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ABSTRACT
Mesenchymal stem cells (MSC) have immune 
regulatory properties that may ameliorate 
pathophysiological processes in sepsis. We 
determined the effect of allogeneic adipose- derived 
MSCs (Cx611) on the host response during sepsis 
due to community- acquired bacterial pneumonia 
(CABP) by measuring 29 plasma biomarkers and 
blood transcriptomes at six time points in 82 
patients randomised to two intravenous infusions 
of Cx611 or placebo. Cx611 treatment enhanced 
several endothelial cell and procoagulant response 
plasma biomarkers, and led to increased expression 
of pathways related to innate immunity, haemostasis 
and apoptosis. Cx611 infusion in sepsis due to CABP 
is associated with broad host response alterations.

INTRODUCTION
In spite of decades- long efforts, therapeutics 
capable of ameliorating disease pathophysi-
ology and improving patient- important clin-
ical outcomes in sepsis and pneumonia remain 
elusive. Mesenchymal stem cells (MSCs)—
multipotent cells that can contribute to tissue 
repair and modulate immune responses—exert 
a variety of effects on the pathophysiology of 
pneumonia and sepsis that have led to improved 
outcomes in preclinical models.1 Several small 
phase I and II clinical trials have demonstrated 
the safety of treatment with MSCs in critically 
ill patients with sepsis and/or acute respiratory 
distress syndrome.2 3 SEPCELL was a phase Ib/
IIa clinical trial investigating the use of Cx611 
(adipose- derived stem cells) in patients with 
severe community- acquired bacterial pneumonia 
(CABP), and the largest study on the effects of 
MSCs in this population conducted thus far.4 5 
We recently reported on the primary objective 
of SEPCELL—a favourable safety profile of 
Cx611 infusion in patients with severe CABP.5 
In the current preplanned ancillary study,4 we 
aimed to assess the effect of Cx611 treatment 
on the host response by sequential measure-
ments of plasma protein biomarkers—reflective 

of key pathophysiological processes—and blood 
transcriptomes.

METHODS
Adult patients (≥18 and ≤80 years old) were 
eligible for the study if there was a clinical 
suspicion of severe CABP, and if they needed 
mechanical ventilation (including high- flow 
oxygen) and/or vasopressor treatment. Patients 
were randomised to receive either two intra-
venous administrations of Cx611 (160×106 
cells) or placebo (Ringer’s lactate) at day 1 and 
day 3 of the study. We measured 29 protein 
biomarkers reflective of five pathophysiological 
domains (inflammation, inhibition of inflamma-
tion, apoptosis, endothelial cell responses and 
coagulation) before and at five time points after 
initiation of treatment (figure 1A, online supple-
mental table 1, online supplemental figure 1). 
We analysed the data using linear mixed models 
that adjusted for chance variation in baseline 
values between groups. Gene set enrichment 
analysis was done using the Reactome knowl-
edgebase ( reactome. org), focusing on predeter-
mined pathways implicated in the pathogenesis 
of sepsis: immune system, apoptosis and haemo-
stasis. Further details on study design, inclusion 
and exclusion criteria, sample collection and 
processing, and statistical analysis can be found 
in the online supplemental methods.

RESULTS
41 patients in both the Cx611 and placebo 
groups participated (online supplemental 
figure 2). Baseline characteristics and clin-
ical outcomes were balanced between the 
groups (table 1, online supplemental table 2).5 
Figure 1B provides an overview of the effect 
of Cx611 infusion (relative to placebo) on all 
biomarkers measured in plasma obtained at five 
time points after treatment initiation (overview 
of all measurements in online supplemental 
table 3). The proportion of patients still in the 
study at the V9 time point was high and compa-
rable between study groups (35/41 (85.4%) 
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Figure 1 Overview of study design and effect of Cx611 treatment on plasma host response biomarkers stratified according to pathophysiological 
domains. (A) Overview of time points at which samples were collected for plasma protein and RNA biomarker analyses: within 18 hours of initiation 
of vasopressors and/or mechanical ventilation, prior to the initiation of treatment (screening/SCR), 8–12 hours following the initial infusion of Cx611 
or placebo on day 1 (visit 1/V1), day 2 (V2), 8–12 hours following the second infusion of Cx611 or placebo on day 3 (V3), day 7 (V7) and day 14±2 
(V9). Sample collection continued after intensive care unit (ICU) and hospital discharge. Number of samples available for plasma biomarker analyses 
listed to the right of each time point, Cx611- treated patients in orange, placebo- treated patients in blue/grey. (B) Heatmap showing the levels of 
each plasma protein host response biomarker, divided across five pathophysiological domains, for patients treated with Cx611 relative to patients 
treated with placebo at each time point after the initiation of treatment, expressed as an effect size (Hedges’ g, red indicates higher values and 
blue indicates lower values in Cx611- treated patients). For visual purposes, comparisons with a Hedges’ g >−0.2 and <0.2 (considered a negligible 
effect) are displayed as white tiles. To account for baseline variation in biomarker levels not attributable to treatment, we used the fold change from 
prior to treatment (screening/SCR time point) to each time point for each patient. The p values displayed to the right of heatmap are derived from a 
type II Wald test on linear mixed models for each individual biomarker (as described in the statistical analysis paragraph in the online supplemental 
methods), and indicate whether the overall effect of Cx611 on biomarker concentrations over all time points after initiation of treatment, adjusted for 
baseline variation in biomarker levels, is statistically significant. These p values were adjusted for multiple testing per domain using the Benjamini- 
Hochberg (BH) method. CCL, CC chemokine ligand; HGF, hepatocyte growth factor; IL- 1RA, interleukin 1 receptor antagonist; MMP- 8, matrix 
metalloproteinase 8; NGAL, neutrophil gelatinase- associated lipocalin; PAI- 1, plasminogen activator inhibitor 1; TNF, tumour necrosis factor; TRAIL, 
TNF- related apoptosis- inducing ligand; TREM- 1, triggering receptor expressed on myeloid cell 1; VCAM- 1, vascular cell adhesion molecule 1.
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for Cx611, 38/41 (92.7%); online supplemental table 1). 
Despite the anti- inflammatory and antiapoptotic effects of 
MSCs reported in preclinical studies,1 we found few differ-
ences in biomarkers reflective of inflammation, inhibition 
of inflammation or apoptosis (online supplemental figures 
3–5). Only tumour necrosis factor—a quintessential proin-
flammatory cytokine—was significantly higher in patients 
treated with Cx611 (p=0.030), driven by the time frame 
spanning stem cell infusion (V1–V3). With regard to endo-
thelial cell biomarkers, the plasma concentrations of von 
Willebrand factor (reflecting endothelial cell activation), 
soluble thrombomodulin (endothelial cell injury) and angio-
poietin- 2 (disturbed barrier function) were higher in patients 
infused with Cx611 at time points up to V3 (ie, 8–12 hours 
after the second drug infusion; online supplemental figure 
6). Moreover, Cx611 induced a procoagulant state in this 
time frame, as indicated by strong increases in the plasma 
levels of prothrombin fragment 1+2 (thrombin formation) 
and D- dimer (fibrin formation and fibrinolysis).

Analysis of blood transcriptome data revealed that Cx611 
induced a predominantly proinflammatory state, detect-
able from day 2 after the initiation of treatment (V2) up 
to 4 days after the second treatment (V7; figure 2, online 
supplemental figure 7, online supplemental table 4). In the 
innate immune system pathways, we found upregulation 

of pattern recognition receptor pathways such as toll- 
like receptors, accompanied by upregulation of pathways 
related to innate immune effector functions, such as neutro-
phil degranulation (online supplemental figure 8). Innate 
immune activation was further corroborated by upregu-
lation of pathways related to key growth factors involved 
in emergency myelopoiesis (granulocyte and granulocyte- 
macrophage colony- stimulating factors, and interleukin 3) 
and proinflammatory cytokine signalling (figure 2). In the 
adaptive immune system, Cx611- treated patients exhib-
ited upregulation of pathways related to major histocom-
patibility complex class I antigen presentation, suggesting 
activation of cellular immunity, specifically cytotoxic CD8 
T cells (figure 2, online supplemental figure 8), while down-
regulation of pathways related to T cell receptor signalling 
and reduced CD28 costimulation pointed at impaired T cell 
activation. However, downregulation of signalling through 
the inhibitory immune checkpoint programmed death 1 
in Cx611- treated patients argued against adaptive immu-
nosuppression. A more detailed overview of the plasma 
biomarker and transcriptomic results—including the modest 
upregulation of pathways related to apoptosis, endothelial 
cell surface interactions and haemostasis—can be found in 
online supplemental figures 9 and 10.

DISCUSSION
We report the largest and most comprehensive study on 
the effect of MSCs on the immune response in critically ill 
patients, but there are limitations to consider. The study was 
exploratory in nature and the total intended sample size was 
not calculated specifically to detect differences in biomarker 
levels. While the risk of attrition bias is low, informative 
censoring due to death or withdrawal from the study may 
have resulted in some residual bias not fully addressed by 
linear mixed models. A replication cohort in this patient 
population did not exist at time of analysis, and the results 
could therefore not be validated externally.

While there were no adverse events related to Cx611 
infusion,5 Cx611 treatment resulted in transient proin-
flammatory effects mainly relating to enhanced activation 
of the endothelium and coagulation system, and increased 
expression of gene pathways involved in pattern recognition 
receptor and cytokine signalling, haemostasis and apoptosis. 
Our results may in part be indicative of recognition of intra-
venously introduced MSCs by the host immune system. The 
proinflammatory effects reported here contrast with the 
anti- inflammatory effects reported in the preponderance 
of preclinical studies.1 However, previous clinical studies 
that reported biological outcomes were small and have not 
conclusively demonstrated anti- inflammatory effects of 
MSCs in critically ill humans.6–8 The adipose origin of Cx611 
may play a part, but clear evidence that the immune regula-
tory properties of adipose- derived MSCs are different from 
those of MSCs of other origins is not available. Although a 
higher expression of tissue factor on adipose- derived MSCs9 
could indicate a higher procoagulant potential, procoagu-
lant responses have also been reported for MSCs of other 
origins.10 It remains to be established which effects of MSCs 
on the host response in patients with sepsis due to CABP 
would be beneficial for clinical outcomes, and which could 
potentially do harm.

Table 1 Baseline characteristics and outcomes

Cx611 (n=41) Placebo (n=41)

Demographics

Age, years 60.9 (11.3) 63.4 (10.4)

Sex, male 27 (65.9%) 26 (63.4%)

Disease severity

Randomisation stratum

  Invasive mechanical ventilation 22 (53.7%) 23 (56.1%)

  Shock 14 (34.1%) 13 (31.7%)

  Both 5 (12.2%) 5 (12.2%)

CURB- 65 3 [2, 3] 3 [2, 4]

APACHE II score 20.2 (7.7) 18.9 (6.2)

SOFA score* 8 [7, 11] 8 [7, 9]

Outcomes†     

Any thromboembolic event‡ 7 (17.1%) 8 (19.5%)

Length of intensive care unit stay 13 [6, 29] 11 [6, 19]

Length of hospital stay 20 [12, 44] 19 [14, 36]

28- day mortality 8 (19.5%) 6 (14.6%)

Normally distributed continuous variables are listed as mean (SD); non- normally 
distributed continuous variables are listed as median [IQR]; categorical variables are 
listed as count (%).
*All patients fulfilled the Sepsis- 3 criteria (infection plus SOFA score of 2 or higher).
†A full overview of adverse events and clinical outcomes can be found in the 
primary clinical report.5

‡Individual patients could have more than one thromboembolic event. For the 
Cx611 group, this included deep vein thrombosis (n=3), pulmonary embolism (n=1), 
cerebrovascular accident (n=2), device- related thrombosis (n=1), atrial thrombosis 
(n=1) and cerebral artery embolism (n=1). For the placebo group, this included 
deep vein thrombosis (n=5), pulmonary embolism (n=2), venous thrombosis (n=1), 
venous thrombosis of a limb (n=1) and jugular vein thrombosis (n=1).
APACHE- II, Acute Physiology and Chronic Health Evaluation II; CURB- 65, confusion, 
blood urea nitrogen, respiratory rate, blood pressure, age 65 or older; SOFA, 
Sequential Organ Failure Assessment.
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Figure 2 Significant immune system pathways from gene set enrichment analysis of the blood transcriptome. Bubble plot displaying the effect of 
Cx611 treatment on transcriptional pathways related to the immune system (as obtained from the Reactome knowledgebase) for each time point 
after the initiation of treatment with Cx611 or placebo. To adjust for chance variation in baseline gene expression between groups, the differences 
in gene expression at each time point are derived from the interaction terms between Cx611 and time point in linear mixed models that included 
the SCR time point (prior to initiation as treatment) as the reference category, and can therefore be interpreted as the difference in gene expression 
levels between groups at each time point relative to the gene expression levels prior to initiation of treatment. The differences in expression of genes 
in the listed pathways are quantified as NES and reflected in the intensity of the colour: a red bubble means higher in the Cx611- treated group, a 
blue bubble means lower in the Cx611- treated group and a grey bubble indicates a negligible difference. The size of the bubble is proportional to 
the Benjamini- Hochberg (BH)- adjusted p value for that pathway. This figure only includes pathways in which a significant difference between groups 
was found at one or more time points; the full version of the figure including non- significant pathways can be found in online supplemental figure 
7. CLEC7A, C- type lectin domain family 7 member A; Fc, fragment crystallisable region (of an antibody); FLT3, fms- related receptor tyrosine kinase 3; 
G- CSF, granulocyte colony- stimulating factor; GM- CSF, granulocyte- macrophage colony- stimulating factor; IFN, interferon; MAPK, mitogen- activated 
protein kinase; MHC, major histocompatibility complex; NF-κB, nuclear factor kappa- light- chain- enhancer of activated B cells; NIK, NF-κB- inducing 
kinase; NLR, nucleotide- binding domain leucine- rich repeat containing receptor; PD- 1, programmed death 1; TCR, T cell receptor; TNF, tumour necrosis 
factor.
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