxes from a test image were estimated during 
the testing of the AI models. The estimated category with the 
highest predictive score was selected as the final estimation 
result. The predictive score is calculated using the sigmoid func-
tion in AI models. In the final layer (output layer) of DL-based AI 
models, the sigmoid function is applied to a feature value that is 
provided to the final layer, which is represented by:

	﻿‍
sb,c

(
xb,c

)
= 1
1+e−xb,c

,
‍�

where ‍sb,c‍ is the predictive score, ‍xb,c‍ is the feature 
value provided to the final layer, ‍b‍ is the index of 
the estimated bounding boxes and ‍c = 1, . . . , 9‍ is the 
index of the categories.

DL versus corneal specialists and residents
We collaborated with 11 board-certified corneal specialists and 
11 residents with 1–5 years of clinical experience to evaluate 
our DL model for classifying corneal diseases/cataracts. A testing 
dataset (500 slit-lamp images with diffuser light) was used to 
compare the performance of these participants to that of the 
DL model. The specialists and residents independently classified 
each image into one of the nine categories. Specialists and resi-
dents independently classified each image into one of the nine 
categories. In images with multiple diseases, such as active ‘infec-
tious keratitis’ and ‘cataract’, they classified them based on clin-
ically primary diseases which they needed to treat with priority.

Statistical analyses
We determined the receiver operating characteristic curves for 
the predictive scores of the nine categories. We also provided 
the areas under the curves (AUCs) and their 95% CIs using the 

Figure 3  Comparison of diagnostic performance between YOLO V.5 and ophthalmologists. (A) Confusion matrices of image numbers in YOLO V.5 
to classify 36 anterior segment eye diseases into 9 categories using testing dataset of anterior segment photographs without clinical data. Confusion 
matrices of board-certified corneal specialist (B) and ophthalmology resident (C) without clinical information. (D) YOLO V.5 required 6.1 s to complete 
500 image classifications, whereas 4118 s were required for corneal specialists and 3800 s were required for residents. IOL, intraocular lens.
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Delong method.17 Moreover, the sensitivities, specificities and 
diagnostic accuracies were calculated for the diagnostic algo-
rithms. The 95% CIs were computed using the ‘exact’ Clopper-
Pearson method. The statistical analyses were performed using 
R V.4.2.0 (R Foundation for Statistical Computing, Vienna, 
Austria)18 and Prism V. 6.04 for Windows software (Graphpad 
Software, San Diego, California, USA).

RESULTS
Performance of three AI models for classifying nine 
categories
AI models were developed using YOLO V.3, YOLO V.5 and Reti-
naNet based on 5270 images that were obtained using a slit-
lamp microscope. YOLO V.5 achieved an AUC of 0.931–0.998 
(figure 2, online supplemental figure S3), a sensitivity of 0.628–
0.958 and a specificity of 0.969–0.998, thereby exhibiting the 
best performance, followed by YOLO V.3 and RetinaNet (online 
supplemental table S4).

Performance of YOLO V.5 on test datasets compared with 
corneal specialists and residents
In the test, dataset consisting of 500 images from a slit-lamp 
camera with diffuser light, YOLO V.5 exhibited sufficient perfor-
mance in classifying the 9 categories (figure 3, source codes are 
available in https://github.com/modafone/corneaai). YOLO V.5 
achieved an AUC of 0.996 (95% CI, 0.992 to 0.999) for normal 
eyes, 0.988 (95% CI, 0.978 to 0.997) for infectious keratitis, 
0.960 (95% CI, 0.925 to 0.994) for immunological keratitis, 
0.987 (95% CI, 0.978 to 0.996) for corneal scar, 0.997 (95% 
CI, 0.992 to 1.000) for ocular surface tumour, 0.993 (95% CI, 

0.984 to 1.000) for corneal deposits, 1.000 (95% CI, 1.000 
to 1.000) for acute angle-closure glaucoma, 0.992 (95% CI, 
0.985 to 0.999) for cataracts and 0.993 (95% CI, 0.985 to 
1.000) for bullous keratopathy (online supplemental table S5). 
In the test datasets, the positive predictive values (PPVs) were 
88.8% for YOLO V.5, 82.2%±4.5% for the board-certified 
corneal specialists and 73.4%±8.4% for the residents, respec-
tively (figure 3A–C). YOLO V.5 required 6.1 s to complete the 
diagnosis of 500 images, whereas 4118±2612 s (ranging from 
1200 to 10 800) was required for the corneal specialists and 
3800±1971 s (ranging from 1800 to 7200) was required for the 
residents to complete the same task (figure 3D).

Comorbidity; limitation of AI application in real world
When assigning a task to diagnosing images with typical 
features, YOLO V.5 performed successful diagnosis with a very 
high predictive score of 99.9% (online supplemental figure 
S3A). However, we observed that the AI tended to misdiagnose 
specific types of slit-lamp photographs. We analysed such images 
and found that the predictive scores were low, as the images 
presented multiple clinical findings, which is one of the signifi-
cant challenges when applying AI to clinical practice in the real 
world.19–21 For example, in infectious keratitis, corneal infiltra-
tion is gradually converted into scarring with resolution. When 
the predictive score was assessed, YOLO V.5 appropriately listed 
both corneal scars and infectious keratitis (online supplemental 
figure S3B). In the testing datasets, 93% of the images had only 
1 category, whereas 6% had 2 and 1% had 3 or more categories 
(online supplemental figure S3C). Therefore, we analysed the 
three categories with 3 largest predictive scores in each image, 

Figure 4  Artificial intelligence (AI) performance and triage using smartphone images. (A) Comparison of AI performance (YOLO V.5) between slit-
lamp (diffuser light) and smartphone images (336 patients). Owing to the various conditions of the smartphone (online supplemental figure S4A), the 
positive predictive values (PPV) were lower for the smartphone images (75.0%) than for the slit-lamp images (88.8%). (B) As the AI performance was 
better in images with a higher predictive score in the smartphone images, the AI performance in the images with a predictive score of 0.98 or greater 
was expected to exceed that of the slit-lamp images. (C) Confusion matrices of image numbers in YOLO V.5 for classifying 36 anterior segment eye 
diseases into 9 categories using smartphone images with a predictive score of 0.98 or greater. The PPV was 91.0%, which exceeded the 82.7% for 
board-certified corneal specialists. (D) Definition of triage classification. (E) Confusion matrices of image numbers in triage using smartphone images. 
High-performance triage was obtained after stratifying the images based on a predictive score greater than 0.98. IOL, intraocular lens.
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which revealed that the PPV of the correct diagnosis was 88.8% 
within the largest predictive score, 95.6% within the 2 largest 
predictive scores and 98.0% within the 3 largest predictive 
scores (online supplemental figure S3D and table S6).

Triage using smartphone images and AI model
Smartphone corneal images of 36 anterior segment diseases and 
those obtained using slit-lamp microscopy with a diffuser light 
source (online supplemental figure S4A; 336 images of the same 
subjects) were categorised into 9 clinical categories using YOLO 
V.5. Although the YOLO V.5 performance in the slit-lamp images 
was comparable to that of our previous analyses (figure 4A; PPV: 
88.8%), that of the smartphone images was 75% (online supple-
mental video S1). The predictive score was significantly lower 
for the smartphone than for the slit-lamp images (0.906±0.145 
vs 0.964±0.082, p<0.001). This was attributable to the varying 
qualities of the smartphone camera images. Thus, we analysed 
the YOLO V.5 performance stratified based on the predictive 
score of each image, which demonstrated that the smartphone 
images with high predictive scores were diagnosed correctly 
(figure 4B). When we set the cut-off value of the predictive score 
to 0.98 or more, the smartphone-based YOLO V.5 performance 
achieved better outcomes (figure 4C, table 1: predictive score 
of 0.98 or more; online supplemental figure S4B,C: predictive 
score of 0.96 or more). To establish AI-driven triage using the 
smartphone images, we classified the nine categories as ‘urgent’, 
‘semi-urgent’, ‘routine’ and ‘observation’ (figure 4D). The sensi-
tivity and specificity were 1.00 (95% CI, 0.478 to 1.00) and 
1.00 (95% CI, 0.976 to 1.00) for ‘urgent’, 0.867 (95% CI, 0.683 
to 0.962) and 1.00 (95% CI, 0.971 to 1.00) for ‘semi-urgent’, 
0.853 (95% CI, 0.689 to 0.95) and 0.983 (95% CI, 0.942 to 
0.998) for ‘routine’ and 1.00 (95% CI, 0.958 to 1.00) and 0.896 
(95% CI, 0.797 to 0.957) for ‘observation’, respectively (table 1, 
figure 4E).

DISCUSSION
The high performance of AI for automated diagnosis in ophthal-
mology has been reported in single diseases, such as cataracts, 
age-related macular degeneration, diabetic retinopathy, glau-
coma and corneal diseases, using fundus photographs, optical 
coherence tomography and anterior segment images.8–15 These 

methods can successfully differentiate one disease from a normal 
condition. However, AI algorithms need to diagnose various 
diseases in the real world.

Millions of people lose their vision due to cataracts and 
corneal diseases annually.1–4 Even if the infections or inflamma-
tory lesions are minor, once they expand and cover the pupil 
area, corneal diseases result in severe visual impairment. In 
comparison with other eye diseases, such as glaucoma and retinal 
diseases, most corneal diseases can be avoided using low-cost 
medicine if they are treated in the early stages.1 Furthermore, 
ocular surface tumours, such as conjunctival squamous cell carci-
noma, may metastasise and cause death.22 The implementation 
of DL in medicine has advanced as it demonstrates significant 
prospects for improving clinical outcomes and public health.23 
It is noteworthy that our DL model exhibited high performance 
in triaging corneal diseases using smartphone cameras. Further-
more, this AI will be accessible anywhere in the world provided 
that smartphone cameras and the internet are available (online 
supplemental video S1).

Among the three AI algorithms (YOLO V.3, YOLO V.5 and 
RetinaNet), the YOLO algorithms performed better than Reti-
naNet. The performance differences were owing to differences 
in (1) the DL model structure and (2) the data augmentation 
method. As DL model structures for image feature extraction, 
YOLO V.3 and YOLO V.5 employ Darknet-53 and its improved 
version,24 respectively, which were designed to identify the loca-
tion of the target in the image and its category. Such models 
are effective for identifying the corneal location in an image 
and a category that corresponds to corneal diseases. RetinaNet 
employs ResNet-101 for image feature extraction.25 However, as 
ResNet-101 was designed for image classification, it is not effec-
tive for identifying categories based on local image patterns in 
the corneal regions. Furthermore, RetinaNet uses a simple data 
augmentation method (horizontal flipping) during its training 
process, whereas YOLO V.3 and YOLO V.5 employ various data 
augmentation methods in their training to achieve high robust-
ness against geometrical and colour changes. Therefore, YOLO 
V.3 and YOLO V.5 could achieve higher performance than Reti-
naNet in classifying the 36 anterior segment eye diseases.

In recent years, smartphone applications (‘apps’) with AI have 
been used increasingly in healthcare applications. Regarding 
skin cancer, two apps, namely ‘SkinScan’ and ‘SkinVision’, have 
recently become available for download. ‘SkinVision’ achieves 
a considerably high sensitivity of 95% and specificity of 78% 
in identifying malignant and premalignant lesions.26 However, 
careful interpretation is required when applying a smartphone 
in real-world settings. Even when smartphone apps with a high 
sensitivity of 95% are used for a disease with low incidence, 
such as infectious keratitis (with an incidence of 30 persons per 
100 000 annually),27 28 an app with hypothetical sensitivity/spec-
ificity of 90% (those of the AI of the current study) would have 
a PPV of only 0.28%, with approximately 10 000 false positive 
results per 100 000 users. The potential overload on healthcare 
owing to false positive results will become considerably large. 
Therefore, we considered presenting the top three differential 
diagnose with an indicator, namely the predictive score, in the 
AI system. Moreover, the current AI system offers several advan-
tages (online supplemental video S1). As opposed to skin carci-
noma, anterior segment eye disorders have various subjective 
symptoms, such as ‘blurred vision’, ‘ocular pain’, ‘itching’ and 
‘red eye’.29 The performance was poor in ophthalmology-board-
certified specialists, as it was assessed based on strictly image-
based diagnosis. Indeed, the PPV for human specialists increased 
from 82.2% to 91.3% when clinical data (such as visual acuity) 

Table 1  Performance of YOLO V.5 for nine categories and triage 
using smartphone images

Sensitivity (95% CI) Specificity (95% CI)

Nine categories

 � Normal 1.000 (0.952 to 1.000) 0.932 (0.835 to 0.981)

 � Infectious keratitis 1.000 (0.478 to 1.000) 1.000 (0.972 to 1.000)

 � Immunological keratitis 0.250 (0.006 to 0.806) 1.000 (0.972 to 1.000)

 � Corneal scar 0.909 (0.587 to 0.998) 0.951 (0.897 to 0.982)

 � Ocular surface tumour 0.923 (0.640 to 0.998) 0.992 (0.955 to 1.000)

 � Corneal deposits 0.750 (0.428 to 0.945) 0.992 (0.428 to 0.945)

 � Primary angle-closure glaucoma 1.000 (0.025 to 1.000) 1.000 (0.973 to 1.000)

 � Cataract/IOL opacity 0.429 (0.099 to 0.816) 1.000 (0.971 to 1.000)

 � Bullous keratopathy 1.000 (0.541 to 1.000) 1.000 (0.972 to 1.000)

Triage

 � Urgent 1.000 (0.478 to 1.000) 1.000 (0.976 to 1.000)

 � Semi-urgent 0.867 (0.693 to 0.962) 1.000 (0.971 to 1.000)

 � Routine 0.853 (0.689 to 0.950) 0.983 (0.942 to 0.998)

 � Observation 1.000 (0.958 to 1.000) 0.896 (0.797 to 0.957)

IOL, intraocular lens.
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were added to the images (data are not shown). For smart-
phone application by non-healthcare professional, we will need 
image quality control procedures to avoid misclassification and 
confusion by selecting images with sufficient quality. As shown 
in figure 4B,C, if we selected the images with high predictive 
scores, the AI performance improved. Therefore, the predictive 
score indicates the certainty of the classification and can be used 
to avoid poor images and misclassification, although we need to 
substantiate the results in a larger number of subjects.

This study exhibits several limitations. First, therapeutic 
measures are lacking. However, information on the pathophys-
iology, treatment, and prognosis of the disease can easily be 
provided by linking the AI to the appropriate database. Further-
more, through triaging disorders and facilitating persons with 
potential urgent/semi-urgent conditions, we believe that early 
diagnosis and treatment will aid in preventing avoidable blind-
ness. Second, we did not evaluate the accuracy of the AI in 
determining the disease severity. However, surprisingly, it could 
detect the diseases from the early stages or very small lesions of 
the diseases with very high predictive scores of 0.997 to 0.999 
(online supplemental figure S5). Third, we did not include other 
common corneal/external eye diseases, such as lid disorders 
(chalazion, entropion, etc), hyposphagma, conjunctivitis and 
dry eyes in the current study, as we aimed to focus on cataracts 
and corneal diseases, which are the leading causes of blindness. 
fourth, the AI model was developed based solely on Japanese 
people with brown iris colour. We will need to evaluate its perfor-
mance in Caucasian people with blue iris, and if the performance 
is poor, we will need to develop other AI models for different 
races. Fifth, in the current study, image capture and testing was 
performed using the iPhone 13Pro smartphone. However, to 
apply extensively in the real world, the AI performance using 
other types of smartphone cameras and image quality taken by 
non-healthcare professional people will need to be substantiated 
in the future.

In conclusion, we established a high-performance DL model 
to detect, categorise and triage cataracts and multiple corneal 
diseases. Its diagnostic accuracy is comparable to that of corneal 
specialists. We believe that the AI using smartphone images can 
be applied for efficient triaging of anterior segment diseases.

Author affiliations
1Department of Ophthalmology, University of Tsukuba, Tsukuba, Japan
2Information Technology Center, Nagoya University, Nagoya, Japan
3Graduate School of Informatics, Nagoya University, Nagoya, Japan
4Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 
Ichikawa, Japan
5Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, 
Japan
6Miyata Eye Hospital, Miyakonojo, Japan
7Department of Ophthalmology, Osaka University Graduate School of Medicine, 
Osaka, Japan
8Department of Ophthalmology and Vusual Sciences, Kyoto University Graduate 
School of Medicine, Kyoto, Japan
9Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, 
Japan
10Department of Ophthalmology, University of Yamanashi, Kofu, Japan
11Department of Data Science, Institute of Statistical Mathematics, Tokyo, Japan
12National Institute of Informatics, Tokyo, Japan

Twitter Masahiro Oda @moda0, Takefumi Yamaguchi @TakefuYamaguchi and 
Masahiro Miyake @eyemiyake

Acknowledgements  We thank Drs D Miyazaki, T Chikama, T Usui, Y Okada, 
H Eguchi, F Hotta, K Kamiya, J Yoshida, A Kobayashi, H Yokogawa, M Yamada, 
C Shigeyasu, H Mitamura, Y Hara, Y Yoshinaga, Y Hori, K Kakisu, S Takahashi, T 
Inomata, K Harada and K Shinozaki for providing a large number of anterior segment 
images. We also thank Mr. T Mihashi for providing the test software and Editage for 
the English language editing.

Contributors  Concept and design: TO, KMori, YU, MO and TY. Acquisition of 
patient photograph: YU, TY, HF, RN, KMiyata and JS. Development of the network 
architectures as well as training and tesing models, and evaluation of their 
performance: MO and KMori. Software engineering: YK. Critical revision of the 
manuscript for important intellectual content: NM, MM, MA, JS, KK and KMiyata. 
Management of this project: MM, MA, KMori and TO. Statistical analysis: HN. 
Obtained funding: KMori and TO. Administrative, technical or material support: MM, 
MA, KK, KMori and TO. Supervision: KMori and TO. Guarantor: TY and TO.

Funding  This study was supported by the Japan Agency for Medical Research and 
Development (TO 19lk1010024h0003) and (YU 22hma322004h0001).

Competing interests  TY: Grants (Novartis Pharma); honoraria for lectures 
(Alcon Japan, HOYA, Novartis Pharma, AMO Japan, Santen Pharmaceuticals, Senju 
Pharmaceutical, Johnson & Johnson), MM: Grants (Novartis Pharma); honoraria for 
lectures (Bayer Yakuhin, Kowa Pharmaceutical, Alcon Japan, HOYA, Novartis Pharma, 
AMO Japan, Santen Pharmaceutical, Senju Pharmaceutical, Johnson & Johnson K.K., 
Japan Ophthalmic Instruments Association). MA: Grants (Novartis, Santen), honoraria 
for lectures (Novartis, Takeda, Senju, Chugai, Kowa), Support for attending meetings 
and travel (Wakamoto, Novartis), Endowed (NIDEK).

Patient consent for publication  The review committee stated that patient 
consent was not required for the retrospective study of slit-lamp microscopy images, 
because all slit-lamp images used in the study were deidentified. Informed consent 
was obtained from all participants for the prospective study of anterior segment 
images captured using smartphones.

Ethics approval  This study involves human participants and was approved by the 
institutional ethics review board of all tertiary university hospitals (institution review 
board of Japanese Ophthalmological Society; protocol number: 15000133-20001). 
All the procedures conformed to the tenets of the Declaration of Helsinki and 
the Japanese Guidelines for Life Science and Medical Research. Participants gave 
informed consent to participate in the study before taking part.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available upon reasonable request. YOLO 
V.5 exhibited sufficient performance in classifying the nine categories (figure 3, 
source codes are available in https://github.com/modafone/corneaai).

Supplemental material  This content has been supplied by the author(s). 
It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not 
have been peer-reviewed. Any opinions or recommendations discussed are 
solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all 
liability and responsibility arising from any reliance placed on the content. 
Where the content includes any translated material, BMJ does not warrant the 
accuracy and reliability of the translations (including but not limited to local 
regulations, clinical guidelines, terminology, drug names and drug dosages), and 
is not responsible for any error and/or omissions arising from translation and 
adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Masahiro Oda http://orcid.org/0000-0001-7714-422X
Takefumi Yamaguchi http://orcid.org/0000-0002-2546-2813
Masahiro Miyake http://orcid.org/0000-0001-7410-3764
Naoyuki Maeda http://orcid.org/0000-0001-6509-9054
Jun Shimazaki http://orcid.org/0000-0002-0435-3095
Kensaku Mori http://orcid.org/0000-0002-0100-4797
Tetsuro Oshika http://orcid.org/0000-0002-9071-7018

REFERENCES
	 1	 Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance 

vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob 
Health 2017;5:e1221–34. 

	 2	 Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 
2012;96:614–8. 

	 3	 GBD 2019 Blindness and Vision Impairment Collaborators on behalf of the Vision Loss 
Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness 
and distance and near vision impairment over 30 years: an analysis for the global 
burden of disease study. Lancet Glob Health 2021;9:e130–43.

	 4	 Stevens GA, White RA, Flaxman SR, et al. Global prevalence of vision impairment 
and blindness: magnitude and temporal trends, 1990-2010. Ophthalmology 
2013;120:2377–84. 

	 5	 Kudo S-E, Ichimasa K, Villard B, et al. Artificial intelligence system to determine risk of 
T1 colorectal cancer metastasis to lymph node. Gastroenterology 2021;160:1075–84. 

https://dx.doi.org/10.1136/bjo-2023-324488
https://twitter.com/moda0
https://twitter.com/TakefuYamaguchi
https://twitter.com/eyemiyake
https://github.com/modafone/corneaai
http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0001-7714-422X
http://orcid.org/0000-0002-2546-2813
http://orcid.org/0000-0001-7410-3764
http://orcid.org/0000-0001-6509-9054
http://orcid.org/0000-0002-0435-3095
http://orcid.org/0000-0002-0100-4797
http://orcid.org/0000-0002-9071-7018
http://dx.doi.org/10.1016/S2214-109X(17)30393-5
http://dx.doi.org/10.1016/S2214-109X(17)30393-5
http://dx.doi.org/10.1136/bjophthalmol-2011-300539
http://dx.doi.org/10.1016/j.ophtha.2013.05.025
http://dx.doi.org/10.1053/j.gastro.2020.09.027


8 Ueno Y, et al. Br J Ophthalmol 2024;0:1–8. doi:10.1136/bjo-2023-324488

Cornea and ocular surface

	 6	 De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for 
diagnosis and referral in retinal disease. Nat Med 2018;24:1342–50. 

	 7	 Li Z, Jiang J, Chen K, et al. Preventing corneal blindness caused by keratitis using 
artificial intelligence. Nat Commun 2021;12:3738. 

	 8	 Wang J, Ji J, Zhang M, et al. Automated explainable multidimensional deep learning 
platform of retinal images for retinopathy of prematurity screening. JAMA Netw Open 
2021;4:e218758. 

	 9	 Koyama A, Miyazaki D, Nakagawa Y, et al. Determination of probability of causative 
pathogen in infectious keratitis using deep learning algorithm of slit-lamp images. Sci 
Rep 2021;11:22642. 

	10	 Gomez Rossi J, Rojas-Perilla N, Krois J, et al. Cost-effectiveness of artificial 
intelligence as a decision-support system applied to the detection and grading 
of melanoma, dental caries, and diabetic retinopathy. JAMA Netw Open 
2022;5:e220269. 

	11	 Kuo M-T, Hsu BW-Y, Yin Y-K, et al. A deep learning approach in diagnosing fungal 
keratitis based on corneal photographs. Sci Rep 2020;10:14424. 

	12	 Hu S, Luan X, Wu H, et al. ACCV: automatic classification algorithm of cataract video 
based on deep learning. Biomed Eng Online 2021;20:78. 

	13	 Fang X, Deshmukh M, Chee ML, et al. Deep learning algorithms for automatic 
detection of Pterygium using anterior segment photographs from slit-lamp and hand-
held cameras. Br J Ophthalmol 2022;106:1642–7. 

	14	 Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative 
management of cataracts. Br J Ophthalmol 2019;103:1553–60. 

	15	 Gu H, Guo Y, Gu L, et al. Deep learning for identifying corneal diseases from ocular 
surface slit-lamp photographs. Sci Rep 2020;10:17851. 

	16	 Miyake M, Akiyama M, Kashiwagi K, et al. Japan ocular imaging registry: a national 
ophthalmology real-world database. Jpn J Ophthalmol 2022;66:499–503. 

	17	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or 
more correlated receiver operating characteristic curves: a nonparametric approach. 
Biometrics 1988;44:837–45.

	18	 Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case 
of the binomial. Biometrika 1934;26:404–13. 

	19	 He M, Li Z, Liu C, et al. Deployment of artificial intelligence in real-world practice: 
opportunity and challenge. Asia Pac J Ophthalmol (Phila) 2020;9:299–307. 

	20	 Kann BH, Hosny A, Aerts H. Artificial intelligence for clinical oncology. Cancer Cell 
2021;39:916–27. 

	21	 He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence 
technologies in medicine. Nat Med 2019;25:30–6. 

	22	 Santoni A, Thariat J, Maschi C, et al. Management of invasive squamous cell 
carcinomas of the conjunctiva. Am J Ophthalmol 2019;200:1–9. 

	23	 Matheny ME, Whicher D, Thadaney Israni S. Artificial intelligence in health care: a 
report from the National Academy of medicine. JAMA 2020;323:509–10. 

	24	 Redmon J, Farhadi A. YOLOv3: an incremental improvement. arXiv 2018. 
	25	 He K, Zhang X, Ren S, et al. YOLOv3: an incremental improvement. IEEE Conference 

on Computer Vision and Pattern Recognition; 2018
	26	 Freeman K, Dinnes J, Chuchu N, et al. Algorithm based smartphone apps to assess 

risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ 
2020;368:m127. 

	27	 Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull 
World Health Organ 2001;79:214–21.

	28	 Liesegang TJ, Melton LJ, Daly PJ. Epidemiology of ocular herpes simplex. Arch 
Ophthalmol 1989;107:1155. 

	29	 Inomata T, Nakamura M, Iwagami M, et al. Symptom-based stratification for hay 
fever: a crowdsourced study using the smartphone application AllerSearch. Allergy 
2021;76:3820–4. 

http://dx.doi.org/10.1038/s41591-018-0107-6
http://dx.doi.org/10.1038/s41467-021-24116-6
http://dx.doi.org/10.1001/jamanetworkopen.2021.8758
http://dx.doi.org/10.1038/s41598-021-02138-w
http://dx.doi.org/10.1038/s41598-021-02138-w
http://dx.doi.org/10.1001/jamanetworkopen.2022.0269
http://dx.doi.org/10.1038/s41598-020-71425-9
http://dx.doi.org/10.1186/s12938-021-00906-3
http://dx.doi.org/10.1136/bjophthalmol-2021-318866
http://dx.doi.org/10.1136/bjophthalmol-2019-314729
http://dx.doi.org/10.1038/s41598-020-75027-3
http://dx.doi.org/10.1007/s10384-022-00941-0
http://dx.doi.org/3203132
http://dx.doi.org/10.1093/biomet/26.4.404
http://dx.doi.org/10.1097/APO.0000000000000301
http://dx.doi.org/10.1016/j.ccell.2021.04.002
http://dx.doi.org/10.1038/s41591-018-0307-0
http://dx.doi.org/10.1016/j.ajo.2018.11.024
http://dx.doi.org/10.1001/jama.2019.21579
http://dx.doi.org/10.48550/arXiv.1804.02767
http://dx.doi.org/10.1136/bmj.m127
http://dx.doi.org/11285665
http://dx.doi.org/11285665
http://dx.doi.org/10.1001/archopht.1989.01070020221029
http://dx.doi.org/10.1001/archopht.1989.01070020221029
http://dx.doi.org/10.1111/all.15078

	Deep learning model for extensive smartphone-­based diagnosis and triage of cataracts and multiple corneal diseases
	Abstract
	Introduction﻿﻿
	Methods
	Image acquisition
	Definition of clinical taxonomy
	Datasets
	Training and testing protocol of AI models
	Training of nine-category classification AI models
	Testing of nine-category classification AI models for comparison with ophthalmologists
	Testing of nine-category classification AI models using smartphone images

	Predictive score calculation
	DL versus corneal specialists and residents
	Statistical analyses

	Results
	Performance of three AI models for classifying nine categories
	Performance of YOLO V.5 on test datasets compared with corneal specialists and residents
	Comorbidity; limitation of AI application in real world
	Triage using smartphone images and AI model

	Discussion
	References


