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ABSTRACT: The application of X-ray spectro-microscopy to image
changes in the chemical state in application areas such as catalysis,
environmental science, or biological samples can be limited by factors
such as the speed of measurement, the presence of dilute
concentrations, radiation damage, and thermal drift during the
measurement. We have adapted a reduced-order model approach,
known as the discrete empirical interpolation method, which identifies
how to optimally subsample the spectroscopic information, accounting
for background variations in the signal, to provide an accurate
approximation of an equivalent full spectroscopic measurement from
the sampled material. This approach uses readily available prior
information to guide and significantly reduce the sampling requirements
impacting both the total X-ray dose and the acquisition time. The
reduced-order model approach can be adapted more broadly to any spectral or spectro-microscopy measurement where a low-rank
approximation can be made from prior information on the possible states of a system, and examples of the approach are presented.
KEYWORDS: X-ray spectro-microscopy, sparse, low-dose, XANES, ptychography, reduced-order model

■ INTRODUCTION
X-ray absorption spectroscopy (XAS) is a powerful technique
that can be used to obtain information about the chemical state
and electronic and structural properties of materials. This is
achieved by using an X-ray beam of variable energy to probe
the binding energy of electrons in specific electronic shells of
the element (X-ray absorption near edge structure; XANES) or
the elastic scattering processes between the photoelectrons
generated by the incident beam and other atoms in the vicinity
of the absorbing atom (extended X-ray absorption fine
structure, EXAFS).
The use of focused beams or coherent imaging techniques

such as ptychography, using both hard and soft X-rays, has
expanded the application of this technique to also examining
spatial variations in the chemical state with resolutions down to
a few nanometers to tens of nanometers.1−3 Depending on the
technique used, the absorption and/or the phase, which are
connected via the Kramers−Kronig relation,4 are imaged at a
series of energies across the absorption edge that, when
combined, provide an array of spatially resolved spectra. These
spatial mappings of the chemical state have, to date, had
limited application to in situ studies due to the acquisition
times required. The dose required to achieve a reasonable
signal-to-noise ratio for XAS and the associated detection
sensitivity requirements of the technique have also hampered

spectroscopic studies in dilute systems, such as the studies of
metal nanoparticles inside cells.
To get around some of these limitations, researchers have

looked to reduce the dose and/or time of an individual scan or
a stack of scans by employing new hardware approaches to the
experiment and new methods to reduce the number of spatial
samples or energy samples. To reduce the measurement times
for individual maps, fast detectors with integrated approaches
to scanning and event processing5 can be used to efficiently
scan a sample, although the signal-to-noise requirements for
XANES from a multi-energy stack of images will still define the
limit of the measurement time. Novel artificial intelligence
(AI)-driven scanning using route optimization6 has been
shown to reduce overall time by sparsely sampling and
inpainting to reduce measurement time down to 10% in some
cases; while this is a promising direction, the application to
XANES imaging has not yet been demonstrated. Random
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spatial subsampling at each energy can exploit the low number
of unique chemical states in a real sample to complete missing
information and provide a 5- to 6-fold reduction in dose and
time.7 These approaches are generalized and do not require or
exploit any prior knowledge of the system. Knowledge of the
possible chemical states should allow for optimized experiment
design, significantly reducing the sampling conditions and the
dose, and in the best case, the number of energy samples will
approach the number of unique chemical states.8 The most
common approach to reducing the number of energy samples
is to use linear combination fitting of selected energy points.9

The linear combination fitting (LC) method exploits the
additive nature of absorption, with the total absorption of a
signal measured being the sum of the absorption of the
individual quantities of chemical species present. Assuming a
known set of possible components, a few characteristic
energies can be manually selected based on some spectral
difference or contrast point, such as the shift in peak positions,
and the resulting measurements at these points are then
manipulated using linear combination fitting to determine the
chemical state mixing.9−11 However, in practice, the wider use
of this approach can be impacted by several factors. The
selection of the points to sample in the LC selection is based
on a few qualitative or subjective decisions based on perceived
contrast points and may not provide optimal contrast.
Quadratic or cubic variations in the background of the pre-
and post-absorption edge regions are not well incorporated in
this approach and will impact the accuracy of any resulting LC
fit to the reduced number of sample measurements. In phase-
based spectro-microscopy, normalizing the data for fitting is
not straightforward compared to conventional XAS, and
quadratic and cubic backgrounds will play a role in the fitting.
The LC approach largely relies on reference standards and
does not readily incorporate spectro-microscopy information.
New approaches are needed that can optimally reduce
sampling across spectro-microscopy techniques, maximize the
use of prior information, and incorporate experimental
variations to improve results.
Independently, subsampling approaches have been devel-

oped to reduce the computational effort in large complex
nonlinear models, such as those used in fluid simulations. One
such approach, the discrete empirical interpolation method
(DEIM), is a deterministic technique first introduced by
Chaturantabut and Sorensen,12 which reduces complex
nonlinear models by approximating the system from snapshots
or measurements of its different states and projecting onto a
lower-dimensional subspace using proper orthogonal decom-
position (POD)13 or a similar low-rank determination
technique. The nonlinear model is then only evaluated at
optimally selected sampling points, and all other model values
are approximated via interpolation using the low-rank
description of the system.
To design an experimental analogue of this method in the

setting of sampling for X-ray absorption spectroscopy, an
overall description of the system first needs to be available,
which needs to capture the possible states of the system; i.e., a
reduced or low-rank description of the system under
investigation needs to be developed. For spectro-microscopy,
this can be based on fully sampled prior measurements or
representative bulk XAS standards that are either specific to
the experiment or from a database of standards, along with
simulated background variations to ensure the experimental
measurement is properly captured. This set of known states or

spectra from spectro-microscopy data or from large sets of bulk
XAS measurements is then approximated by a low-rank matrix
to achieve this reduced description.
Adapting this technique to subsample XAS or spectro-

microscopy allows us to (i) optimally select a small set of
sampling points based on maximum information content, (ii)
address sampling of noisy data and varying backgrounds, (iii)
broadly apply this approach across techniques such as spectro-
ptychography or traditional XAS, and (iv) use a broad
selection of prior information and adapt the sampling
information.

■ METHOD
The mathematical description of the method is straightforward. In
brief, the method uses existing dimensionality reduction techniques
such as PCA (principal component analysis) and SVD (singular value
decomposition) to provide a reduced-order subspace before then
applying the DEIM method to determine a subset of spectroscopic
energies that capture the largest statistical variation between XAS
spectra in those reduced-order subspaces.

In detail, let A′ ∈ Rm × n′ represent an overall description of the n′
spectra at m energy points we could possibly measure or find in the
material under inspection, and let A ∈ Rm × n represent the experiment
we wish to perform on a material, which would result in a full
description obtained by performing a full scan from n spatial
positions. The rows and columns of A′ and A encode energy and
spatial information, respectively. We assume that n′ < n (or even n′ ≪
n), i.e., the number of distinct chemical states we expect to find is
much less than the number of measured spectra. However, for
simplicity, the profile of energy points m is assumed to be the same.
To start, a reduced description of the system, subspace matrix Uk ∈
Rm × k with k ≤ min(m, n′), needs to be extracted using only prior
information and/or previous scans A′. For this step, we can use the
SVD of A′, which is similar to POD in model order reduction and
PCA in signal processing. To this end, we compute

=A U Vl l l
T (1)

where Ul ∈ Rm × l and Vl ∈ Rn′ × l are matrices of left and right
singular vectors, respectively, ∑l ∈ Rl × l is a diagonal matrix of
singular values, and l = min(m, n′). Now, we choose a rank value k ≤ l
that will be our modeling parameter (for example, k can be set equal
to the assumed number of different material chemical states in the
sample) and truncate the SVD to Uk ∈ Rm × k by selecting only k
leading columns from Ul. Each column represents the source of
variation in the experimental data with the first column representing
the greatest common variation across the data set. In PCA, k reflects
the explained variance in the model, and usually, k ≪ m, justifying a
good low-rank approximation of A′.

We then seek an approximation UkC ≈ A, where Uk ∈ Rm × k is a
given subspace matrix (obtained, for instance, as described above)
and C ∈ Rk × n is a matrix of coefficients to be computed. Instead of
picking C to minimize the spectral norm of (A − UkC), DEIM
constructs C so that UkC interpolates columns of A at certain
strategically chosen indices. Let ej denote the jth column of the m × m
identity matrix. We impose the interpolation condition at the k
indices p1,...,pk (these are distinct integers between 1 and m) to be
determined. The submatrix of the identity matrix, P: = [ep d1

,...,ep dk
] ∈

Rm × k, can then be used to extract entries p1,...,pk of the columns of A,
e.g., ep d1

TA = Ap d1
and so on. To construct C so that UkC interpolates A at

the entries p1,...,pk, we therefore require PTA = PTUkC. We then find

=C P U P A( )T
k

T1 (2)

which provides the value of C to approximate A. However, the
accuracy of the approximation UkC depends crucially on the indices
p1,...,pk.

To select good indices p1,...,pk, the DEIM algorithm proceeds as
follows. Since the columns u1,...,uk ∈ Rm of Uk are often ordered by
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decreasing importance (for example, when computed via an SVD as
described above), u1 is the most important basis vector. DEIM picks
its first index p1 to be the largest magnitude entry in u1. Defining P1: =
[ep d1

] ∈ Rm, we then have that Π1 = U1(P1TU1)−1P1T is the interpolatory
projector associated with the first index. Defining the residual as r = u2
− Π1u2, where Π1u2 is an approximation to u2 in the subspace
spanned by u1, DEIM then picks p2 as the index j of the largest entry
in magnitude |[r]j|, j = 1,...,m of the residual r and defines P2: = [P1,
epd2
] ∈ Rm × 2. This index selection process is iterated until k indices are

found, as shown in Figure 1.

The use of PCA on the data source also removes the potential
impact of highly correlated variables or multicollinearity, which may
impact the conventional LC approach, as PCA reduces the inputs to a
set of uncorrelated (orthogonal) principal components.

When implementing this method with different data sources, the
primary question is what value of k, the number of sampling points,
should we select? For a database of independent standards, the value
of k should be at least equal to the number of standards used to
differentiate them accurately. For a set of previously measured
spectro-microscopy data, the value of k can be selected from the
elbow point of the explained variance,14 i.e., where additional k points
do not significantly improve the fit to the existing data.

■ RESULTS AND DISCUSSION
To demonstrate how the DEIM points and approximation of
spectra work in practice, an example study involving bulk Fe
XANES measurements will be used. The description of the
system used, in this case, is based on a database of Fe XANES
measured from a range of 12 known standards. An additional
flat spectrum, set to 10−8 to represent a near-zero background,
is also added to the set to provide a total of 13 spectra. These
standards were measured as part of an effort to build a database
of standards on the core EXAFS beamline B18 at
Diamond.15,16 As a demonstration of the workings of the
method for these ideal spectra, Figure 2 shows the spectra, the
extracted PCA components from the spectra, and the 13
sampling points selected by the DEIM method.
The DEIM algorithm chooses points based on the

magnitude of a residual, which depends on the changes from
successive PCA components, so it is dependent on the spectra
used and naturally weights toward feature changes, which
occur particularly about the absorption edge, resulting in
grouping of DEIM points around this region. The order in

which the DEIM points are chosen is displayed within the plot
of the explained variance for each component (Figure 2d).
To demonstrate the technique in an experimental

microscopy context, Fe2O3 and Fe3O4 powders were ground
and drop-cast onto a silicon nitride membrane. X-ray
fluorescence (XRF) XANES mapping measurements using a
50 nm beam probe, a 50 nm scan pixel size, and a 15 ms dwell
time per point were conducted on beamline I1417 at Diamond
Light Source. A full spectro-microscopy map was collected as a
ground truth measurement over a 5 × 5 μm region. The full
scan used 152 energies with a 10 eV step in the pre-edge, 0.5
eV steps in a region from −20 to +30 eV about the absorption
edge, and a gradually increasing energy step in the post-edge.
The DEIM method was used to sample a larger region with 13
energy points selected based on the previously described
dictionary of spectra. The reduced sampling of the DEIM
approach allowed, in this case, for a wider field of view of 20 ×
20 μm to be measured in similar time scales to the full
measurement. The full measurement consists of 10 000
individual pixels with a spectrum per pixel. Manual inter-
rogation of data sets of this scale is challenging, so cluster
analysis is typically used to differentiate and group similar
spectra within spectro-microscopy data sets.18,19 Cluster
analysis also allows for statistical averaging, improving the
signal-to-noise ratio, as the extracted spectra are from the
average of all spectra in a cluster. The optimal number of
clusters is determined manually or through the use of the gap
statistic20 or silhouette analysis.21 In this case, three clusters
were determined to be sufficient.
The methodology of extracting the approximated spectra is

like that of the full scan case. The DEIM approximation is not
applied pixel by pixel; rather, the DEIM energy points are
grouped using cluster analysis to benefit from a better signal-
to-noise ratio by statistical averaging. The resulting cluster
centers are used to solve for C as per eq 2. Two variants of the
approximation using DEIM were examined. The first used the
PCA components of the Fe reference spectra for the
approximation, and the second used the PCA components
from the full spectro-microscopy scan. A representative XRF
map from the DEIM scans, the resulting cluster map, and the
extracted XANES spectra are shown in Figure 3.
Both of the approximations using the information from the

standards and the full scan clearly capture the chemical states
present both in the structure and edge position. The
approximation based on information from the full scan results
in better matching to features, even replicating an intensity
drop at 7230 eV. It should be noted, however, that the
comparison and how the approximation is obtained are not
identical. The full scan only has a small number of chemical
states, so the number of PCA components needed is lower
than in the case of the 13 reference spectra. The strategy of
using sampling points based on the richer set of reference
spectra provides the flexibility to move between both reference
standards and data or to combine both as an experiment
progresses.
The previous examples, while demonstrating the method,

did not explicitly treat or include some of the experimental
variances that might occur, such as background variations and
the potential impact of noise on the measurements and the
resulting DEIM approximation.

Figure 1. Outline of the DEIM iteration to select the optimal
sampling points from a set of orthogonal projections extracted from
known standards or prior experimental data.
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Background Variations

To improve the accuracy of the approximation further, a
reduced description and sampling can be developed, which
describes both the spectra of interest and any background
variations. X-ray absorption data reduction typically requires a
first- or second-order polynomial to be fitted to the pre-edge
region. In the post-edge region for EXAFS, the background
variation is approximated with a piecewise polynomial or spline
but with the objective to extract the EXAFS signal and

minimize low-frequency components.22 For XANES, functions
incorporating second- or third-order Legendre polynomials
have been shown to be sufficient in fitting or describing post-
edge background variations.23

To incorporate these polynomial variations, a diverse set of
spectra with a range of background variations was created.
PCA was then applied to obtain a set of orthogonal
components that provides a reduced description of the set of
standards and background variations. Specifically, for each XAS

Figure 2. Left to right, top to bottom: (a) Full XANES standard spectra from two example standards (solid lines) with all DEIM points (vertical
dashed lines). (b) For visualization purposes, a selected subregion about the Fe absorption edges for the set of Fe spectra and the DEIM points
within this region and (c) the corresponding PCA components, along with the (d) explained variance ratio of these PCA components and the order
of DEIM point selection.
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standard, 500 random variations were created, resulting in a
total of 6500 spectra. Each XAS standard was augmented with
Beźier curves to produce the background variants. A fixed
control point is used before the edge for the pre-edge
background and just after the edge for the post-edge
background. To create each background variant, control points
are randomly chosen in energy within the pre- and post-edge
region, respectively, and randomly offset, within some range,
about the value at that energy point. The pre-edge background
was extended and applied over the full spectrum, while the
post-edge background was only applied after the absorption
edge. The DEIM approach reduces this set of spectra to N + 2
components and sampling points in the case of a quadratic
background and N + 5 for the most general case of a quadratic
background and a cubic post-edge.
This approach of generating a set of background-adjusted

spectra allows for constraints to be applied to the range of
background variations in the pre- and post-edge regions and
the flexible incorporation of backgrounds within specific ranges
of the spectra.

The incorporated background approach was tested against
real and synthetically generated spectra. Examples of the
approximations of a raw, unprocessed Fe magnetite XAS
spectrum and a synthetically modified hematite spectrum are
shown in Figure 4.
The approximations required 18 sampling points to

accurately recover the original spectra. The explained variance
from the PCA of the background variation data set (Figure 4)
demonstrates that an orthogonal description of the background
polynomials is retrieved via PCA and that the quadratic pre-
edge and cubic post-edge variations within the full set of 6500
spectra (and more generally) can be explained with five
additional components.
Note that the background components are not separable

from the spectral components within the approximation, and
conventional XAS processing would still need to be applied to
the resulting approximation to produce a normalized result.

Figure 3. X-ray spectro-microscopy results from the Fe K-edge of a Fe2O3 and Fe3O4 test sample. (Top left) XRF map of the Fe distribution in the
sample and (top right) corresponding cluster analysis map showing regions with similar spectral (XANES) measurements. The dashed-square in
the image indicates the region measured by using a full XANES measurement. A wider scan area was measured using DEIM sampling. (Bottom)
Comparison of the Fe XANES spectra corresponding to the green and red cluster regions, respectively, from the full measurement and the DEIM
approximations generated using standards or the previous full scan data.
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Noise and Oversampling

The approximation accuracy can be reduced due to the limited
number of sampling points affecting the estimate of C (eq 2)
when data is noisy. The sampling points, as shown in Figure 1,
also do not sample the pre- and post-edge regions extensively,
so the match between the data and approximation can also be
weaker at these points as a result. To further improve
robustness and accuracy, greedy approaches can be used, in
which additional oversampling can improve stability and
accuracy.24 These greedy approaches have taken the form of
additional random samples or structured sampling weighting
lower-weighted components. The distinct features and regions
of the XAS spectra allow for the DEIM method to be applied
to specific regions or intervals within the spectra to provide
sampling points that emphasize features in each region, and the
resulting sampling points from each region are then

aggregated. This was preferred, as it was more intuitive with
clearer scaling properties compared to random sampling. The
effect on accuracy and the degree to which any oversampling
or subdivision is needed will depend on the level of noise, the
number of chemical states, and how distinct they are. This can
be effectively simulated prior to an experiment, but in practical
tests, the DEIM method was sufficient to a few percent noise
with additional oversampling required above ±1−2% noise.
The choice of whether to oversample or modify the DEIM
measurements to improve the signal-to-noise ratio can also be
considered.
The performance of DEIM for a Fe metal XANES spectrum

with ±4% noise for this four-spectra case and the use of
oversampling are shown in Figure 5.
In this case, the approximation from the standard DEIM

approach can sometimes result in inaccurate approximations.

Figure 4. Example of using the DEIM approximation with background variations. Top: DEIM approximations to a raw magnetite Fe XAS spectrum
and to a synthetically modified Hematite spectrum. Bottom: the explained variance of the PCA components created from the set of Fe spectra with
randomly generated background polynomials, showing the quadratic pre-edge and cubic post-edge background variations are reduced to five
additional components.
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The example shown is of a worst-case approximation, selected
from a series of tests, which has some sharp steps and features
about the edge step that are not present in a standard Fe metal
XAS spectrum. To improve accuracy, the DEIM points were
oversampled by combining the DEIM points estimated from
the total spectra and those from applying DEIM to a small
region at the edge. This resulted in some duplication of
sampling points, resulting in 11 unique sampling points. Across
a series of tests, this additional sampling improved the
approximation and accurately replicated the underlying
spectrum of the measurement while also approximating the
background variation.

■ DISCUSSION
The application of the DEIM approach inherently relies on a
good energy calibration between the active measurement and
the reference spectra and good reproducibility in the energy
position during the XAS measurement. This requirement for
reproducibility is also true for the LC method and is generally
a requirement of facilities performing XAS measurements,
which is considered in the design. The I18 microfocus
beamline at Diamond, for example, reported a maximum
shift of 0.03 eV during repeated scanning over a 36 h period.25

This reproducibility is much smaller than the width of the
XANES features that will be determined by the resolution of
the beamline (typically 10−4 for a Si(111) mono, or 1 eV at 10
keV) and the core hole lifetime (∼1.5 eV for a K-edge of a
transition metal).26 In practice, if we consider measuring the

Figure 5. Example of using the DEIM approximation with noisy data. The approximation is offset vertically to aid in comparison. Top: a selected
example of a poor approximation using standard DEIM sampling based on four XAS spectral standards with background variations, resulting in
seven sampling points. Bottom: a selected example using oversampling, achieved by applying DEIM to the edge region in isolation and combining
with the standard DEIM estimation across the full range. This resulted in 11 unique points rather than 14 (two regions with seven DEIM points per
region) due to some duplication, which is to be expected.
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intensity along a Gaussian-like feature, then an error in the
sampling position of 5% of the variance would have very little
effect around the peak but would result in up to a 3% intensity
change at the inflection point. A coarse estimate of the
reproducibility requirement for energy sampling methods
would, therefore, be 5−10% of the feature width. In situations
where drift is a concern, the simultaneous measurement of a
reference standard can sometimes be incorporated to provide
an internal calibration for all measurements.27

How measurement errors affect the approximation from
DEIM will depend on the system, the number of reference
spectra or PCA components, and the feature changes at
sampling points. If the PCA components in the pre-edge
region, for example, are all flat, then the approximation will be
flat in this region regardless of noise or error in position. As
with the noise example, these tolerances can all be readily
tested and simulated when designing an experiment.
The DEIM method described here has recently been used in

the study of Pt complexes for use in photoactivated
chemotherapy.28 These complexes are inert in the dark but
release Pt(II) species and radicals upon visible light irradiation,
resulting in photocytotoxicity toward cancer cells. The
concentrations present in the cells would result in very long
acquisition times, making conventional spectro-microscopy
very challenging due to the accumulated damage and dose in
the surrounding cell. XANES measurements using the DEIM
approach were used to image Pt4+ and Pt2+ and showed that
cells treated with Pt2+ only partially reduce upon irradiation,
showing both the value of this approach and that X-ray
induced photoactivated redox could be avoided.
As the DEIM approach is based on building a low-rank

description of a system, it can be applied to any experimental
spectral or spectro-microscopy measurement where PCA or a
similar approach can be applied to the previous measurements
or standard measurement data. To show a more general
application of the approach, phase spectra were constructed
from the Kramers−Kronig transform of a set of four Fe XAS
absorption spectra. The DEIM approach was applied to phase
spectra with a quadratic background variation only applied to
the XAS, as per the previous descriptions, to extract the DEIM
points and components. A randomly selected phase spectrum
with a background variation and noise (<1%) applied was then
sampled at the DEIM points and approximated for comparison
(Figure 6).
As the DEIM algorithm chooses points based on the

magnitude of a residual, which depends on the changes
between successive PCA components, the sampling points
group around large changes, which typically occur near the
absorption edge. This results in a limited sampling of weaker
pre-edge and post-edge (Figure 3). If the pre-edge is a critical
feature to approximate accurately, the approach used for the
noisy data example of applying DEIM to sections of interest
and aggregating DEIM points to increase sampling in those
areas could be used, although this will increase the overall
number of sampling points. A possible alternative to improve
the sampling of weaker features is to change the DEIM
approach from using the maximum of the residual to decide on
the sampling points to another metric, such as the maximum
significant discrepancy. This may help improve the sampling
and the resulting approximation in the pre-edge and post-edge
regions, but this has not yet been evaluated and will be the
subject of future work.

■ CONCLUSIONS
We have presented a method to approximate XAS spectra
using a greatly reduced number of energy points based on a
low-rank description formed from a set of conveniently
measured XAS spectra or previous spectro-microscopy scans.
This approach allows for the design of optimized imaging
experiments that reduce experiment time and dose and that
can incorporate noise and background effects, treatments for
which have previously limited the accuracy and application of
reduced sampling approaches. This method has applications in
spectro-microscopy and flux-hungry XAS experiments, where
knowledge of the possible chemical states of the system is
available and a faster or lower-dose measurement is required.
The technique can be used to rapidly screen samples for
chemical state variations when spatial mapping or improved
temporal capabilities for in situ measurements is needed. The
method can also be used to address challenging samples where
measurements have, to date, been limited due to dose
sensitivity of the sample or longer collection times resulting
from low concentrations within the sample and provides a
solid mathematical basis for selecting sampling points and
reducing the number of measurement points. The ability to
develop and adapt the low-rank description of the system will

Figure 6. Example of the application of the DEIM approach to
refractive index measurements over an absorption edge. The figure
shows the Kramers−Kronig transform of four absorption spectra and
an example of the DEIM sampling points. Background variations and
noise were also included, and a comparison of a noisy, varying
spectrum with an approximation determined from seven DEIM points
samples shows very good agreement.
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improve as XAS databases become more readily available.
Improvements to the approximation should be possible by the
inclusion of more advanced noise and likelihood-based
modeling. The approach potentially lends itself to adaptive
approaches either to measure a mixture of sparse and full data
sets to improve approximation or to hybrid machine learning
approaches to adaptively adjust sampling during an experi-
ment.
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