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Background Despite progress in reducing maternal and child mortality 
worldwide, adverse birth outcomes such as preterm birth, low birth weight 
(LBW), small for gestational age (SGA), and stillbirth continue to be a major 
global health challenge. Developing a prediction model for adverse birth 
outcomes allows for early risk detection and prevention strategies. In this 
systematic review, we aimed to assess the performance of existing pre-
diction models for adverse birth outcomes and provide a comprehensive 
summary of their findings.

Methods We used the Population, Index prediction model, Comparator, 
Outcome, Timing, and Setting (PICOTS) approach to retrieve published 
studies from PubMed/MEDLINE, Scopus, CINAHL, Web of Science, Afri-
can Journals Online, EMBASE, and Cochrane Library. We used WorldCat, 
Google, and Google Scholar to find the grey literature. We retrieved data 
before 1 March 2022. Data were extracted using CHecklist for Critical Ap-
praisal and Data Extraction for Systematic Reviews of Prediction Modelling 
Studies. We assessed the risk of bias with the Prediction Model Risk of Bias 
Assessment tool. We descriptively reported the results in tables and graphs.

Results We included 115 prediction models with the following outcomes: 
composite adverse birth outcomes (n = 6), LBW (n = 17), SGA (n = 23), 
preterm birth (n = 71), and stillbirth (n = 9). The sample sizes ranged from 
composite adverse birth outcomes (n = 32–549), LBW (n = 97–27 233), SGA 
(n = 41–116 070), preterm birth (n = 31–15 883 784), and stillbirth (n = 180–
76 629). Only nine studies were conducted on low- and middle-income 
countries. 10 studies were externally validated. Risk of bias varied across 
studies, in which high risk of bias was reported on prediction models for 
SGA (26.1%), stillbirth (77.8%), preterm birth (31%), LBW (23.5%), and 
composite adverse birth outcome (33.3%). The area under the receiver op-
erating characteristics curve (AUROC) was the most used metric to de-
scribe model performance. The AUROC ranged from 0.51 to 0.83 in stud-
ies that reported predictive performance for preterm birth. The AUROC 
for predicting SGA, LBW, and stillbirth varied from 0.54 to 0.81, 0.60 to 
0.84, and 0.65 to 0.72, respectively. Maternal clinical features were the 
most utilised prognostic markers for preterm and LBW prediction, while 
uterine artery pulsatility index was used for stillbirth and SGA prediction.

Conclusions A varied prognostic factors and heterogeneity between stud-
ies were found to predict adverse birth outcomes. Prediction models using 
consistent prognostic factors, external validation, and adaptation of future 
risk prediction models for adverse birth outcomes was recommended at 
different settings.
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Although maternal and child health (MCH) programmes have made progress in recent years all over the 
world, many regions of the world continue to experience persistently high rates, or progress is now stagnat-
ing of adverse birth outcomes such as stillbirth, preterm birth, and low birth weight (LBW) [1-3]. Globally, 
adverse birth outcomes affect millions of newborns. Low- and middle-income countries (LMICs) account for 
98% of all stillbirths, with three-quarters of these occurring in sub-Saharan Africa, where women face socio-
economic challenges and often lack access to maternity services [4,5]. The burden of adverse birth outcomes 
is increasing around the world [6]. LBW is strongly associated with perinatal death [7].

Addressing MCH issues during the perinatal period is critical for the health of mothers and neonates. 
Continuum of maternity care (CMC) provides a window of opportunity to screen mothers to prevent and man-
age adverse birth outcomes [8]. To provide effective and efficient CMC, data-driven health care approaches 
have been identified, and prognostic prediction models are becoming more popular [9,10]. Models that pre-
dict adverse birth outcomes have been introduced to reduce foetal and neonatal mortality [11,12]. Developing 
accurate risk prediction models allows the estimation of pregnancy-related risks through risk stratification 
and identifying women and babies at higher risk. The absolute risk of complications can then be calculated 
and used to help develop personalised care models [13]. However, many risk prediction models are not used 
in clinical practices due to poor predictive performance [14,15].

Despite these challenges, the potential benefit of risk detection approaches, such as using regression formula 
models, score chart rules, or nomograms to improve the delivery of high-quality interventions, may be sub-
stantial [16]. A suitable and effective prognostic prediction model can calculate the absolute risk of adverse birth 
outcomes based on unique individual characteristics such as social demographics, maternal factors, obstetric 
history, and clinical biomarkers. However, most prognostic models investigated to help explain the large varia-
tion in patient prognosis produced contradictory results from studies of varying quality and poor predictive per-
formance [14]. Knowing the gaps in common predictive models used in Ethiopia could help to predict adverse 
birth outcomes. With this backdrop, we aimed to review the existing prognostic prediction models for adverse 
birth outcomes, qualitatively describe their characteristics, and quantitatively compare their performance.

METHODS
The protocol was registered on PROSPERO (CRD42021281725). To present the results, we used the 2020 
Preferred Reporting Items for Systematic Review and Metanalysis (PRISMA) checklist [17].

Study outcomes
We summarised global prediction models that focused on at least one of four adverse birth outcomes: 1) still-
birth, defined as the death of a foetus after 28 weeks of gestation and/or weighing at least 1000 g in low-in-
come countries and after 20 weeks of gestation and/or weighing at least 500 g in high-income countries [18], 
2) preterm birth, defined as giving birth before 37 weeks of gestation [19], 3) LBW, defined as a birth weight 
of a neonate below 2500 g [20], and 4) small for gestational age (SGA), defined as birth weight <10th percen-
tile for sex and gestational age [21].

Eligible studies
We used the Population, Index prediction model, Comparator, Outcome, Timing, and Setting (PICOTS) 
approach to declare inclusion and exclusion criteria: P (pregnant women), I (index prediction models for 
adverse birth outcomes), C (not applicable), O (adverse birth outcomes), T (prediction of adverse birth out-
comes during pregnancy), and S (risk stratification for adverse birth outcomes in the clinical set up). Studies 
were eligible for inclusion if published in peer-reviewed journals or grey literature. This review used predic-
tion models from cohort, nested case-control, case-cohort, and randomised control trials. We excluded case 
reports, reviews, and letters that did not address the prediction model for adverse birth outcomes, as well as 
protocols and studies whose entire texts were unavailable in English.

Search strategy

We retrieved articles published before 1 March 2022 from PubMed/ MEDLINE, Scopus, CINAHL, Web of 
Science, African Journals Online, EMBASE, and the Cochrane Library. We searched for grey literature such as 
reports, evaluations, and guidelines from government, international organisations, conference presentations or 
preprints, using WorldCat, Google and/or Google Scholar. We created search strategies for each database using 
Medical Subject Headings terms for the four identified adverse birth outcomes, plus the terms potential predic-
tors and prediction models, which were used separately and in combination with the Boolean operators ‘OR’ and 
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‘AND’ to broaden or narrow the search as needed. There was also a mix of expanded search terms and free-text 
searches. The reference lists of the retrieved studies were then accessed to identify additional articles and screen 
them for eligibility for this review. Two researchers, AAM and LLB, conducted the searches concurrently. We 
also included a methodological filter for qualitative studies (Table S1 in the Online Supplementary Document).

Study selection
Each study was evaluated against a predefined eligibility criterion to determine whether it would be included 
in the systematic review. Two independent reviewers (AAM and LLB) performed title and abstract screening, 
which was followed by screening the full text. Any disagreements between the two reviewers were resolved 
through discussion or by a third reviewer (YBM). After eliminating duplicated articles, the eligible articles 
were imported into EndNote, version 20 (Clarivate Analytics, Philadelphia, Pennsylvania, USA) from each 
database and search engines/repositories.

Assessment of risk of bias
We used the Prediction Model Risk of Bias Assessment (PROBAST) tool to assess how the participants were 
selected, the predictors and outcomes were identified, and the analyses were conducted. The tool has four key 
domains (participants, predictors, outcome, and analysis) structured in 20 signalling questions to facilitate 
risk-of-bias assessment. Each domain was rated as having a high, low, or unclear risk of bias [22].

We also selected the prediction model utilised in the final analysis and provided a rationale. The implemented 
method’s strengths and drawbacks, as well as how PROBAST communicated to estimate the individual risk of 
the outcomes, that is, risk ratios (RR) and hazard ratios (HR), were retrieved. We also evaluated the model’s 
internal and/or external validation. Similarly, data on model discrimination from the area under the receiver 
operating characteristics curve (AUROC) or C-statistic were evaluated.

Each study’s quality and reliability were determined by the following factors: study design, sample size, 
analytic procedures, and missing data. The predictability of the models’ predicted parameters, as well as 
the research findings, were evaluated. The number of predictive components used in the model, as well as 
whether internal and external model validation was performed, was determined by the analysis quality. We 
also included a quality summary because low-quality studies may not have used the most effective statisti-
cal approaches [23]. Similarly, for lower-quality research, any conclusions about outcomes and performance 
metrics from included studies were treated with caution.

Data extraction
Data extraction was done by two independent reviewers (AAM and ROF). Inconsistencies were resolved by a 
tiebreaker reviewer (YBM). The Checklist for Critical Appraisal and Data Extraction For Systematic Reviews 
of Prediction Modelling Studies (CHARMS) was used [24]. We extracted the first author’s name, study year, 
sample size, country, study design, length of follow-up, predictors, outcomes, models, and model-related 
issue were extracted.

Analysis and data presentation
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram and 
Cochrane Handbook for Systematic Reviews guided the review used to report and present the results [18,25]. 
The recommendations from the Transparent Reporting of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD) statement were also employed [19]. A narrative summary of results from the 
external validation, AUROC, and calibration was presented for each study. The performance of the model was 
evaluated using the value of AUROC≤0.5, which suggested no discrimination ability; 0.5<AUROC<0.7 was con-
sidered indicative of poor discrimination, 0.7≤AUROC<0.8 indicated good discrimination, 0.8≤AUROC<0.9 
indicated excellent discrimination and AUROC≥0.9 was considered indicative of outstanding discrimination 
performance. Data were presented in summary tables and, where applicable, graphically.

RESULTS

Study selection

We identified 60 194 studies, 58 835 through database searches and 1359 through reference (snowball) 
searching. After removing duplicates, 45 010 studies were selected for title, abstract, and full-text screen-
ing. Of these, 158 studies were selected for full-text assessment. We excluded 48 articles due to lack of a 
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prediction model, diagnostic prediction, systematic review/ meta-analysis, or no preterm, stillbirth, SGA or 
LBW prediction outcome. Additionally, six articles were found by reference (snowball) searching. Finally, 
115 studies were included in this systematic review (Figure 1).

Figure 1. PRISMA flow diagram for the inclusion and exclusion criteria of a systematic review, 2022.

Study characteristics

Of the 115 prediction models identified, we categorised them as composite adverse birth outcomes (n = 6), 
LBW (n = 17), SGA (n = 23), preterm birth (n = 71), and stillbirth (n = 9). Only nine studies were conducted on 
LMICs. The sample size for the studies ranged between 31 and 448 852. 24 articles indicated how missing 
data was handled, including multiple imputation, complete case analysis, and single regression imputation. 
In 74.8% (n = 86/115) of the studies, the presence and handling of missing data were frequently omitted 
from analysis (Table 1). Model performance was mostly judged by AUROC, specificity, sensitivity, positive 
predictive value, and negative predictive value. The detailed study characteristics prediction models for each 
adverse outcome are presented in Tables S2–6 in the Online Supplementary Document.

Risk of bias and concerns regarding the applicability of models

The risk assessment outcomes differed among studies and by examined items. Overall, participant selec-
tion was deemed low risk. However, an overall high risk of bias was reported on prediction models for 
SGA (26.1%), stillbirth (77.8%), preterm birth (31%), LBW (23.5%), and composite adverse birth outcome 
(33.3%). The main reason for the high risk of analysis bias was a lack of reporting in the methods section. 
For instance, no reporting of internal validation was addressed when selecting an optimal model among 
several candidate prediction models. Some studies failed to incorporate the final model equation. There was 
considerable concern about the relevance of the three studies to the systematic review question and predic-
tors applicability (Figure 2).
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Comparison of model development and predictive performance

The AUROC was the most used metric to describe model performance for each adverse birth outcome. Most 
studies used univariate analysis with a predetermined P-value to select candidate predictors for inclusion in 
the model. Studies stated model derivation, external validation, or incremental value (n = 90/115), external 
validation (n = 10/115), impact study (n = 3/115), and incremental value (n = 11/115). The prediction models 
in most articles were developed using logistic regression and survival modelling. Most used the stepwise 
forward selection method for predictor selection during multivariable modelling, and some used the lasso 
regression approach for model derivation.

The discrimination of prediction models was reported using the C-statistic or the AUROC, as well as some 
other calibrations (n = 16/115). 65.2% (n = 75/115) of the studies included classification measures. When 
model development and performance evaluation use the same data set, prediction model performance is 
overestimated; this was the case for all of the studies except the two that used an external data set for val-
idation.

Table 1. Summary of study characteristics prediction models for each adverse birth outcomes of a systematic review, 
2022

Outcomes Included studies (n) Sample size, n  
(min/max)

Studies by geographic region, 
n (developed/LMICs)

Externally validated 
studies (n)

Preterm birth 71 31 / 15 883 784 68 / 3 7

LBW 17 97 / 27 233 12 / 5 0

Small for gestational age 23 41 / 116 070 23 / 0 1

Stillbirth 9 180 / 76 629 9 / 0 1

Composite adverse birth 
outcome

6 31 / 549 5 / 1 1

LBW – low birth weight, LMICs – low- and middle-income countries, max – maximum, min – minimum

Figure 2. Systematic review using the Prediction Model Risk of Bias Assessment tool for predicting adverse birth out-
comes of a systematic review, 2022.
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The model formula with regression coefficients, score chart, and prediction rules were used for ease of use 
and clinical application in 115 studies. Nomograms, on the other hand, are rarely used. From the 71 studies 
focused on preterm prediction models, the preterm rates differed depending on whether high-risk pregnant 
women were included and the outcome definition used. Thirty studies (42.3%) have an AUROC for prognos-
tic prediction of preterm birth, and fourteen have good model discrimination performance (AUROC>0.7). 
The AUROC for the prediction of preterm birth ranges from 0.51 to 0.83.

Of the 23 studies on the prognostic prediction of SGA, 16 studies (69.6%) had good model discrimination 
performance (AUROC>0.7). The summary AUROC had good discrimination performance with a prediction 
interval from 0.54 to 0.81. Similarly, among the 17 studies for the prognostic prediction of LBW-reported 
AUROC, only one study has poor model discrimination performance. The AUROC for prediction of LBW 
ranged from 0.60 to 0.84. Among the nine studies that reported AUROC for the prognostic prediction of 
stillbirth, four had good model discrimination performance (AUROC>0.7). The AUROC for the prediction 
of stillbirth ranged from 0.65 to 0.72.

Distribution of prognostic factors

We assessed the type of prognostic factors included in each adverse pregnancy outcome. Different prognos-
tic factors were included for preterm, LBW, stillbirth, and SGA prediction models. Clinical characteristics 
and biomarkers were included for each outcome prediction. Maternal characteristics were the most widely 
used prognostic factors for preterm birth prediction. Prior, preterm birth, cervical length, body mass index 
(BMI), smoking history, parity, and maternal age were the top prognostic factors. Parity, mother’s medi-

Figure 3. Distribution of prognostic factors across adverse birth outcomes of a systematic review, 2022. *Other prognostic factors 
included two times. †Other prognostic factors included one time.
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cal condition, prior preterm births, and race were prognostic factors for LBW prediction. Furthermore, the 
uterine artery pulsatility index (UtA-PI) was the top-used prognostic factor for stillbirth and SGA predic-
tion. The major predictors listed were maternal characteristics, advanced maternal age, parity, pre-preg-
nancy weight, BMI, maternal characteristics and cervical length, maternal characteristics with biomarkers 
pregnancy-associated plasma protein A (PAPP-A), placental growth factor (PLGF), UtA-PI, placental volume 
(PV), and pregnancy-related complication (previous history of hypertension, maternal characteristics with 
biomarkers and cervical length) (Figure 3).

DISCUSSION
In this systematic review on prediction models for adverse birth outcomes, our methodological quality assess-
ment revealed various shortcomings on the model development. We identified insufficient sample size, poor 
management of missing data, and a lack of internal validation methods. As a result, the reviewed models 
were of moderate to low quality. A high risk of bias was reported in each type of adverse birth outcome. 
Mainly more than three-fourths of a high risk of bias was observed in stillbirth. The main reason for the 
high risk of analysis bias was a lack of reporting in the methods section. For instance, no reporting of inter-
nal validation was addressed when selecting an optimal model among several candidate prediction models.

All prognostic prediction models have the same goal: to estimate an individual’s unique risk of a specific 
event occurring in the future using prognostic determinants [20,21,26]. The domain of pure prediction is 
anti-parsimonious [27]; many possible elements can generate more accurate predictions for specific occur-
rences when integrated in complicated, nonlinear ways [28]. Specific predictors can be incorporated into 
prediction models of adverse birth outcomes based on routinely accessible clinical features, to direct screen-
ing and/or primary preventive initiatives.

However, the shortcomings identified all likely lead to overfitted prediction models, making it less likely for a 
model to function effectively in practice, whether in the same or a different population. Importantly, the like-
lihood of overfitting is considerable because most authors did not disclose the number of potential predictors 
considered or the predictor selection technique utilised. Poor missing data management can also be a source of 
bias. Only a few studies addressed missing data in accordance with current standards [29-34]. Furthermore, 
as a critical step before implementation, the built prediction models must be validated in external data sets.

Some of the prediction models were successfully developed and have internally validated, basic and extended 
models that could predict the risk of developing adverse birth outcome. The AUC also showed a good dis-
crimination of the model’s performance in predicting each in predicting each adverse birth outcome [35-
41]. However, these prediction models on the adverse birth outcomes require external validation before 
they can be used with confidence in clinical practice, as validation is a critical step to ensure that models 
perform similarly in new populations.

For some of the prediction models, the nomogram showed good calibration for predicting the likelihood 
of adverse birth outcomes. This suggests that preventive approaches and focused care would be consistent 
with a larger trend towards a more personalised approach to health care delivery: ‘the right treatment for the 
right person at the right time’ [42]. A prognostic prediction model for adverse birth outcomes that is intended 
to facilitate clinical decision-making throughout pregnancy would ideally incorporate clinically important 
and patient-aligned outcomes, including pregnancy complications impacting the mother and foetus [43,44]

Overall, a wide range of prognostic indicators were utilised to predict adverse birth outcomes. This system-
atic review revealed prior preterm birth, cervical length, body mass index, parity, and advanced maternal 
age were the most commonly utilised predictive factors for preterm. Poor maternal conditions were predic-
tors for LBW prediction, while the uterine artery pulsatility index was the most commonly utilised prog-
nostic factor for stillbirth and SGA prediction. Interestingly, maternal characteristics were included in mot 
prediction models with additional biomarkers (PAPP-A, PLGF, UtA-PI, PV), which had potential implications 
for improving the early detection of adverse birth outcomes. A risk strategy has been used in developing 
countries to identify high-risk pregnant women for adverse events. In contrast, risk factors are frequently 
non-medical and poor predictors of maternal risks [45]. It is not possible to anticipate or avoid adverse birth 
outcomes by using characteristics such as age, parity, and booking status. Furthermore, the risk approach 
relies on basic heuristics (relying on experience to diagnose patients, resulting in variations in service qual-
ity) [46]. Certain health care decisions necessitate a rigorous approach to deliver ideal patient care while 
also utilising a more accurate risk prediction model for adverse birth outcomes. This review suggests that 
predictive models could add value to maternity services by preventing adverse birth outcomes.
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Hence, the current systematic review examined the predictive accuracy of models for adverse birth outcomes. 
Based on the available evidence, this review would provide recommendations by focusing on maternal char-
acteristics and biomarkers for prognostic prediction models, as well as best practices for quantitatively sum-
marising the model’s predictive performance using the easily available predictors at the different settings.

Strengths and limitations

This review provides insight into the risk of adverse birth outcomes in routine clinical practice based on a 
validated search strategy for prediction models. The CHARMS guidelines and the PROBAST tool are used 
to thoroughly assess the quality of all studies. However, biomarkers studied for predicting adverse birth 
outcomes showed limited predictive performance.

CONCLUSIONS
This review provided an overview of prognostic models for adverse birth outcomes. Overall, a wide range of 
prognostic indicators were utilised to predict adverse birth outcomes. By far, several widely varying models 
for predicting adverse birth outcomes have been developed, with some yielding promising results and hav-
ing modest predictive performance. The high heterogeneity between studies and the potential of bias makes 
it difficult to identify the best model or conduct an aggregated analysis of prognostic models. The area under 
the AUROC curve was the most used metric to describe model performance for each adverse birth outcome.

This systematic review revealed that maternal clinical features were the most utilised prognostic markers for 
preterm and low birth weight prediction, while UtA-PI was used for stillbirth and small for gestational age pre-
diction. We recommended the more accurate risk prediction for adverse birth outcomes may be possible if com-
mon risk factors are combined with biomarkers. Although most studies showed promising performance of prog-
nostic prediction models, this systematic review reveals that the majority have not been externally evaluated. 
We recommend that the emphasis be shifted toward external validation at different time periods and areas and 
consecutive adaption of the future risk prediction models for adverse birth outcomes or that simplified models 
be provided that can be used in different settings. Furthermore, a summary input on the clinical utility of the 
prediction model would be incorporated into the existing programme for implementation in health care and 
beyond, integrating risk prediction to generate personalised approaches to public health interventions.
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