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Abstract: Computer tomography (CT) scans’ capabilities in detecting lesions have been increasing
remarkably in the past decades. In this paper, we propose a multi-organ lesion detection (MOLD)
approach to better address real-life chest-related clinical needs. MOLD is a challenging task, especially
within a large, high resolution image volume, due to various types of background information
interference and large differences in lesion sizes. Furthermore, the appearance similarity between
lesions and other normal tissues demands more discriminative features. In order to overcome
these challenges, we introduce depth-aware (DA) and skipped-layer hierarchical training (SHT)
mechanisms with the novel Dense 3D context enhanced (Dense 3DCE) lesion detection model. The
novel Dense 3DCE framework considers the shallow, medium, and deep-level features together
comprehensively. In addition, equipped with our SHT scheme, the backpropagation process can now
be supervised under precise control, while the DA scheme can effectively incorporate depth domain
knowledge into the scheme. Extensive experiments have been carried out on a publicly available,
widely used DeepLesion dataset, and the results prove the effectiveness of our DA-SHT Dense 3DCE
network in the MOLD task.
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1. Introduction

Computer-aided diagnosis (CADx) plays a crucial role in medical image analysis. In re-
cent years, convolutional neural network (ConvNets) based deep learning methods have
demonstrated superior detection accuracy over traditional statistical learning approaches,
which rely solely on handcrafted features. A lesion detection system is an essential part of
CADx. Many research works have focused on enhancing lesion detection tasks [1–12]. Most
research works have used ConvNets-based methods and achieved satisfying detection
sensitivity and precision within a limited scope of detection.

The majority of current lesion detection CADx systems [1–12] are designed to detect
one or two specific diseases within a particular organ. Although these disease-specific
CADx systems can be integrated into modular solutions as an “ensemble of experts”, the
significance of front-line screening universal lesion detection CADx systems should not
be overlooked. Therefore, the universal lesion detection (ULD) task [1,2,6,13] has been
proposed. The ULD task aims to detect nearly all kinds of lesions from medical images
to deliver more clinical value. This is especially true when diagnosing CT scan slices
with multiple organs and different kinds of tissue because it allows clinicians and medical
researchers to identify multiple types of detected lesions.

To further improve the ULD CADx system, in this paper, we aim to detect and specify
lesion types in chest CT scans by introducing the multi-organ lesion detection (MOLD)
framework. Unlike a ULD task, which only distinguishes between lesions and non-lesions,
our MOLD task aims to detect and specify different kinds of lesions, which can be located
in different organs. The most obvious difference between ULD and MOLD tasks is that
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the ULD task is a binary class detection task, while the MOLD task is a multiple class
detection task. MOLD is a crucial but underdeveloped problem in CADx. Our approach,
by contrast, is designed to detect multiple types of lesions across different organs within
the same scan, thereby aligning more closely with the holistic diagnostic process used by
clinicians. One reason is that diseases may have complications. For example, hepatorenal
syndrome (HRS) is a common complication of advanced cirrhosis, characterized by renal
failure and major disturbances in circulatory function [14]. The simultaneous interpretation
of the liver and kidney in medical images can greatly enhance the detection of this serious
complication and possibly help deliver effective treatments to patients. Another reason
is that some metastatic carcinoma is prone to metastasis and spread. For example, the
most frequent cause of cancer death is lung cancer [15]. At the time of the initial diagnosis,
about 50% of all lung cancer patients have distant metastasis [16]. In patients with lung
cancer, the bone, brain, liver, and adrenal glands can be the most common sites of metastatic
diseases [17]. Detection of complications and spread of metastatic carcinoma to other organs
can significantly help experts diagnose and determine different stages of the disease. For
those cancer patients with metastases, clinicians will simultaneously identify the locations
of both primary and metastatic lesions during the diagnosis process. Then, clinicians can
combine the morphology and characteristics of those two types of lesions to provide more
accurate and comprehensive cancer staging and diagnoses. For instance, if lung cancer has
spread to lymph nodes, clinicians first determine the position of the lesions in the lymph
nodes. If the location is close to the primary lesion, it suggests that the tumor is still partial,
in the early stage or mid-stage, and surgery may be used for removal. If distant lymph node
metastasis occurs, it may be an advanced tumor, and a lifetime treatment regimen should
be systemically considered rather than surgery. The variety in complications and metastatic
carcinoma makes the elaborated diagnosis time-consuming for clinicians. Therefore, the
MOLD system will become very useful in practice. In addition, our proposed MOLD
system can also help clinicians in patient shunting, disease screening, and other tasks.

There has been some research on the ULD task, especially with the DeepLesion dataset,
a large dataset with 32,120 chest CT scans that include eight different types of lesions, in-
cluding bone, abdomen, mediastinum, liver, lung, kidney, soft tissue, and pelvis [18]. Based
on this dataset, Yan et al. [1] proposed a 3D context enhanced (3DCE) region-based CNN
lesion detection model, which can combine the advantages of both 2D and 3D networks
through concatenating the 3D features on the feature map level. Based on this 3DCE
framework, Tao et al. [2] proposed a dual-attention mechanism, Li et al. [4] proposed
a multi-view feature pyramid network with a position-aware attention network, and
Zhang et al. [3] introduced a dense auxiliary loss mechanism embedded in a dense feature
extraction network. However, each of these works has the following limitations. Therefore,
we aim to tackle these challenges. First, all methods mentioned above focus on the ULD
task. The lack of output categorical information will make diagnosis difficult. Compared to
the ULD task, the detection results obtained from the MOLD task can provide categorical
information, which the original ULD task does not provide. Second, the backpropagation
in the training process is not optimized, which makes the over-fitting obvious. This is
particularly true for the MOLD task, as only around 30% of the original DeepLesion dataset
samples have a multi-organ category label that can be employed for the MOLD task. Third,
these three methods do not consider the depth information of the CT slices, which can
reliably indicate which organs are included in the CT slices [19]. The depth scores predicted
from the depth score regressor can help improve detection performance. The depth score
regressor establishes a coordinate framework for the human body and generates a continu-
ous score for each axial slice, indicating the normalized position of the body part within
the slice. For example, lung lesions and kidney lesions cannot exist in the same transverse
CT slice owing to their different position of the body part in the slice. As a result, there will
be significant differences in their depth scores. Therefore, classification errors caused by
similar texture features can be avoided by finding inconsistencies between lesion types and
depth information. This can improve the accuracy of detection as well as strengthen the
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robustness of the lesion detection system, especially in the MOLD task. More details of the
depth score regressor can be found in Section 2.6.

With MOLD, the above problems will be addressed and tackled. This paper further
optimizes the backpropagation process in our proposed framework. Based on the 3DCE
framework [3], we improve the backpropagation of the training process and incorporate
depth information in the proposed network. First, we propose a skipped-layer hierarchical
training (SHT) mechanism to optimize the dense auxiliary losses (DAL) [3]. Utilizing
different losses in different training stages can produce a positive trend in the backpropaga-
tion process. Second, we introduce a depth-aware (DA) mechanism that considers the CT
depth coordinates so as to extract information from the CT slices in three dimensions. Our
DA-SHT 3DCE model is a two-stage convolutional neural network (CNN). It utilizes the
VGG-16 model [20] as the feature extractor and uses a 3DCE region-based fully convolu-
tional network (R-FCN) [21] as the backbone. To evaluate the effectiveness of our model,
we have performed extensive experiments on a publicly available, widely-used public
dataset, i.e., DeepLesion [22]. Section 4 presents the results, demonstrating our proposed
model’s effectiveness. To summarize, the contributions of our work are as follows:

• A groundbreaking attempt to perform the MOLD task on the DeepLesion dataset,
which not only distinguishes lesions from non-lesions but also detects and specifies
eight different kinds of lesions so as to greatly enhance the clinical value.

• Improving the network architecture in [3] by adapting DALs through the SHT mecha-
nism to increase the robustness of the backpropagation process and reduce over-fitting.

• Taking domain knowledge into consideration and adding the DA mechanism to extract
features in three dimensions benefits the lesion type classification process at a minimal cost.

In this paper, we aim to propose a multi-organ lesion detector to better address real-life
chest-related clinical needs. Specifically, we try to tackle the following challenges: First, the
practicability of the current CADx system in clinical diagnosis is limited. Second, ignoring
the depth scores of the CT slices will lose implicit information and decrease the robustness
of the MOLD system. Third, the training process through the existing dense auxiliary loss
(DAL) mechanism of the loss function is sub-optimal. In conclusion, a novel multi-organ
lesion detector is proposed. Extensive experiments have been carried out on a publicly
available, widely used DeepLesion dataset, and the results prove the effectiveness of our
DA-SHT Dense 3DCE network in the MOLD task.

2. Related Work
2.1. Object Detection

Object detection is a widely studied topic in the computer vision field. Some classic
frameworks for object detection are also exploited in CADx lesion detection, such as
R-CNN [23], Fast R-CNN [24], Faster R-CNN [25], R-FCN [21], and so on. From R-CNN to
Fast R-CNN to Faster R-CNN, the efficiency and effectiveness are continually improving.
The largest difference between an R-CNN and a Fast R-CNN is that a Fast R-CNN processes
the four steps required for object detection: candidate region generation, feature extraction,
category classification, and bounding box regression in one unified neural network. It also
runs the model on a GPU, which greatly improves the efficiency of the operation [26].
A Faster R-CNN network is built based on the Fast R-CNN network design, but it improves
the process of candidate region generation by introducing a region proposal network (RPN),
which is a module for generating proposals. An R-FCN network is a transformation based
on the framework of Faster R-CNN. The region of interest (ROI) pooling layer is replaced by
the position-sensitive region of interest (PSROI) pooling layer. Since the ROI pooling layer
does not contain location information, the location information is added before pooling to
specify different score maps that are responsible for detecting different locations of detected
objects. After pooling, the score maps obtained from different locations can be combined
to reproduce the original location information. In order to prove the effectiveness of our
proposed method, we use the Faster R-CNN and R-FCN models as the baseline methods
for comparison.
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In recent research, transformers have shown exceptional utility in object detection tasks.
Recent studies have showcased transformative applications of transformers in object detec-
tion. For instance, Song et al. [27] developed a Vision and Detection Transformer (ViDT) that
optimizes accuracy and latency trade-offs on the Microsoft COCO benchmark dataset. Addi-
tionally, Liang et al. [28] introduced DetectFormer, which improves detection performance in
traffic scenes by leveraging global information and category-assisted decoders.

2.2. FCN-Based Models

Our Novel Dense 3DCE R-FCN model is proposed based on the R-FCN model. The
R-FCN [21] model evolved from the Fully Convolutional Network (FCN) [29] to address the
limitations in object detection tasks. FCN is designed for pixel-wise classification, making it
efficient for segmentation tasks but less suitable for object detection due to its lack of region-
specific attention. R-FCN introduces a region-based approach by incorporating Region
Proposal Networks (RPNs) and position-sensitive score maps. This architecture enables
the model to generate region proposals and focus on specific object regions, improving
detection accuracy and efficiency. R-FCN achieves a balance between the computational
efficiency of FCN and the precision of region-based methods like Faster R-CNN.

FCN model has been used for segmentation tasks in many medical applications.
For example, Zhou et al. [30] proposed the MDSU-Net model. The MDSU-Net model
incorporates dual attention mechanisms and depthwise separable convolutions to enhance
feature extraction and reduce model complexity for medical image segmentation. In addi-
tion, Karthik et al. proposed a novel method in [31]. The proposed method integrates an
attention-gated mechanism with an FCN to enhance ischemic lesion segmentation from
multimodal MRI. By incorporating attention gates into the FCN’s decoder, the model
selectively filters and emphasizes relevant features, significantly improving segmentation
accuracy compared to traditional FCN and other existing methods. The authors in [32]
proposed the SAN-Net model. The SAN-Net model introduces a self-adaptive normal-
ization mechanism to enhance stroke lesion segmentation from multimodal MRI. Unlike
traditional FCN, SAN-Net employs Masked Adaptive Instance Normalization (MAIN) for
dynamic standardization and a site classifier with a gradient reversal layer for site-invariant
representation learning, significantly improving generalization to unseen sites.

The primary distinction between the aforementioned FCN-based model and our model
lies in the target task. Our model is specifically designed for lesion detection in CT cases
and does not provide segmentation results. Additionally, our model is based on the R-FCN
architecture, meaning that network training is focused on region proposals rather than the
entire image.

2.3. Lesion Detection in CADx

The methods mentioned above are widely used in object detection in natural images
and lesion detection in a CADx system. Although these methods are practical and useful,
they need to be tailored for lesion detection tasks because medical images are different
from natural images. For example, although images in the ImageNet dataset [33] and the
DeepLesion dataset [22] are all in 2D, CT slices in the DeepLesion dataset are always in
image volume format, which can give additional three-dimensional, spatial information
for the detection task. Thus, these networks are inadequate for CT slices to consider 3D
information. Therefore, we use the 3DCE network [1], which can consider 3D context
information for detection performance enhancement. It integrates the crucial 3D context
information as it includes the neighboring CT slices to the 2D detection network, and then
it concatenates the feature maps together to perform final predictions on the categories
and bounding boxes. This scheme allows the 3D context information to be better utilized,
and the performance is much better than using a single CT slice alone. To preserve these
advantages and prove the effectiveness of our method, we exploit the 3DCE network as
the backbone of our method and significantly enhance it to perform both ULD and MOLD
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tasks. At the same time, we also used it as the baseline method and compared it with our
new DA-SHT Dense 3DCE model.

Based on the 3DCE model, some existing methods for the lesion detection task exist.
For example, the attention theme proves to be effective in a CADx system because it can
better simulate the workflow of the clinicians. For instance, Tao et al. [2] proposed a
method to add 3D contextual attention and a spatial attention theme to the 3DCE network
mentioned above so as to ensure that attention exists not only between the slices but also
inside them. These attention themes allow 3D contextual information to be used without
retraining the large 3D ConvNets. Zhang and Chung [3] proposed a framework to address
the shallow layer supervision and feature combination problems. We formulate our new
method based on our former proposed method [3] with significant extensions and use
the new model on both ULD and MOLD tasks. The extensions are mainly three-fold.
First, our method adopts the SHT scheme to better utilize DALs in [3], which can reduce
the parameters and complexity of the model as much as possible under the premise of
maintaining model performance. Second, the new method considers the depth score of CT
slices, which is an unsupervised process and does not need extra annotations. Third, we
extend the adapted tasks from binary lesion detection to multi-organ lesion detection.

Besides using the 3DCE-based frameworks, several applications use other frame-
works to work on the lesion detection task and use an attention scheme. For instance,
Li et al. [4] proposed a framework that combines a multi-view feature pyramid network
(FPN) with a channel-wise position-aware attention module. The multi-view features are
obtained from slices rendered with various window widths and levels, while the position-
aware attention is employed with a module similar to the Convolutional Block Attention
Module (CBAM). The model presented in [5] also utilizes an attention scheme to build an
improved RetinaNet framework for the ULD task. Tang et al. [6] proposed the Universal
Lesion Detector (ULDor) model, which utilizes the Mask R-CNN framework in [34] as
the backbone. This framework needs pixel-level annotations for training, so the pseudo
masks are generated to fit that need. It also uses negative example mining to further
improve performance. Zhang et al. [7] proposed a Modified Pseudo-3D Feature Pyramid
Network (MP3D FPN) that leverages depthwise separable convolutional filters and a group
transform module (GTM) to efficiently extract 3D context-enhanced 2D features for uni-
versal lesion detection in CT slices. Xu et al. [8] proposed a PAC-Net, which integrates a
multi-pathway Feature Pyramid Network with position attention guided connections and
vertex distance IoU, enhancing the accuracy and efficiency of 3D medical image detection
by addressing position offset and IoU-based loss degradation.

The abovementioned methods mainly concentrate on universal lesion detection, which
distinguishes lesions from non-lesions. Although various multi-class lesion detection
methods have been proposed, for example, [9–11], all these methods only focus on one
single organ, such as the heart, brain, and skin, which suffer from limitations in the scope
of the available scenes of the model. In recent years, more researchers have pointed out the
importance of multi-organ-based medical image analysis. For example, Xu et al. proposed
a multiple-organ localization framework [12], which uses a 3D region proposal network.
However, there are only very few related recent works in this direction. Compared with
other single organ-based lesion detectors that detect the target organ in all slices to assemble
the final bounding boxes with confidence scores alone, our new method is implemented in a
multi-organ manner by taking full advantage of the spatial depth and category information
in CT scans. As such, our method performs the MOLD task and can output both lesion
type and confidence score simultaneously.

Besides these lesion detection models, there are also some methods that work on
the DeepLesion dataset [22] and focus on other tasks. For example, the model presented
in [18] uses a triplet network, which aims at content-based lesion retrieval and intra-patient
lesion matching.
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2.4. Multi-Level Feature Reuse and Supervision

Densenet [35] is a classic framework that has been widely used in recent years. Its main
advantage is that it allows feature reuse, achieved through connecting features on channels.
Inspired by Densenet, we realize the importance and effectiveness of feature reuse in a
network, especially in the ULD and MOLD tasks. Due to the huge differences in lesion sizes,
nearly all resolutions of the feature maps have their own utility. This means that shallow,
intermediate, and deep information cannot be ignored. Therefore, in this paper, inspired by
the Dense 3DCE R-FCN structure in [3], a CNN model training process is a coarse-to-fine
model fitting process. We need to employ different supervision mechanisms in different
training stages to better adapt to this process. Therefore, we propose a hierarchical feature
reuse and supervision scheme.

2.5. Hidden Layer Supervision

Besides feature reuse, supervision in the training process is also crucial. As shown
in [36], a deeply supervised network (DSN) introduces a “companion objective” to the
individual hidden layers in addition to the overall objective at the output layer (a different
strategy than the layer-wise pre-training). As a new variant of the DSN, Sun et al. [37] pro-
posed a Deeply-supervised Knowledge Synergy (DKS) scheme to improve the general-
ization ability of the CNNs. The scheme introduces a novel synergy loss, focusing on the
knowledge-matching problem among the supervision loss pairs. Inspired by these works,
we introduce the SHT strategy and embed it in the Dense 3DCE R-FCN network. To prove
the efficiency of the proposed method, the DSN and DKS methods mentioned above are
reproduced as our baseline methods.

2.6. Depth Information Obtainment

Obtaining the depth scores of the CT slices is similar to a body part recognition task.
The models for this task are mainly divided into two categories: supervised models and
unsupervised models. Yan et al. [19] proposed an unsupervised body part regression
model, which can output a normalized depth score for each CT slice. The training process
of this regression model behaves like a self-organization process because these normalized
depth scores are all learned from the inter-slice relationships. This means that no extra
work is required to annotate the CT slice volumes. As such, we deploy this regression
model to assist in lesion detection and enhance the detection performance, especially the
classification process, by providing depth information at the lowest cost.

2.7. Research Objectives and Research Questions

Building on these foundations, our research aims to develop a novel multi-organ lesion
detection (MOLD) approach that addresses these challenges and meets real-life clinical
needs more effectively. The primary objectives of our study are to:

• Develop an advanced deep learning model that integrates depth-aware (DA) and skipped-
layer hierarchical training (SHT) mechanisms to enhance lesion detection accuracy.

• Evaluate the performance of the proposed model on a large, publicly available dataset
(DeepLesion) and compare it to existing models.

To achieve these objectives, our study focuses on several key aspects:

• The integration of depth-aware mechanisms significantly improves the detection
accuracy of multi-organ lesions in chest CT scans.

• The implementation of skipped-layer hierarchical training has a substantial impact
on the performance of the Dense 3D context-enhanced (Dense 3DCE) network in
detecting lesions of various sizes and appearances.

• The proposed DA-SHT Dense 3DCE model demonstrates superior detection accuracy
and computational efficiency compared to existing state-of-the-art models.

By addressing these aspects, we aim to contribute to the development of more effective
and robust CADx systems for multi-organ lesion detection.
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3. Methodology

We propose a two-stage lesion detection network. Figure 1 provides a detailed illus-
tration of the sequential steps involved in our proposed detection approach. During the
testing phase, the workflow mirrors that of the training phase. The process is divided into
two main stages:

• Stage I: Depth Score Regressor (Step 1)—This initial stage, outlined by the green
dashed box, takes the input slices and processes them to output depth scores. These
depth scores are crucial for the next stage and are produced after training.

• Stage II: Lesion Detector (Step 2)—The second stage, marked by the orange dashed
box, uses the depth scores generated from Stage I as fixed inputs to detect lesions. This
stage outputs the final prediction of lesions within the CT slices. The process flows
consecutively from Stage I to Stage II, as indicated by the brown arrows.

Although the whole framework is called a two-stage framework, the detection network
in the second stage is end-to-end training and is easy to deploy. The detailed architecture
of the Depth Score Regressor presented in Stage I of Figure 1 further elaborated on the left
side of Figure 2, while the right side of Figure 2 provides an in-depth breakdown of the
Lesion Detector’s internal structure. In Figure 2, we provide a comprehensive breakdown
of the Regressor’s internal structure, showcasing each individual neural network block and
layer involved in processing the input slices to generate the depth scores. It also illustrates
each individual neural network block and layer involved in processing the depth scores
and input slices to generate the final lesion detection output. This detailed depiction aims
to offer a clear understanding of the components and operations within the regressor and
the detector, complementing the overall process flow illustrated in Figure 1.

Figure 1. The pipeline of training and testing procedures. The regressor outputs are fixed and passed
to the detector as inputs. The training of the regressor and the detector are consecutive steps. The
regressor is trained first, and then the detector is trained.

Figures 3–6 provide a stage-by-stage illustration of the proposed architecture, orga-
nized along a time axis to depict both parallel and consecutive steps. The process begins
with the depth score regression, which is followed by lesion detection. Next, the architec-
ture performs model training and inference, where the final predictions are made based on
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the predicted depth scores. The training pipeline is shown in Figure 6. This comprehensive
depiction allows for a clear understanding of the workflow, highlighting the interaction
between each stage and the flow of information from start to finish.

As shown in Figure 2, the entire framework consists of two sequential stages: the
depth score regressor and the lesion detector. As illustrated on the left side of Figure 2,
the initial stage involves an unsupervised regressor that generates depth scores for the CT
slices, serving as a pre-processing method. The regressor is first trained to produce these
depth scores, which are then fixed and utilized in the subsequent lesion detection stage, as
indicated by the arrow pointing to the green dotted box. In this second stage, the detection
network is trained to identify lesion bounding boxes. The individual blocks and layers of
the depth score regressor, the pre-trained model and the lesion detector can be found in
Tables 1, 2 and 3 respectively.

Table 1. Details of the depth score regressor at each ConvNet’s layer (unit: pixel).

Layer Type Kernel Attribute Num of Filters

Image Input Layer

Depth Score Regressor

Conv1

Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer

Max Pooling 2 × 3

Conv2

Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer

Max Pooling 2 × 3

Conv3

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Max Pooling 2 × 3

Conv4

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Max Pooling 2 × 3

Conv5

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Max Pooling 2 × 3

Conv6 Convolutional Layer 1 × 3, stride = 1, padding = same 512
ReLU Layer

Global Average Pooling

Fully Connected Layer
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Table 2. Details of the pre-train model at each ConvNet’s layer (unit: pixel).

Layer Type Kernel Attribute Num of Filters

Image Input Layer

Pre-train model—VGG16 [20]

Conv1

Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer

Max Pooling 2 x 2

Conv2

Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer

Max Pooling 2 × 2

Conv3

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Max Pooling 2 × 2

Conv4

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Max Pooling 2 × 2

Conv5

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Max Pooling 2 × 2

Table 3. Details of the unsupervised lesion detector at each ConvNet’s layer (unit: pixel).

Layer Type Kernel Attribute Num of Filters

Image Input Layer

Lesion Detector

Conv1

Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer

Max Pooling 2 × 2

Conv2

Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer

Max Pooling 2 × 2

Conv3 Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer
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Table 3. Cont.

Layer Type Kernel Attribute Num of Filters

Lesion Detector

Conv3

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer

Max Pooling 2 × 2

Conv4

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Conv5

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 ×3, stride = 1, padding = same 512
ReLU Layer

Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer

Conv6_1 - Conv6_5 Convolutional Layer 1 × 1, stride = 0, no padding 7 × 7 × 6

PS ROI Pooling 7× 7

Fully Connected Layer

In the depth score regressor, the starting slice j and the slice interval k of the input
slices are determined randomly. The network’s layers include convolution, rectified linear
unit (ReLU), and max pooling, with parameters adopted from ImageNet pre-trained CNN
models, such as AlexNet [38] or VGG-16 [20]. After these layers, a new convolutional
layer, Conv6, with 512 1 × 1 filters and a stride of 1, followed by a ReLU layer, is added.
Conv1–Conv6 are used to learn discriminative deep image features for depth score regres-
sion. Subsequently, a global average pooling layer summarizes each of the 512 activation
maps to one value, resulting in a 512D feature vector. Finally, a fully connected (FC) layer
projects the feature vector to the slice score. The individual blocks and layers of the depth
score regressor can be found in Table 1.

As for the lesion detector on the right side of Figure 2, every three images are treated
as a 3-channel image (one sample). These images serve as input for the feature extraction
network. During training, the central image provides bounding box location information,
while the other slices provide 3D context information [1].

Following the 3DCE network, we adopt the novel Dense 3DCE R-FCN model [3],
which extracts feature maps at various scales from the Conv1 to Conv5 layers. Each
convolution block in the feature extraction network (Conv1 to Conv5) has 64, 128, 256, 512,
and 512 filters, respectively. The pathways of Conv2 and Conv4 are omitted since they are
reduplicative. These feature maps are then processed through a convolutional layer for
dimension reduction, depicted as a series of Conv6 layers in Figure 2. A reshaping operation
concatenates the feature maps, generating 3D context information. This is followed by a
PSROI pooling layer with a filter size of 7 × 7. To normalize the feature maps, an L2 norm
layer is applied after the PSROI pooling layer [39], ensuring all level features are obtained.
Finally, another concatenation operation combines these features, and the fully connected
layers at the end of the pipeline generate the final prediction results. The individual blocks
and layers of the pre-trained model and the lesion detector can be found in Tables 2 and 3.

The gray RPN block is designed to generate proposals. The RPN subnetwork processes
feature maps extracted from the central images containing ground-truth information.
Ultimately, the detection pathway on the right produces the final classification results
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and detection bounding boxes. The blue and red dotted boxes represent the original and
auxiliary losses, respectively, with their functions detailed in the subsequent sections.

Figure 2. The architecture of our DA-SHT Dense 3DCE Network, using our Novel Dense 3DCE
R-FCN as the backbone framework. The training of the regressor and the detector are consecutive
steps. The regressor is trained first, and then the detector is trained.

Figure 3. The whole architecture of our DA-SHT Dense 3DCE Network, using our Novel Dense
3DCE R-FCN as the backbone framework.
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Figure 4. The regressor training process of our DA-SHT Dense 3DCE Network, using our Novel
Dense 3DCE R-FCN as the backbone framework. The training of the regressor and the detector are
consecutive steps. The regressor is trained first, and then the detector is trained.

Figure 5. The lesion detector training process of our DA-SHT Dense 3DCE Network, using our Novel
Dense 3DCE R-FCN as the backbone framework. The training of the regressor and the detector are
consecutive steps. The regressor is trained first, and then the detector is trained.
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Figure 6. The working pipeline of our DA-SHT Dense 3DCE Network, using our Novel Dense 3DCE
R-FCN as the backbone framework. The training of the regressor and the detector are consecutive
steps. The regressor is trained first, and then the detector is trained.

3.1. Novel Dense 3DCE R-FCN

In CT slices, the lesion sizes can vary significantly. For example, the long diameters
of lesions in the DeepLesion dataset range from 0.42 mm to 342.5 mm, while the short
diameters range from 0.21 mm to 212.4 mm [22]. The smallest lesion is nearly 1000 times
smaller than the largest lesion. Such great differences in lesion sizes can bring significant
challenges to lesion detection tasks and result in a high rate of false positives (FPs). Thus,
we attempt to utilize multi-level and multi-resolution feature maps and generate a dense
connection mechanism to meet the needs of both ULD and MOLD tasks in a dataset
containing various large and small lesions.

We adopt the 3DCE R-FCN model as the backbone of our framework, as mentioned
in Section 2.3. The 3DCE R-FCN network is formulated with reference to the original
R-FCN model [21] but includes four additional layers, including one fully connected (FC)
layer, one rectified linear unit (ReLU) activation layer, and two FC layers for the final
prediction results. Compared with the Faster R-CNN model, the R-FCN network can utilize
the position information of a CT slice image through a PSROI pooling layer. We use the
VGG-16 CNN model [20] as the feature extractor, just as described in [1], removing the
4th and 5th pooling layers to maintain the resolution of the feature maps and prevent
the feature maps from becoming too small. As shown in Figure 2, in the second stage,
every three images can be viewed as a 3-channel image (one sample). Then, these three
images are used as the input for the feature extraction network. During training, the central
image provides the bounding box location information, and the other slices offer the 3D
context information [1]. For each convolution block in the feature extraction network from
Conv1 to Conv5, the number of filters is 64, 128, 256, 512, and 512, respectively. The RPN
subnetwork only accepts the feature maps extracted from the central images containing the
ground-truth information.

CNNs always convolve and pool images to extract more discriminate features, which
are more suitable for large rather than small lesion detection, but the deeper the feature
extractor is, the smaller the resolution the feature maps have. These smaller feature maps
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can challenge the detection of small lesions, which only occupy a few pixels. Thus, the
necessity to fully use feature maps of various resolution scales is significant. Based on
the 3DCE network, we follow the novel Dense 3DCE R-FCN model [3], which extracts
feature maps in various scales from the Conv1 layer to the Conv5 layer for an extension, as
shown in the second stage in Figure 2. These feature maps integrate the image features,
which are shallow but high in resolution, intermediate but complementary, and deep but
contain rich semantic information [40]. All these feature maps are then delivered to one
convolutional layer for dimension reduction, which can be seen as a series of Conv6 layers
in Figure 2. After that, a reshaping operation concatenates the feature maps together and
generates 3D context information. Then, one PSROI pooling layer follows, and the filter size
is 7 × 7. In order to normalize the feature maps in different amplitudes, an L2 norm layer is
used after the PSROI pooling layer [39]. Therefore, all level features are obtained. Finally,
another concatenation operation is used to combine all-level features. Meanwhile, the fully
connected layers work at the end of the pipeline to obtain the final prediction results.

To provide a clearer comparison between our proposed model and the 3DCE R-
FCN model described in [1], the framework architecture of 3DCE R-FCN is illustrated in
Figure S1 of the Supplementary Materials. As depicted in Figure S1, the primary distinction
from our proposed method lies in the fact that the 3DCE R-FCN model employs a one-stage
end-to-end training architecture. Additionally, it does not incorporate dense pathways or
auxiliary losses, as highlighted in the dotted red boxes in Figure 2.

3.2. Skipped-Layer Hierarchical Training

The employment of the dense connections described in Section 3.1 can easily cause
gradient vanishing and model degradation [36] because the depth and width of the model
are both increased. Thus, we also need to overcome these limitations. An effective method
is to strengthen the supervision of the middle layers. As shown in Figure 2, in the second
stage, the method presented by Zhang et al. [3] employs some auxiliary losses after each
pooled 3D context feature map, which can be seen from the red dotted boxes in Figure 2, as
well as the gray part (gray “Auxiliary Loss 2” and “Auxiliary Loss 4”) in Figure 7. Rather
than only having the classification and regression losses at the output layer, these auxiliary
losses can further provide integrated optimization via direct supervision of the earlier
hidden layers (from Conv1 to Conv5). Furthermore, these “auxiliary losses” can speed
up the network’s convergence through their supervision pathways [36]. From [3], it is
clear that through these additional pathways, the model is also forced to learn adequate
discriminate features from the shallow layers, which can boost the detection performance,
especially on the small lesions.

However, utilizing all these auxiliary losses in the whole training process is not an op-
timal training strategy. The training process of the CNN model is an iterative optimization
process to find the most suitable fitting model. In the early stages of network training, the
network focuses on coarse-grained learning, while in the later stages, fine-grained learning
gradually becomes the emphasis of this training process. Therefore, we improve the DAL
strategy in [3] to the SHT strategy, achieving optimal performance. As shown in Figure 7,
in the first stage of training, we adopt all the auxiliary losses, which can be noted as dense
auxiliary losses in [3]. Then, only skipped-layer losses from Conv1, Conv3, and Conv5
pathways are retained in the second stage of training. This kind of hierarchical training
strategy can reduce over-fitting to some extent.

We minimize the objective functions following the multi-task loss in Faster
R-CNN [20]. These losses refer to the classification loss (Lcls), the regression loss (Lreg),
and the depth-aware loss (Ldepth), which is highlighted in the green dotted box in Figure 2.
The classification loss (Lcls) and the regression loss (Lreg) consists of two parts. The first
part is the auxiliary losses, which are highlighted inside the red dotted boxes in Figure 2,
while the second part is the original classification and regression losses as in [1], which are
located at the end of the whole framework and are highlighted inside the blue dotted boxes
in Figure 2. These losses are not combined in the network but jointly optimized through
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the backpropagation process during training. In Equation (1) (Note: Equations (1) to (7)
are all described for the MOLD task, which includes the background class and eight lesion
classes, but not the ULD task):

L = Lcls + αLreg + βLdepth, (1)

here, as shown in Equation (1), the loss function contains three components: the classifi-
cation loss (Lcls), the bounding box regression loss (Lreg) and the normalized depth score
regression loss (Ldepth). In the training process, we set α = 10 and β = 1 to control the
relative importance among these three components. The details of Ldepth are described in
Section 3.3.2).

Lcls = Lcls_rpn + Lcls_det, (2)

Lcls_rpn =
1

Ncls_rpn
∑
iϵI

−log([ p̂i pi + (1 − p̂i)(1 − pi)]). (3)

As shown in Equation (2), the classification loss (Lcls) consists of two components, the
RPN classification loss (Lcls_rpn) and the detection classification loss (Lcls_det). In Equation (3),
we set Ncls_rpn = 256 because, in the training process of the RPN sub-network, we selected
256 anchors in a mini-batch. i is the index of the anchors in the mini-batch. I is the anchor set
in a mini-batch. pi is the predicted probability of the i-th anchor being the foreground object,
while p̂i donates the ground-truth label of the anchor (1 for positive and 0 for negative).

Lcls_det =
1

Ncls_det
∑
iϵI

∑
dϵD

∑
cϵC

−log([ p̂cid pcid]). (4)

In Equation (4), the Lcls_det term is normalized by the mini-batch size (i.e., Ncls_det = 256).
Unlike the classification loss in the RPN sub-network, which is a binary cross-entropy loss,
the classification loss in the detection network is a multi-class cross-entropy loss. d is the
index of the supervision pathway, where D = [1, 2, 3, 4, 5] in the first 4 training epochs, which
indicates that there are a total of 5 pathways that take effect in the first training stage. Then,
we set D = [1, 3, 5] in the following 4 epochs since the second and fourth pathways have been
removed. c represents the class of the lesions in the dataset, and C is [0, 8], which means that
there is a total of 9 classes, including the background class. Other parameters, which are not
mentioned here, are the same as those in Equation (3).

Lreg = Lreg_rpn + Lreg_det, (5)

Lreg = [ p̂id > 0]
1

Nreg
∑
iϵI

∑
dϵD

∑
iϵ{x,y,w,h}

L1smooth(t̂id − tid), (6)

L1smooth(t̂id − tid) =

{
(σ(t̂id − tid))

2/2, i f |t̂id − tid| < 1/σ2,

|t̂id − tid| − 0.5/σ2, otherwise.
(7)

Similar to the classification loss, as shown in Equation (5), the regression loss (Lreg)
also consists of two components, the RPN regression loss (Lreg_rpn) and the detection
regression loss (Lreg_det). Both regression losses can be calculated through Equation (6).
In Equation (6), [p̂id > 0] is an indicator function, which aims to ignore the regression loss of
the background ROIs by setting the value to 1 if p̂id > 0 and 0 otherwise. Nreg represents the
number of anchor locations. tid = (txd, tyd, twd, thd) donates the parameterized coordinates
of the predicted bounding boxes of the d-th supervision pathway, where x, y, w and h
denote the box’s center coordinates and its width and height, respectively. ˆtid represents the
parameterized coordinates of the ground-truth box with a positive anchor. Other parameters,
which are not mentioned here, are the same as those in Equation (4). The smooth L1 loss is
defined in Equation (7), and the details can be found in [25]. In the RPN training process,
we set σ to 3, while in the detection process, it is set to 1, which is the same as in [1,25].
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According to the explanation from the authors of [25], setting σ to 3 in the training process
makes the transition point from quadratic to linear happen at |x| < 1

9 , which is closer to the
origin. The reason for doing this is because the RPN bounding box regression targets are not
normalized by their standard deviations, unlike in Fast R-CNN [24], because the statistics of
the targets are constantly changing throughout learning.

3.3. Depth-Aware Mechanism

In practice, clinicians use long diameters and short diameters to mark the locations of
the lesions [22]. In this way, they can save time because they do not need to draw curves to
circle the outlines of the lesions. However, different kinds of lesions have different shapes,
such as ellipses or bands. A lack of information about a lesion’s shape can increase the
difficulty of classifying its type. Thus, we have to explore more discriminate information
to assist the lesion type classification process. Therefore, taking domain knowledge into
consideration as well as including depth information in the training process (which will be
described in this section) is a good alternative to the lack of shape information and can also
assist the process of classifying lesion types.

3.3.1. Unsupervised Depth Score Regression

During the first stage of the whole framework, an unsupervised depth score regressor
is introduced, which is the same as in [19]. The regressor can predict a continuous score
for each axial CT slice, representing the normalized axial coordinates. This process is
unsupervised, and no extra annotation efforts are needed. The inputs are unlabeled CT
slice volumes. Although the scores of all slices can be obtained via the regressor, only
the scores of the central images are used as the input of the second stage. This is because
only the central slices contain the ground-truth bounding boxes and are used for the
final prediction.

Regarding the input, several slices with the same distance are picked from each volume
in each training iteration. As shown in Figure 2, the starting slice j and the slice interval
k are determined randomly in the first stage. The order loss constrains the larger slices
with larger scores and the distance loss, ensuring that the linear increase of the scores
is collaborated simultaneously to constrain the regressor to follow the superior-inferior
ordering rule and ensure that the distance increases linearly.

3.3.2. The Depth-Aware Pathway

As shown in Figure 2, the second stage of our framework uses a multi-organ lesion
detector. The depth scores generated in the first stage are delivered to this detector through
the depth-aware pathway. This can be seen from the arrow pointing to the green dotted
box. We can see from Figure 2 that the detector consists of two pathways followed by the
final feature map: the detection pathway on the right gives the final results containing the
classification results and detection bounding boxes, while the depth-aware pathway on
the left (shown in the green dotted box), which aim to promote the detection results by
providing depth information learned from the inter-slice relationships. The training of the
regressor and the detector is not an iterative approach. The predicted depth scores from the
regressor are fixed and then sent to the detector as inputs when training the detector. The
depth-aware pathway can provide the location information from the 3D depth perspective,
while the lesion detection pathway can extract more discriminate location features from the
2D height and width perspective. The two pathways are complementary by nature in this
CT MOLD task.

For the depth-aware pathway, in order to solve the problem of different input sizes to
the FC layer, a 7 × 7 PSROI pooling layer is added before the FC layer performs the ROI
pooling operation on the entire set of images. Meanwhile, a ReLU activation function is also
used after the FC layer. Loss functions, including the regression loss in the depth-aware
pathway as well as the classification losses and regression losses in the detection pathway,
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are optimized jointly as shown in Equation (1). The depth loss (Ldepth) is derived based on
Equation (8).

Ldepth =
1

Ndepth
∑

i
(si − ŝi)

2. (8)

In Ldepth, i is the index of the central images in a mini-batch. The term is calculated by
finding the mean value of Ndepth, which is the size of the mini-batch. si denotes the output
scores of the depth score regressor in the first stage, while ŝi denotes the predicted scores in
the depth-aware pathway of the second stage. We use the mean squared error (MSE) loss
to provide the depth information in the backpropagation process.

The estimated depth information can provide useful 3D spatial information for each
voxel, and the feature maps extracted from the 2D CT images can provide more fine-grained
textual information. These two pieces of information are complementary by nature. Rather
than using 3D pixel volumes as input to extract the depth information, the DA-SHT Dense
3DCE model uses the 2D CT slice images as input. Then, the unsupervised regressor
generates the depth information at the feature map level. Thus, our model significantly
saves computing resources as compared with the 3D Conv-Nets.
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Figure 7. Schematic diagram comparing our proposed SHT scheme and the DAL scheme proposed
in [3]. The main difference is the auxiliary loss selection in the 5-8 epoch during the training process.

3.4. Participants and Dataset

We have evaluated the proposed method on the publicly-available DeepLesion
dataset [22], which contains 32,735 lesions from 32,120 axial CT slices from 10,594 CT
scan studies of a total of 4427 patients. Different from other datasets, which contain lesions
from benign and malignant categories, the DeepLesion dataset does not classify the lesions
into benign or malignant. Each CT slice has 1–3 lesions with corresponding bounding boxes
and size measurements. All lesions in the dataset have been annotated using the REICIST
diameters, including the long and short diameters. The resolution of most of the images is
512 × 512, while only 0.12% of the images have a resolution of 768 × 768 or 1024 × 1024. To
investigate the lesion types in DeepLesion, the authors in [22] randomly chose 9816 lesions
and manually categorized them into eight categories. There are a total of 8 different types of
lesions with different proportions in the 9,816 lesions, including bone (BN, 2.5%), abdomen
(AB, 22.1%), mediastinum (ME, 17.0%), liver (LV, 13.0%), lung (LU, 24.3%), kidney (KD,
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5.0%), soft tissue (ST, 6.9%) and pelvis (PV, 8.8%) [18]. The mediastinum lesions are mainly
composed of tibial lymph nodes [22]. Abdomen lesions are complications other than the
liver or kidneys. Soft tissue types included muscle, skin, and minor complications [22].

In order to better evaluate the performance of the proposed method, we extracted
one small lesion dataset and one multi-organ lesion dataset from the original DeepLesion
dataset. We selected the small lesions whose areas were less than 1% of the largest lesion
to build a small lesion dataset. We extracted the multi-organ lesion dataset because only
30% of the samples of the DeepLesion dataset were given category information. Therefore,
only 9816 lesions on 9626 axial slices were used for comparison experiments. The statistical
details of the official DeepLesion dataset and its subsets can be found in Table 4. We
focused on the ULD task on the original DeepLesion dataset and the small lesion dataset,
which only distinguishes lesions from non-lesions. We focused on the MOLD task for the
multi-organ lesion dataset, which provides bounding boxes with specific lesion type results.
Our method’s effectiveness can be further investigated by testing it on these three datasets.

Table 4. The statistical details of the official DeepLeison dataset and the subsets for the ULD and
MOLD tasks.

Dataset Task
Total Number of Lesions

Number of CT Slices
Train Validation Test Total

Original DeepLesion dataset ULD 22,919 4889 4927 32,120 32,735
Extracted small lesion dataset ULD 15,921 3537 3392 22,533 22,850

Multi-organ lesion dataset MOLD 6871 1472 1473 9626 9816

3.5. Procedure

The procedure of our study is illustrated in Figure 8. The steps are as follows:

• Data pre-processing: The CT scans were preprocessed to normalize the pixel intensities
and resize the images to a uniform resolution.

• Model development: We developed the Dense 3D context-enhanced (Dense 3DCE) net-
work, integrating depth-aware (DA) and skipped-layer hierarchical training
(SHT) mechanisms.

• Model training: The model was trained on the DeepLesion dataset, using a combina-
tion of supervised learning techniques to optimize the detection accuracy.

• Model validation: We validated the model using the original and the selected small
dataset to ensure generalizability and robustness.

• Model testing: The model’s performance was tested on a separate subset of the DeepLesion
dataset to evaluate its effectiveness in detecting lesions of varying sizes and appearances.

Figure 8. This flowchart illustrates the procedural steps followed in our study. The steps include data
pre-processing, model development, model training, validation, and testing.
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3.6. Instruments and Implementation Details

We carried out all our comparison experiments with MXNet [41] 1.5.0 on a PC
equipped with one NVIDIA 2080 GPU. To ensure a fair comparison, we configured all
hyperparameters in accordance with the settings used in the 3DCE R-FCN network [1].
We used the stochastic gradient descent (SGD) method with a momentum value of 0.9 to
be the optimizer of the model. We set the initial learning rate at 0.001 and decreased it by
10 times after the 4th, 5th, 7th, and 8th epochs. In order to make a fair comparison, all
models were trained for 8 epochs. Due to the limited GPU memory, the batch size could
only be set to 1 in the training process. Meanwhile, we used three ratios (1:1, 1:2, 2:1) and
five scales (16, 24, 32, 48, 96) to generate the anchors.

3.7. Pre-Processing

For pre-processing, we followed the method presented in [1] and used intensity
windowing to rescale the images to ensure that the intensity range became [0, 255] in
the floating-point number format. The black border was also split. Meanwhile, to make
sure that each pixel corresponded to 0.8mm, we also rescaled the images as the inputs to
the network. Most CT scans in the dataset have either 1 mm or 5 mm slice intervals. At
the same time, through image interpolation along the z-axis, we made the intervals of all
volumes the same (2 mm). When doing experiments on the original DeepLesion dataset
and the small lesion dataset, we used the official data split provided by the DeepLesion
dataset, which included 70% samples for training, 15% for validation, and 15% for testing.
Regarding the multi-organ dataset, we could only use a random split with the same ratio
among the training (70%), validation (15%), and testing (15%) sets because an official data
split was unavailable. We also made sure that there was no data leakage between training,
validation, and testing datasets for the multi-organ dataset. To compare the methods fairly,
we used the same data split in all experiments on all three datasets (the original DeepLesion
dataset, the small lesion dataset, and the multi-organ lesion dataset). We do not conduct
any data augmentation on the dataset. Note that for the bounding box predictions, if an
intersection over union (IoU) with the given ground-truth bounding boxes was larger than
0.5, it was declared correct; otherwise, it was declared negative.

3.8. Data Analysis

To compare the performance of different methods quantitatively, we utilized the
average sensitivity (AS) and mean average precision (mAP) values as the evaluation
metrics. Sensitivity is a widely-used evaluation metric in the lesion detection field [1,42],
while mAP is widely used in the object detection field [21,25]. The combination of these
two evaluation metrics is practical in reflecting the effectiveness of the proposed method.
AS and mAP were computed using the average value of over 8 lesion types. For AS, we
studied the sensitivities at 6 different values [0.5, 1, 2, 4, 8, and 16] of FPs per image to
compare the performance of different model variants.

We also reported the standard deviation (std) results for all reported performance met-
rics. To eliminate randomness in experimental results, we conducted repeated experiments
on both the ULD and MOLD tasks. Specifically, for each trained model, we conducted
multiple test experiments. For each test, we randomly selected 80% of the samples from
the entire test set and computed the standard deviation from the results multiple times.

4. Experimental Results
4.1. Universal Lesion Detection

To evaluate the proposed DA-SHT Dense 3DCE R-FCN model, we performed extensive
experiments on a publicly available DeepLesion dataset and the extracted small lesion
dataset using the data split officially provided. It is obvious that among all the models,
our DA-SHT Dense 3DCE R-FCN model shows the best performance on both the original
DeepLesion dataset and the extracted small lesion dataset using the data split officially
provided by the DeepLesion dataset. Some quantitative results for ULD on the original
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DeepLesion dataset and the extracted small lesion dataset are listed in Tables 5 and 6,
respectively. It is noticeable that the DA-SHT Dense 3DCE R-FCN architecture shows the
best sensitivity for nearly all FP values on the original DeepLesion dataset. This indicates
the effectiveness of the SHT training strategy. Meanwhile, our model also performs well on
the extracted small lesion dataset, indicating a more convincing clinical value. Compared
to 3DCE R-FCN, our model can improve the sensitivity by 1.53–2.19% at different FP values
per image. It is noticeable that the inference time of our DA-SHT Dense 3DCE network is
competitive with the 3DCE model on both datasets. This means the time cost for the boost
of the performance is minimal.

Table 5. Universal lesion detection (ULD) task results and inference time on the selected small DeepLe-
sion dataset. Sensitivity (%) at various FPs per image and the mean average precision (mAP) are used as
the evaluation metrics. std denotes the standard deviation value. IT denotes the inference time.

Evaluation Metric Sen@0.5 ± std Sen@1 ± std Sen@2 ± std Sen@4 ± std Sen@8 ± std Sen@16 ± std mAP ± std IT(ms) ± std

Faster R-CNN [25] 58.93 ± 1.87 68.46 ± 0.18 76.69 ± 0.99 82.27 ± 1.75 85.98 ± 2.02 88.52 ± 1.88 52.80 ± 1.19 200 ± 3.79
Original R-FCN [21] 57.89 ± 0.64 68.69 ± 0.56 76.60 ± 1.17 82.12 ± 1.38 86.28 ± 1.73 88.61 ± 1.79 50.13 ± 1.02 222 ± 31.77
3DCE, 9 slices [1] 62.70 ± 0.71 72.20 ± 0.46 79.85 ± 1.58 84.51 ± 1.76 87.43 ± 1.73 89.67 ± 1.85 57.09 ± 1.93 239 ± 24.83
Dense DAL 3DCE R-FCN, 9 slices [3] 63.32 ± 1.10 72.79 ± 0.95 80.94 ± 2.29 85.93 ± 2.29 88.88 ± 2.50 90.82 ± 2.38 58.28 ± 0.77 235 ± 3.51
DA-SHT Dense 3DCE R-FCN, 9 slices (ours) 64.86 ± 1.43 74.39 ± 1.01 81.41 ± 2.08 86.04 ± 2.38 89.26 ± 1.82 91.38 ± 1.77 59.22 ± 1.19 241 ± 2.09

Table 6. Universal lesion detection (ULD) task results and inference time on the original DeepLesion
dataset. Sensitivity (%) at various FPs per image is used as the evaluation metric. std denotes the
standard deviation value. IT denotes the inference time.

Evaluation Metric Sen@0.5 ± std Sen@1 ± std Sen@2 ± std Sen@4 ± std Sen@8 ± std Sen@16 ± std mAP ± std IT(ms) ± std

Faster R-CNN [25] 56.19 ± 2.38 67.81 ± 0.80 75.98 ± 1.32 82.13 ± 0.68 86.14 ± 0.60 88.76 ± 0.57 50.98 ± 2.21 207 ± 13.05
Original R-FCN [21] 56.45 ± 0.14 67.55 ± 0.98 76.02 ± 0.73 81.72 ± 0.59 86.22 ± 0.67 88.58 ± 0.54 50.17 ± 1.66 214 ± 3.97
3DCE R-FCN [1] 60.25 ± 1.83 71.01 ± 1.19 78.99 ± 1.12 84.39 ± 0.58 87.66 ± 0.46 89.90 ± 0.70 54.62 ± 2.07 232 ± 2.65
Dense DAL 3DCE R-FCN [3] 60.61 ± 1.60 71.52 ± 0.84 79.78 ± 0.95 85.10 ± 0.94 88.52 ± 0.99 90.68 ± 0.82 54.41 ± 1.49 243 ± 2.30
DA-SHT Dense 3DCE (ours) 60.97 ± 1.32 72.50 ± 0.81 79.99 ± 0.24 84.89 ± 0.22 88.52 ± 0.26 90.86 ± 0.30 55.15 ± 1.29 233 ± 6.11

However, we also note from Table 6 that the detection performance improvement of
our proposed DA-SHT Dense 3DCE method is marginal compared to the Dense DAL 3DCE
R-FCN [3] on the original DeepLesion dataset ULD task. A reasonable explanation for
this is two-fold, including the inapplicability of the DA mechanism and the effect of SHT
being diluted. First, the proposed DA mechanism provides depth information for better
supervising the classification of lesion categories. However, the ULD task is essentially
a binary task, which only distinguishes lesions from non-lesions. This task focuses on
accurately locating bounding boxes without the need to classify lesion categories. Therefore,
the effectiveness of DA is weakened here. This reason can also be evident in the ablation
study section (Section 4.3). Second, besides the DA mechanism, we replace the DAL scheme
with the SHT scheme in our method. This novel SHT scheme produces good results mainly
for small lesions, which can be proved from Table 5. However, the proportion of the small
lesions in the original DeepLesion dataset is relatively low, which causes the improvement
not to be significant when we perform the ULD task on the original DeepLeison dataset.
This can be seen as a dilution of the detection performance boost on the small lesions.

Nevertheless, our work makes significant contributions to front-line screening univer-
sal lesion detection CADx systems. Future evaluations of disease-specific lesion detection
CADx systems should compare not only against other disease-specific systems [43–47] but
also against universal lesion detection CADx systems [48].

4.2. Multi-Organ Lesion Detection

The evaluation presented in this section mainly focuses on the MOLD task so as to
better prove the clinical value of our CADx system. Therefore, we have evaluated the
effectiveness of our overall model by using the multi-organ lesion dataset, which was
extracted from the original DeepLesion dataset. As listed in Table 7, we compare our
model with six baseline methods, the faster region-based CNN (Faster R-CNN), the original
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R-FCN, the 3DCE network, Dense DAL 3DCE R-FCN, Dense DKS 3DCE R-FCN, and MP3D
model. The Faster R-CNN and the original R-FCN network only use three neighboring
slices, and no feature map fusion is used. For a fair comparison and limited by the GPU
memory, we used 9 slices in the 3DCE, Dense DAL 3DCE R-FCN, Dense DKS 3DCE R-FCN,
MP3D network, and DA-SHT 3DCE models. We set the depth of the MP3D model to
18 because of the limited GPU memory. The number of stages is set to 2, and the data
augmentation training scheme and the COCO dataset [49] pre-trained model are both
removed for a fair comparison. In Table 7, it is demonstrated that our DA-SHT 3DCE model
has convincing results in both the AS and mAP metrics. Compared with two widely-used
baseline methods, Faster R-CNN, and the original R-FCN, it boosts the performance by
around 6.19–17.60% on AS at various FPs per image and 8.19–14.65% (average 11.43%) on
mAP. Compared to the 3DCE network, Dense DAL 3DCE R-FCN, Dense DKS 3DCE R-FCN,
our DA-SHT 3DCE model constantly improves the MOLD results by 1.72–15.21% in AS
and 3.63–10.63% in mAP. As for the MP3D model, our method improves the sensitivities at
different false positive values by 0.05–5.72%.

Table 7. Multi-organ lesion detection (MOLD) task results on the extracted multi-organ DeepLesion
dataset. AS (%) at various FPs per image and mAP (%) were used as the evaluation metrics. std
denotes the standard deviation value.

Evaluation Metric AS@0.5 ± std AS@1 ± std AS@2 ± std AS@4 ± std AS@8 ± std AS@16 ± std mAP ± std

Faster R-CNN [25] 37.01 ± 0.49 47.38 ± 0.44 56.73 ± 0.89 64.69 ± 0.33 70.97 ± 0.52 75.92 ± 1.43 32.20 ± 0.42
Original R-FCN [21] 31.52 ± 0.24 41.13 ± 0.33 49.69 ± 0.86 56.38 ± 1.16 63.21 ± 1.03 67.98 ± 1.05 25.74 ± 0.48
3DCE, 9 slices [1] 36.77 ± 1.28 47.01 ± 2.39 56.80 ± 2.46 65.08 ± 2.34 70.83 ± 2.00 75.65 ± 1.82 32.43 ± 1.66
Dense DAL 3DCE R-FCN, 9 slices [3] 42.09 ± 0.80 54.80 ± 1.44 65.17 ± 0.72 71.33 ± 1.28 76.79 ± 1.13 80.39 ± 0.81 36.76 ± 1.47
Dense DKS 3DCE R-FCN, 9 slices [37] 34.00 ± 0.58 42.84 ± 1.58 53.50 ± 0.63 62.48 ± 0.09 67.90 ± 0.09 74.36 ± 1.00 29.76 ± 0.28
MP3D, 9 slices [7] 44.32 ± 1.11 53.30 ± 0.89 61.69 ± 0.60 68.16 ± 0.90 74.94 ± 0.08 80.07 ± 0.26 43.58 ± 1.01
DA-SHT Dense 3DCE R-FCN, 9 slices (ours) 44.37 ± 0.12 58.05 ± 1.13 67.29 ± 0.12 73.88 ± 0.17 78.97 ± 0.14 82.11 ± 0.12 40.39 ± 0.41

In total, there are eight different types of lesions in the DeepLesion dataset. In order
to better evaluate the sensitivity of the network to different kinds of lesions, we have also
analyzed the detection accuracy of different lesion types. The abbreviations of eight lesion
type names are mentioned in Section 3.4. In order to intuitively show the performance of
all methods for different lesions, we use bar charts to illustrate the results. Table 8 shows
the sensitivity at 4 FPs per image on different lesions. The results of our network surpass
baseline methods in most lesion types with a convincing margin. For the most common
types of lesions, those in the lungs and abdomen, our DA-SHT 3DCE model increases the
sensitivity by around 1.42–15.65%. In particular, for infrequent bone lesions, which only
occupy 2.5 % of the entire dataset, our model achieves a significant increase of at least 5.41%
when compared with the other baseline models. This indicates that our model can give a
good detection performance even when the data is limited. Similar to the trend in Table 8,
the AP values in Table 9 also show a similar trend on different lesions.

Table 8. Multi-organ lesion detection (MOLD) task results in 8 different kinds of lesions. Sensitivity
(%) at 4 FPs per image ± standard deviation (std) was used as the evaluation metrics. The lesion
name abbreviations can be found in Section 3.4.

Faster R-CNN Original R-FCN 3DCE, 9 Slices DENSE DAL 3DCE
R-FCN

Dense DKS 3DCE
R-FCN

DA-SHT Dense
3DCE R-FCN

(Ours)

BN 28.79 ± 1.50 16.69 ± 7.02 15.34 ± 11.99 29.52 ± 0.66 30.85 ± 1.38 40.47 ± 0.66
AB 26.68 ± 0.54 21.74 ± 1.06 26.41 ± 3.80 33.87 ± 2.66 24.84 ± 1.70 35.16 ± 2.66
ME 43.02 ± 0.12 39.22 ± 0.74 45.57 ± 7.72 50.56 ± 0.54 46.83 ± 2.90 55.26 ± 2.40
LV 34.58 ± 1.58 32.00 ± 1.98 38.79 ± 4.90 36.19 ± 2.40 30.84 ± 0.41 41.09 ± 2.28
LU 52.28 ± 0.35 52.93 ± 0.63 56.02 ± 1.89 56.23 ± 2.28 52.76 ± 1.49 58.85 ± 2.52
KD 29.13 ± 8.80 12.38 ± 1.85 25.72 ± 4.29 31.78 ± 2.52 17.01 ± 0.79 28.23 ± 6.37
ST 22.28 ± 3.50 13.58 ± 1.67 24.68 ± 1.11 26.08 ± 5.64 16.65 ± 1.34 26.56 ± 5.64
PV 20.84 ± 1.11 17.40 ± 3.54 26.94 ± 1.79 29.86 ± 0.41 18.28 ± 1.46 36.68 ± 0.41
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Table 9. Multi-organ lesion detection (MOLD) task results in 8 different kinds of lesions. Average
Precision (%) ± standard deviation (std) was used as the evaluation metric. The lesion name
abbreviations can be found in Section 3.4.

Faster R-CNN Original R-FCN 3DCE, 9 Slices Dense DKS
3DCE R-FCN

DENSE DAL
3DCE R-FCN

DA-SHT Dense 3DCE
R-FCN (Ours)

BN 48.65 ± 4.22 37.84 ± 12.48 40.54 ± 11.42 54.05 ± 4.46 54.05 ± 4.65 59.46 ± 14.28
AB 63.5 ± 1.48 56.13 ± 2.04 64.42 ± 3.81 63.19 ± 8.84 68.40 ± 2.86 71.78 ± 2.86
ME 75.95 ± 1.42 70.99 ± 1.33 77.48 ± 1.02 79.77 ± 4.50 79.01 ± 1.43 82.44 ± 1.43
LV 69.57 ± 2.28 69.57 ± 1.60 73.91 ± 2.47 71.20 ± 1.38 79.35 ± 3.84 78.26 ± 3.84
LU 80.45 ± 2.28 79.89 ± 2.73 81.87 ± 1.68 79.32 ± 3.46 82.72 ± 2.38 84.14 ± 2.38
KD 63.08 ± 6.79 43.08 ± 5.10 58.46 ± 0.54 46.15 ± 1.83 72.31 ± 2.99 61.54 ± 2.99
ST 58.56 ± 0.78 46.85 ± 2.23 63.96 ± 1.67 51.35 ± 1.97 66.67 ± 1.33 73.87 ± 1.33
PV 57.78 ± 1.53 46.67 ± 1.22 60.00 ± 0.71 54.81 ± 0.88 68.15 ± 0.18 74.07 ± 0.18

Figure 9 illustrates some qualitative results. The images in the second and fifth rows
show the results of the 3DCE [1] network, and the images in the third and sixth rows
show the results of our model. Predictions with scores >0.9 are shown. Predictions with
scores >0.7 and >0.8 can be found in Figures S2 and S3 in the Supplementary Materials.
The categorical information in the upper left corner of each image is the ground truth
of the lesion. The green bounding boxes with diameters in the first and fourth rows are
ground truth bounding boxes. It can be observed from the samples that DA-SHT 3DCE
R-FCN can effectively reduce FPs and FNs, and it can give higher confidence scores for true
positive results. The cases can also identify the depth-aware mechanism that can reduce
the misclassification errors in the MOLD task to some extent. In order to provide a more
intuitive and rigorous quantitative comparison, we also used the free-response receiver
operating characteristic (FROC) curves with 95% confidence intervals (CI95) to evaluate the
performance of our method and the selected baseline method, as shown in Figure 10. We
also provide comparison results of the baseline and proposed modules during the training
and analysis steps, which can be found in Table 10. We report the validation AS value at
4 FPs per image during the whole training process.

Table 10. Comparison of the baseline and proposed modules during training and analysis steps. AS
(%) at 4 FPs per image was used as the evaluation metric.

Method Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 8

Faster R-CNN [25] 21.40 33.90 46.98 46.34 63.39 64.13 65.34 65.08
Original R-FCN [21] 12.24 28.06 37.96 41.83 58.14 57.63 58.67 57.87
3DCE, 9 slices [1] 21.81 39.18 47.81 51.06 67.10 68.91 68.78 69.41
Dense DAL 3DCE R-FCN, 9 slices [3] 31.54 49.97 50.30 64.59 74.46 73.96 73.61 73.53
Dense DKS 3DCE R-FCN, 9 slices [37] 17.79 29.53 38.29 44.87 62.31 63.06 63.77 63.74
DA-SHT Dense 3DCE R-FCN, 9 slices (ours) 32.28 47.16 53.53 60.07 74.66 75.84 75.92 76.14

4.3. Ablation Study

In order to better analyze the contributions of the three schemes, the multiple resolu-
tion feature map pathways (“DENSE” in Table 11), the SHT strategy (“SHT” in Table 11),
and the depth-aware scheme (“DA” in Table 11), the distinct impacts of our proposed
additions mentioned above, which result in our final formulation DA-SHT 3DCE R-FCN
have been investigated. In the ablation study experiments, first, we evaluated the 3DCE
backbone [1] with default settings, and after that, we incrementally added the three schemes
as mentioned above. Since the inclusion of the SHT strategy was implemented based on
the dense connection mechanism, we omitted the combination of 3DCE + SHT. Table 11
summarizes these results. 3DCE denotes the backbone, which was first proposed in [1].
DENSE denotes using feature maps in all resolutions, which was introduced in Section 3.1.
DAL, SHT, and RANDOM all refer to the strategy by which we select the auxiliary losses
during the training process. They are contrary to each other. Therefore, they cannot appear
in the same network. The details can be found in the caption of Table 11. DA denotes the
depth-aware scheme we proposed and described in Section 3.3.
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Figure 1: Qualitative results using the DA-SHT Dense 3DCE framework on di↵erent lesions.
The images in the first and third rows show the results of the 3DCE1 network, and the images
in the second and fourth rows show the results of our model. Predictions with scores > 0.9 are
shown. The categorical information in the upper left corner of each image is the ground truth
of the lesion. The green bounding boxes with diameters are ground truth bounding boxes,
while other bounding boxes show the automatic detection results, including the category
results and the confidence scores.

Last edited March15, 2023

Gr
ou

nd
 T

ru
th

Gr
ou

nd
 T

ru
th

Ba
se

lin
e

Ba
se

lin
e

O
ur

s
O

ur
s

Figure 9. Qualitative results using the DA-SHT Dense 3DCE framework on different lesions. The
images in the second and fifth rows show the results of the 3DCE [1] network, and the images in
the third and sixth rows show the results of our model. Predictions with scores >0.9 are shown. The
categorical information in the upper left corner of each image is the ground truth of the lesion. The
green bounding boxes with diameters in the first and fourth rows are ground truth bounding boxes.
The bounding boxes in red and blue highlight the categorical and confidence scores of the automatic
detection results, respectively.



Bioengineering 2024, 11, 998 24 of 29

(a) (b)

(c) (d)
Figure 10. FROC curves of our proposed and baseline methods used for the ULD task on the original
DeepLesion dataset. (a) Faster R-CNN; (b) Original R-FCN; (c) 3DCE R-FCN; (d) DA-SHT Dense
3DCE R-FCN (Ours).

Table 11. Performance comparison of various methods and results from our ablation study. The
“LOSS” column indicates integration with auxiliary losses, “DAL” refers to dense auxiliary losses,
“SHT” represents our skipped-layer scheme, and “RANDOM” involves three arbitrary auxiliary
losses from Conv1 to Conv5. Rows 5 and 6 present outcomes for the Universal Lesion Detection
(ULD) task, while rows 7 through 9 detail the Multi-Organ Lesion Detection (MOLD) task.

3DCE? DENSE? DA? LOSS? Sen@2 ± std Sen@4 ± std AS@2 ± std AS@4 ± std mAP ± std

✓ 78.99 ± 1.12 84.39 ± 0.58 56.80 ± 2.46 65.08 ± 2.34 32.43 ± 1.66
✓ ✓ 77.67 ± 0.36 83.33 ± 0.53 60.02 ± 1.02 67.32 ± 1.13 35.74 ± 1.40
✓ ✓ 79.36 ± 0.77 84.47 ± 0.24 63.58 ± 0.38 71.42 ± 0.26 37.99 ± 0.17
✓ ✓ DAL 79.78 ± 0.95 85.10 ± 0.94 65.17 ± 0.72 71.33 ± 1.28 36.76 ± 1.47
✓ ✓ ✓ DAL 79.84 ± 0.85 84.79 ± 0.35 66.25 ± 0.33 73.20 ± 0.13 40.29 ± 0.18
✓ ✓ ✓ RANDOM 79.93 ± 0.87 84.69 ± 0.36 66.30 ± 0.34 73.63 ± 0.14 40.38 ± 0.40
✓ ✓ ✓ SHT 79.99 ± 0.24 84.8 ± 0.22 67.29 ± 0.12 73.88 ± 0.17 40.39 ± 0.41

Regarding the ULD task, the effectiveness of SHT can be found in the last three
rows of Table 11. After employing the DENSE+SHT+DA algorithm to optimize the
training process, our DA-SHT 3DCE already outperforms the DENSE+DAL+DA and
DENSE+RANDOM+DA combinations. The sensitivity at 2.0 FPs is 0.15% higher than with
DENSE+DAL+DA and 0.10% higher than with DENSE+DAL+DA at 4.0 FPs. The possible
explanation of the marginal boost is two-fold, containing the DA mechanism’s inapplica-
bility and the effect of SHT being diluted, which has already been analyzed in Section 4.1.
As for the DA scheme, the original 3DCE + DA scheme performs poorly on the ULD task,
indicating that only using the depth information from the CT slices is sub-optimal in the
ULD task. This is because the depth information contributes to the classification process.
However, the ULD only distinguishes lesions from non-lesions, which is not challenging in
the classification process, making the DA mechanism’s effectiveness indemonstrable. In
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addition to this, the predicted depth scores are not fully accurate as they are outputs from
an unsupervised network. Therefore, adding the DA scheme when conducting the ULD
task means that the network has to fit the depth scores, which are less relevant to the ULD
task and contain noise. As a result, the DA scheme can interfere with the network and lead
to poor performance.

We have also carried out a complete series of ablation studies on the MOLD task. From
Table 11, we can see that the proposed three mechanisms contribute more to this MOLD
task than the ULD task. From the first and second row of Table 11, it is obvious that adding
the DA mechanism significantly boosts the detection sensitivity of all FP rates, with an
improvement of 3.22% at 2.0 FPs, 2.24% improvement at 4.0 FPs, and 3.31% improvement
at mAP. Moreover, with the proposed mechanism of SHT to replace the original DAL, the
sensitivity can be further improved from 66.25% to 67.29% (2.0 FPs per image), which can
be attributed to the SHT mechanism. From the last three rows of Table 11, the effectiveness
of reducing part of the auxiliary losses has been proved. Although keeping the 1st, 3rd,
and 5th auxiliary losses can achieve the best performance, selecting three auxiliary losses
randomly can still improve the detection performance compared to using all auxiliary
losses. This hierarchical training strategy can make the losses more adaptive to the task
we worked on and reduce over-fitting as well as the number of parameters. The depth-
aware scheme also adds significant training signals, providing more accurate localization
information except for the 2D bounding boxes. Consistency between the z-axis depth
score and the lesion type classification helps to reduce FPs. It is obvious that these three
mechanisms can further boost the performance, which is proved by the sensitivity of 73.88%
at 4.0 FPs, the improvement of almost 10% at 2.0 FPs, and almost 8 % in mAP value over
the best-reported results of the baseline 3DCE model.

4.4. Sensitivities to Hyper-Parameters

There are multiple hyper-parameters between losses, e.g., α and β in Equation (1).
In Table 12, we investigate the settings of the hyper-parameters α and β. By default, we
fixed α = 10 according to [25] and set β = 1, which makes the three terms in Equation (1)
roughly equally weighted after normalization. For better comparison, we conducted the
comparison experiments on different β values on a scale of about three orders of magnitude
(0.1 to 100). From the results in Table 12, it is obvious that the choice of hyper-parameter
β is sensitive to the final detection results. When setting β = 0.1, 10, 100, the sensitivity at
2 FPs drops by a considerable margin of 7–9% compared to the default setting (β = 1), while
the mAP decreases following the same trend, which is 6–8%. To get the best performance,
we fixed β to 1 as mentioned in Section 3.2.

Table 12. Multi-organ lesion detection (MOLD) results of DA-SHT Dense 3DCE R-FCN, 9 slices
model on the extracted multi-organ DeepLesion dataset using different values of β in Equation (1).
The default setting of using α = 10 is the same as that in [1,25]. AS (%) at various FPs per image and
mAP (%) were used as the evaluation metrics. std denotes the standard deviation value.

α and β Value AS@0.5 ± std AS@1 ± std AS@2 ± std AS@4 ± std AS@8 ± std AS@16 ± std mAP ± std

α = 10, β = 0.1 35.50 ± 0.22 47.13 ± 0.67 58.00 ± 0.04 66.69 ± 0.06 74.06 ± 0.52 77.83 ± 0.29 31.96 ± 0.15
α = 10, β = 1 44.37 ± 0.12 58.05 ± 1.13 67.29 ± 0.12 73.88 ± 0.17 78.97 ± 0.14 82.11 ± 0.12 40.39 ± 0.41
α = 10, β = 10 36.20 ± 0.19 48.48 ± 0.46 60.04 ± 0.73 67.04 ± 0.79 72.25 ± 0.81 77.51 ± 0.81 32.24 ± 0.37
α = 10, β = 100 37.60 ± 0.17 49.43 ± 0.52 60.44 ± 0.33 68.10 ± 0.48 75.83 ± 0.33 79.59 ± 0.20 34.42 ± 0.24

4.5. Analysis of the Predicted Depth Scores

The predicted depth scores from the first stage regressor may not always be accurate
enough, directly affecting the training process and inference results of the second stage
detector. To evaluate how the inaccurate depth scores predicted by the regressor affect
the subsequent detection tasks, we added different levels of Gaussian noise to the depth
scores predicted from the first stage and utilized these depth scores for the second stage
training process. The comparison experiments are shown in Table 13. It is obvious that the
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detector is not very sensitive to the noise in the depth scores. In addition, the experimental
results also demonstrate that the final detection results are robust to different noise levels.
A reasonable explanation is that organs are three-dimensional structures occupying a
specific depth range. Therefore, weak noise on depth scores will not significantly impact
the category classification results.

Table 13. Experimental results after adding different levels of Gaussian noise to the predicted depth
scores generated by the depth regressor in the first stage. Multi-organ lesion detection (MOLD)
task results on the extracted multi-organ DeepLesion dataset have been shown using the proposed
DA-SHT Dense 3DCE R-FCN, 9 slices model. AS (%) at various FPs per image and mAP (%) were
used as the evaluation metrics. std denotes the standard deviation value.

Gaussian Noise AS@0.5 ± std AS@1 ± std AS@2 ± std AS@4 ± std AS@8 ± std AS@16 ± std mAP ± std

mean = 0, standard deviation = 0.01 46.24 ± 0.67 56.84 ± 0.52 67.31 ± 0.47 74.54 ± 0.16 78.78 ± 0.43 81.56 ± 0.29 40.69 ± 0.50
mean = 0, standard deviation = 0.02 44.56 ± 0.57 56.03 ± 0.27 67.37 ± 0.26 73.77 ± 0.18 78.89 ± 0.23 81.09 ± 0.09 40.39 ± 0.50
mean = 0, standard deviation = 0.1 43.81 ± 0.12 56.30 ± 0.27 66.51 ± 0.56 73.86 ± 0.75 77.77 ± 0.22 81.49 ± 0.36 39.90 ± 0.62
mean = 0, standard deviation = 0.2 43.80 ± 1.68 56.43 ± 1.00 67.24 ± 0.28 73.23 ± 0.44 78.40 ± 0.50 81.20 ± 0.59 39.53 ± 1.09

5. Discussion

The results of our study indicate that the proposed DA-SHT Dense 3DCE network
significantly enhances the performance of multi-organ lesion detection (MOLD) in chest
CT scans. Our findings are consistent with several key studies in the literature, yet also
provide unique contributions to the field.

First, our approach outperforms the original 3DCE network, as demonstrated by the
superior detection accuracy for both large and small lesions. This aligns with the findings
of [3], who also emphasized the importance of incorporating multi-scale features for
effective lesion detection. However, our study extends their work by introducing depth-
aware (DA) mechanisms, which significantly improve the exploitation of 3D contextual
information from CT volumes.

In comparison to the work of [1], who utilized ConvNets for lesion detection, our
method provides a more comprehensive framework by integrating skipped-layer hierarchi-
cal training (SHT). This novel mechanism enhances the backpropagation process, ensuring
that both shallow and deep layers receive adequate supervision. This contrasts with
Yan et al.’s approach [1], which primarily focused on feature extraction at a single scale.

Moreover, our results highlight the effectiveness of the DA scheme in reducing com-
mon misjudgments associated with normalized CT scan depth scores. Previous studies,
such as those by [50], have shown the potential benefits of depth information in medical
imaging. Our work builds on these insights by demonstrating a concrete implementation
within a multi-organ lesion detection framework, thereby providing a more robust model
that leverages depth domain knowledge effectively.

Overall, our study confirms the value of integrating advanced mechanisms such as
depth awareness and hierarchical training into lesion detection models. These innovations
address several limitations identified in previous research, providing a more accurate
and robust solution for multi-organ lesion detection in chest CT scans. Future research
could further explore these mechanisms in other medical imaging applications, potentially
leading to broader advancements in the field.

6. Conclusions

In this work, we have introduced a novel architecture for the MOLD task in chest
CT scans, demonstrating the efficacy of integrating a SHT mechanism into our proposed
Dense 3DCE network. This innovation not only retains the benefits of dense auxiliary
losses—which bolster the supervision of early, shallow layers—but also encourages learning
more discriminative features essential for accurate lesion detection.

The introduction of a depth score regressor into our Dense 3DCE framework allows
the model to utilize 3D contextual features along with precise depth information from CT
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slices, enhancing our ability to exploit the intrinsic structural information of CT volumes.
This approach helps in circumventing common misjudgments associated with normalized
CT scan depth scores, thereby improving the detection accuracy.

6.1. Limitations

Despite the promising results, our study has certain limitations that must be ac-
knowledged. First, the DeepLesion dataset, although extensive, may not represent the
full spectrum of lesion types and variations seen in clinical practice. The sample size
and diversity could impact the generalizability of our model to different populations and
imaging conditions. Second, our approach relies heavily on the quality and resolution
of the CT scans, which may not be consistent across all medical facilities. Additionally,
while the DA-SHT Dense 3DCE network shows improved performance, the complexity
and computational demands of the model might limit its scalability and application in
real-time clinical settings.

6.2. Future Research Directions

Looking forward, the potential for further improving MOLD tasks remains vast.
Future work could explore the integration of more complex attention mechanisms [51] to
refine the feature extraction process, potentially increasing the sensitivity and specificity of
lesion detection. Additionally, investigating the incorporation of generative adversarial
networks (GANs) [52] could offer novel ways of augmenting training data, particularly
for under-represented lesion types, thereby enhancing the robustness of the model against
varied pathological manifestations. These directions not only promise to enhance the
performance of our current model but also pave the way for broader applications in
medical imaging diagnostics.
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different lesions. Predictions with scores >0.7 are shown; Figure S3: Qualitative results using the
DA-SHT Dense 3DCE framework on different lesions. Predictions with scores >0.8 are shown.
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