
1Chia MA, et al. Br J Ophthalmol 2024;0:1–8. doi:10.1136/bjo-2024-325459

Review

Foundation models in ophthalmology
Mark A Chia  ‍ ‍ ,1,2 Fares Antaki  ‍ ‍ ,1,2,3 Yukun Zhou,1,2 Angus W Turner,4,5 
Aaron Y Lee,6,7 Pearse A Keane  ‍ ‍ 1,2

To cite: Chia MA, Antaki F, 
Zhou Y, et al. Br J Ophthalmol 
Epub ahead of print: [please 
include Day Month Year]. 
doi:10.1136/bjo-2024-
325459

1Institute of Ophthalmology, 
University College London, 
London, UK
2NIHR Biomedical Research 
Centre, Moorfields Eye Hospital 
NHS Foundation Trust, London, 
UK
3The CHUM School of Artificial 
Intelligence in Healthcare, 
Montreal, Quebec, Canada
4Lions Outback Vision, Lions 
Eye Institute, Nedlands, Western 
Australia, Australia
5University of Western Australia, 
Perth, Western Australia, 
Australia
6Department of Ophthalmology, 
University of Washington, 
Seattle, Washington, USA
7Roger and Angie Karalis 
Johnson Retina Center, 
University of Washington, 
Seattle, Washington, USA

Correspondence to
Pearse A Keane, Institute of 
Ophthalmology, University 
College London, London, EC1V 
9EL, UK; ​p.​keane@​ucl.​ac.​uk

Received 29 February 2024
Accepted 26 April 2024

© Author(s) (or their 
employer(s)) 2024. Re-use 
permitted under CC BY. 
Published by BMJ.

ABSTRACT
Foundation models represent a paradigm shift in 
artificial intelligence (AI), evolving from narrow models 
designed for specific tasks to versatile, generalisable 
models adaptable to a myriad of diverse applications. 
Ophthalmology as a specialty has the potential to act 
as an exemplar for other medical specialties, offering a 
blueprint for integrating foundation models broadly into 
clinical practice. This review hopes to serve as a roadmap 
for eyecare professionals seeking to better understand 
foundation models, while equipping readers with the 
tools to explore the use of foundation models in their 
own research and practice. We begin by outlining the 
key concepts and technological advances which have 
enabled the development of these models, providing 
an overview of novel training approaches and modern 
AI architectures. Next, we summarise existing literature 
on the topic of foundation models in ophthalmology, 
encompassing progress in vision foundation models, 
large language models and large multimodal models. 
Finally, we outline major challenges relating to privacy, 
bias and clinical validation, and propose key steps 
forward to maximise the benefit of this powerful 
technology.

INTRODUCTION
Over the past decade, there has been enormous 
interest in artificial intelligence (AI), both within 
healthcare and beyond. This has been primarily 
driven by advances in deep learning, a branch of 
AI that applies artificial neural networks to high-
dimensional data to perform a range of complex 
tasks. Within medicine, ophthalmology has been 
at the forefront of these advances.1 Notable mile-
stones include approval of the first two autono-
mous AI systems within medicine by the Food and 
Drug Administration,2 3 and the development of 
a comprehensive optical coherence tomography 
(OCT) triage system with expert-level perfor-
mance.4 Perhaps of greatest significance have been 
applications which extend beyond ophthalmology, 
allowing the use of retinal imaging to derive 
insights into some of the most significant causes of 
death and disease globally.5 6 Despite this progress, 
the uptake of deep learning into real-world clinical 
use has been slow, hampered by challenges such as 
the need for robust clinical validation, regulatory 
approval, and integration with existing care and 
funding pathways.

Over the past year, interest in AI has skyrock-
eted to unprecedented levels, driven largely by the 
advent of so-called foundation models. To a larger 
extent than ever before, the extraordinary capa-
bilities of AI have reached mainstream attention 

through the release of generative foundation models 
like ChatGPT and Stable Diffusion. We believe that 
as a specialty, ophthalmology remains well-placed 
to continue driving forward progress towards the 
applications of foundation models in healthcare. In 
particular, foundation models may offer solutions 
to some of the most significant implementation 
barriers, leading to transformative impacts on the 
care of sight-threatening eye conditions and major 
systemic diseases.

This review hopes to provide a roadmap for 
eyecare professionals on the potential of foun-
dation models in ophthalmology, particularly for 
those interested in applying these advances to their 
own research and clinical practice. We begin by 
providing an overview of the key concepts under-
lying these models. Next, we summarise existing 
progress towards applying foundation models in 
the context of ophthalmology. Finally, we discuss 
barriers and future directions for ongoing progress 
in the field.

WHAT IS A FOUNDATION MODEL?
The term foundation model was coined in 2021 by 
researchers at the Stanford University Institute for 
Human-Centred AI. It describes a large AI model 
trained on vast quantities of diverse data, which 
can then be adapted to a wide range of down-
stream tasks.7 Foundation model is a general term 
which can encapsulate models trained on a single 
modality such as text data (large language models, 
LLMs) or imaging data (large vision models), as 
well as models trained on multiple modalities 
such as vision language models (VLMs) and large 
multimodal models (LMMs). Although founda-
tion models are based on standard deep learning 
and transfer learning techniques, they represent a 
fundamental change from traditional approaches, 
both in terms of their scale and intended scope.7 
A comparison between these two approaches is 
outlined in figure 1. While previous generations of 
AI models were generally designed to solve single 
specific tasks, foundation models represent a versa-
tile tool with potentially limitless applications. 
Their development has been enabled by larger 
datasets, novel training approaches and advances in 
model architecture.

Key advantages of foundation models include 
improved label efficiency, enhanced generalisability 
and reduced computational requirements during 
fine-tuning. Foundation models have the ability to 
learn universal patterns from data without specific 
labels, making them broadly useful for multiple 
tasks. Many of the properties of foundation models 
only develop once a critical threshold of scale is 
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reached. This has been termed ‘emergent abilities’ and is one of 
the qualities which distinguish foundation models from tradi-
tional transfer learning.8 Due to the initial training at scale, a 
foundation model may require very few or even no labels when 
being adapted to a new task, referred to as few-shot and zero-shot 
learning, respectively. This enhanced label efficiency delivers the 
potential to design tasks targeted at rare diseases, even when 
little training data exists. Similarly, the ability to pretrain on 
diverse datasets can lead to improved performance on minority 
ethnic groups, which has been a key concern when attempting to 
implement models trained with traditional approaches. Finally, 
open-source foundation models can democratise access to AI and 
accelerate progress by circumventing the need for large datasets 
and extensive computational resources, which are major barriers 
to entry. Specific examples demonstrating how these advantages 
have been applied in the context of ophthalmology are outlined 
in subsequent sections.

SELF-SUPERVISED LEARNING
The emergence of novel training approaches that can be applied 
to unlabelled data has been a key enabler for the development of 
foundation models. Traditional deep learning models are trained 
using supervised learning, whereby a model learns representa-
tions by mapping an input (eg, retinal photo) with a labelled 
output (eg, diagnosis of diabetic retinopathy).9 A supervised 
learning method therefore requires vast quantities of labelled 
data. Due to the requirement for specialised knowledge, label-
ling data in a medical context is time-consuming and expensive. 
Many of the major implementation challenges for deep learning 
models arise due to a paucity of diverse, labelled datasets. One 
approach to overcoming this problem is to initially train on 
natural (non-medical) image datasets, before performing transfer 
learning. While this does reduce label requirements, the solution 
is suboptimal due to the large differences between natural image 
datasets and medical datasets.9

In contrast to labelled datasets, unlabelled imaging data is 
ubiquitous in medicine, rapidly accumulating over the course 
of routine clinical care. For example, during 2022, almost 
1.5 million images were acquired at Moorfields NHS Foundation 
Trust in London, UK. Self-supervised learning (SSL) provides 
the opportunity to tap into this vast quantity of unlabelled data 
which often goes unused. In the absence of labels, SSL represen-
tations by extracting labels from the data itself via a ‘pretext’ 

task. Pretext tasks can be broadly classified as being contrastive 
or generative in nature,9 as shown in figure  2. A contrastive 
approach generally involves augmenting the original images, 
such as through rotation or flipping. A model is then trained 
to maximise the similarity between augmented images from the 
matching originals, while separating those from non-matching 
originals. A generative approach usually involves discarding 
and generating image information, such as masking regions of 
an input image and then attempting to reconstruct the missing 
portions. An SSL approach that uses a well-chosen pretext task 
is a key component of developing a powerful foundation model 
that possesses robust and generalisable capabilities.

TRANSFORMER ARCHITECTURES
Transformers are a type of neural network architecture that 
were originally described in 2017 when they were applied to 
natural language processing (NLP).10 They possess several 
distinct advantages compared with recurrent neural networks 
(RNNs), the dominant architecture used for NLP at the time. A 
key limitation of RNNs was that its structure required individual 
words to be processed sequentially, leading to poor scalability 
and limited contextual understanding. The transformer architec-
ture addressed these barriers using two innovative approaches: 
positional encodings and attention mechanisms.10 Positional 
encodings allowed a network to understand the order of words 
by storing this information directly within the data itself, rather 
than relying on sequential processing as part of the network’s 
architecture. This structure led to drastic improvements in paral-
lelisation—the ability to scale training to unprecedented levels 
by harnessing large datasets. Attention mechanisms, and in 
particular ‘self-attention’ were novel structures which allowed 
the network to better understand words in the context of 
surrounding words, thereby developing a robust internal repre-
sentation of language. When combined with the enhanced avail-
ability of training data enabled by SSL, transformer architectures 
became a major driving force behind the enormous progress seen 
with LLMs in recent years.

A further key breakthrough occurred in 2020 when the trans-
former architecture was applied to imaging data in the form 
of vision transformers.11 The elegant approach involved parti-
tioning an image into patches, followed by vectorisation with 
linear transformation. From this point, the image data could be 
treated in a similar way to text data, while still using positional 

Figure 1  Schematic diagram comparing foundation models with traditional artificial intelligence models, showing the benefits of generalisability, 
label efficiency and computational efficiency. Rather than training a new model for each task, a single foundation model is generalisable to multiple 
downstream tasks. By learning general representation from vast quantities of unlabelled data, foundation models require less labelled data for each 
task (size of green boxes). These fine-tuning stages are also computationally efficient compared with training models from scratch. FM, foundation 
model.



3Chia MA, et al. Br J Ophthalmol 2024;0:1–8. doi:10.1136/bjo-2024-325459

Review

encodings and attention mechanisms. This has led to the key 
benefit of transformers—the ability to capture global dependen-
cies and contextual understanding in images using vast quantities 
of training data. Importantly, transformers afford greater flexi-
bility, allowing the model to learn and adapt to patterns without 
being constrained by predetermined assumptions (inductive 
priors), as in the case of convolutional neural networks. Another 
strength of transformers arises from their universal structure, 
which enables flexible integration of different data types into a 
single model, such as text, language and audio data. This ability 
has paved the way for the development of VLMs and LMMs.

ENHANCED COMPUTER VISION WITH FOUNDATION MODELS
Despite the enormous potential for vision foundation models 
to revolutionise image-driven medical specialties, their applica-
tion within ophthalmology remains relatively recent. In 2022, 
a Google research group introduced REMEDIS, a framework 
for building foundation models for medical imaging.12 The 
framework was used to create a suite of pretrained models for 
modalities across different specialties, including one for colour 
fundus photos. The approach used a combination of labelled and 
unlabelled fundus images in two stages: supervised learning on 
300 million labelled natural images followed by contrastive self-
supervised training on unlabelled fundus images. The pretrained 
model was then fine-tuned for the prediction of macular oedema 

in both an internal dataset, and an external dataset acquired on 
a different device and population.

The key findings showed that compared with a fully super-
vised approach, REMEDIS had better internal performance, a 
93% reduction in label requirements when fine-tuned for the 
external dataset, as well as improved zero-shot external perfor-
mance in two datasets with different ethnic distributions. Similar 
results were replicated for the other imaging modalities including 
chest X-rays and pathology slides. Although this work presented 
a strong initial framework for building models with better gener-
alisability to ethnic groups and reduced training costs, the retinal 
image validation was limited to a single task. The key question 
of whether training on unlabelled retinal images could teach 
general representations applicable to diverse downstream tasks 
remained unanswered.

In 2023, our group released RETFound, a foundation model 
for retinal images.13 We trained RETFound sequentially on 
1.3 million natural images followed by 1.6 million retinal images, 
both using a generative self-supervised technique called masked 
autoencoders.14 In this approach, 75% of the input image is 
masked and the model learns representations by attempting to 
reconstruct the missing patches. We then fine-tuned and vali-
dated RETFound on 13 downstream tasks across 2 modalities: 
OCT and retinal photography. The downstreams tasks varied 
considerably in scope and complexity, encompassing retinal 

Figure 2  Pipeline for training vision foundation models using contrastive (A) and generative (B) self-supervised learning (SSL). In the contrastive 
SSL example, the pretext learning task involves applying random image augmentations and training a model to maximise the agreement of matching 
image pairs. In the generative SSL example, the pretext task involves masking areas of an image and training a model to reconstruct the missing 
portions. In both cases, the model learns general imaging features applicable to multiple downstream tasks.
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disease diagnosis, retinal disease prediction, as well as predic-
tion of future systemic events like myocardial infarction and 
stroke. Across these tasks we were able to demonstrate several 
key advantages of foundation models in comparison to compet-
itive alternatives, including (1) improved internal performance, 
(2) improved zero-shot external performance, (3) better gener-
alisability to ethnic subgroups, (4) enhanced label efficiency and 
(5) reduced computational requirements. In making RETFound 
openly available, we hope to democratise access to AI and accel-
erate progress towards implementing models that are generalis-
able and equitable.

Although the tasks explored in RETFound focus on classifi-
cation of current or future disease, the training strategy used is 
likely also applicable to object detection and segmentation tasks. 
RETFound also separates OCTs and retinal photos into distinct 
models, despite there being potential advantages to developing 
a single foundation model which can flexibly integrate different 
imaging modalities. A number of preprints and brief reports 
have begun to explore segmentation tasks and multimodal inte-
gration in the context of ophthalmology, however work in this 
area remains limited.15–17

LEVERAGING LLMS
LLMs are foundation models that are designed to understand and 
generate natural language.18 They are trained on vast corpora of 
text, including archives of the internet, books and encyclopae-
dias like Wikipedia.19 In that sense, once trained, LLMs contain 
a representation of the collective written knowledge of humanity 
until its training cut-off date.

During training, LLMs process text as ‘tokens’ which are 
sequences of characters corresponding to words, parts of words 
or individual characters.20 LLMs learn to understand the statis-
tical relationships between tokens as they appear in the training 
data, with the goal of predicting the next token in a sequence 
of tokens.21 After tokenisation, certain tokens are randomly 
masked, and the model is tasked to predict the original tokens 
based on the context provided by the remaining tokens.21 We 
illustrate an example in figure 3. This process is repeated at scale 
using billions to trillions of tokens.19 22 Once deployed, an LLM 
is prompted using natural language by the user, and it generates 
a response based on the statistical patterns it has learnt on the 
sequence of tokens.23

Before releasing LLMs to the public, developers typically 
undertake ‘alignment’ processes to mitigate the risk of generating 
inaccurate or harmful content and spreading misinformation.24 
In general, it is agreed that they need to be ‘helpful, honest and 
harmless’.24 One way this can be achieved is through fine-tuning 
using reinforcement learning with human feedback.25 This is 
achieved by getting human evaluators to rank the outputs of the 
model, based on which a reward model is trained to assign scores 

to the model’s outputs. Reinforcement learning is then used to 
fine-tune the LLM, aiming to maximise these scores.25

In medicine, there has been growing interest in evaluating the 
usefulness of LLMs in encoding clinical knowledge.26 27 Both 
generalist all-purpose and medical fine-tuned models have been 
evaluated.28 29 In ophthalmology, most of the work has focused 
on evaluating generalist LLMs for their question-answering 
abilities.30–32 The performance of GPT-4 has been notably 
impressive, achieving a score of 72.9% on a multiple-choice 
question dataset, numerically surpassing the average historical 
human performance benchmarks.31 While those findings are 
noteworthy, the real challenge lies in demonstrating their clin-
ical usefulness and effectively integrating them into the clinical 
decision-making process.33

Clinicians critically appraising LLM studies should be cogni-
sant that LLM performance is intrinsically related to several 
factors: the content and formatting of the prompts used, which 
reflects how users interact with the model; the recency of the 
model’s training, indicating its currency and relevance; and 
the specific settings of the model, such as the temperature—a 
measure of the creativity of the output.31 34 LLM outputs should 
also be evaluated holistically, beyond accuracy or scores. To that 
extent, Singhal et al propose a framework for evaluating LLM 
answers in medicine.26 It includes the following elements: pres-
ence of incorrect information, agreement with scientific and 
clinical consensus, omission of content, extent and likelihood of 
harm, and bias in answers.

TOWARDS LMMS
While text-based LLMs have shown significant potential in 
ophthalmology,35 models equipped with vision capabilities are 
poised to be the most beneficial. This reflects the inherent nature 
of ophthalmological practice, and our reliance on detailed visual 
examinations (supported by multimodal imaging) along with 
patient histories.36 37 Models such as Contrastive Language-
Image Pre-training,38 which are capable of understanding images 
and text are also known as VLMs.39 Expanding on those capa-
bilities, LMMs have been proposed to integrate ‘multisensory’ 
skills such as video, audio and sensor data.40 We show how 
VLMs can be trained in figure 4.

There is currently limited evidence on the performance of 
VLMs and LMMs in medicine and ophthalmology.41–43 Recent 
multimodal systems developed by Google have demonstrated 
early potential for LMMs to perform novel tasks such as 
visual question answering and report generation in the field of 
radiology. Med-PaLM Multimodal is a proof-of-concept gener-
alist biomedical AI system that encodes and interprets multi-
modal data including language, imaging and genomics using the 
same set of model weights.44 For a sample of chest X-rays, clini-
cians preferred reports produced by Med-PaLM Multimodal 

Figure 3  Pipeline for training a large language model. Text is separated into a series of tokens (coloured highlighting). A proportion of these tokens 
are masked, and the model is trained to predict these missing tokens via a loss function. LLM, large language model.
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over radiologists in 40% of cases. Another approach called 
ELIXR combined a fixed LLM with paired radiology images and 
reports, and was found to require two orders of magnitude less 
data to reach similar performance to a supervised contrastive 
learning approach.45

Building a multimodal model for ophthalmology from scratch 
faces the challenge of acquiring vast volumes of paired multi-
modal data, which is often scarce and costly to obtain due to 
the need for alignment and annotation. One potential solution 
is to leverage pre-existing vision foundation models and LLMs 
by integrating them into a multimodal framework, and subse-
quently fine-tuning the whole framework with a smaller quantity 
of paired data via transfer learning. Such a strategy has shown 
promising results in non-medical vision and language model-
ling.46 Another solution is to extend existing multimodal models 
in natural vision and language to medical fields via moderate 
transfer learning, as in the case of Med-PaLM which is based on 
PaLM-E.47

IMPLICATIONS AND CHALLENGES
Despite the enormous potential of foundation models in ophthal-
mology, addressing key challenges is crucial for their widespread 
adoption. While many of these challenges are pertinent to tradi-
tional deep learning approaches, the breadth of application for 
foundation models means that any harms may also be magnified.

Although RETFound showed improved performance in ethnic 
subgroups, the risk of bias from the underlying training data in 
foundation models persists. Previous studies have highlighted 
biases in AI models arising from under-representation in training 
data, or the reinforcement of harmful correlations.48 49 These 
biases could lead to poor performance in certain population 
groups, with a risk of perpetuating health inequities. The magni-
tude of training data required for foundation models may exac-
erbate this challenge, as evidence suggests that bias can increase 
with model scale.50 Mitigating this risk necessitates rigorous 
clinical validation and scrutiny of bias within training datasets. 
A significant stride in this direction is the establishment of stan-
dards for assessing diversity in health datasets, a primary goal of 
the STANDING Together initiative.51

The scale of training data also has implications for data 
privacy. In many cases, single institutions may struggle to amass 
sufficiently diverse datasets. There are numerous barriers to 
the development of foundation models which are particularly 
pertinent to low-resource settings. These include the signifi-
cant cost of computational infrastructure, the development of 
streamlined pipelines for data curation, and the implementation 
of robust information governance processes. The integration of 
foundation models with privacy preserving techniques, such as 
federated learning, may facilitate collaborative training using 
data from multiple institutions, without the need for direct data 
access.52 While open-sourcing foundation models is crucial for 
maximising their benefits and accelerating progress, it must be 
balanced against associated privacy risks. Large models can have 
a tendency to memorise portions of training data and to repeat 
it to users,53 and models may be susceptible to malicious attacks 
aimed at extracting sensitive information.54

Finally, the enhanced generalisability of foundation models 
poses significant regulatory implications. For the safe implemen-
tation of a generalisable foundation model, it is crucial that these 
models express uncertainty when operating beyond the scope 
of their training data.55 Additionally, these models are likely to 
have heightened explainability requirements, such as the ability 
to reference evidence-based medicine sources.

FUTURE DIRECTIONS AND POTENTIAL
Foundation models in ophthalmology offer tremendous poten-
tial for transformative impact, opening up a variety of exciting 
research directions and applications within the field. Despite 
RETFound being trained on 1.6 million images, its model size 
remains relatively modest compared with many general-purpose 
language models. Expanding ophthalmic foundation models 
through increased data, parameters and advanced architectures 
represents a valuable next step. Scaling has proven to unlock 
novel capabilities in other contexts,8 56 and investigating these 
‘emergent abilities’ within ophthalmology may unveil ground-
breaking clinical applications.

Another compelling research avenue involves elevating the 
complexity and breadth of multimodal integration for foundation 

Figure 4  Pipeline for training vision-language models. The image and text data are independently processed by encoders to generate feature 
embeddings representative of images and text. The vision-language models are trained to maximise the agreement between image and text feature 
embeddings. The trained encoders apply to both image-based and text-based downstream tasks. OCT, optical coherence tomography; DR, diabetic 
retinopathy.
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models. Striving towards truly multimodal foundation models 
with flexible human-AI interactions is a critical priority. This 
includes incorporating three-dimensional OCT data, seamlessly 
combining diverse imaging modalities and extending to true 
multimodality through the addition of functional tests, elec-
tronic health records, speech, text and genomic data. Achieving 
this comprehensive integration could lay the foundation for 
widespread applications in ophthalmology.55

Looking ahead, with the realisation of true multimodal capa-
bilities, foundation models are poised to revolutionise various 
facets of ophthalmology. This encompasses contributions to 
medical education, optimisation of clinical workflows and 
direct clinical assistance at the bedside. Figure 5 outlines several 

proposed applications of foundation models in ophthalmology, 
showcasing the expansive and impactful possibilities.

CONCLUSION
Foundation models signify a transformative leap, propelled by 
innovations such as SSL and transformer architectures. They 
hold immense potential to reshape clinical paradigms within 
ophthalmology, as evidenced by the remarkable strides in large 
vision and language models. As has been the case for other 
AI technologies, ophthalmology has the potential to act as an 
exemplar for other medical specialties by paving the way for the 
considered integration of foundation models into clinical care. It 

Figure 5  Overview of the applications of foundation models in ophthalmology. The most useful models for clinicians and patients are likely to be 
large multimodal models. Applications can be divided broadly into three categories: medical education (A), workflow improvement (B) and clinical 
assistance (C). EHR, electronic health record; OSCE, objective structured clinical examination.
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is critical that safety remains a prime consideration, with a focus 
on privacy protection, mitigation of bias and robust clinical 
validation. By embracing the advances brought by foundation 
models, balanced with safe and ethical practice, we can strive 
towards more equitable access to high-quality clinical care.
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