Image Input Layer |
|
|
|
|
Pre-train model—VGG16 [20] |
Conv1 |
Convolutional Layer |
3 × 3, stride = 1, padding = same |
64 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
64 |
ReLU Layer |
|
|
|
Max Pooling |
|
2 x 2 |
Conv2 |
Convolutional Layer |
3 × 3, stride = 1, padding = same |
128 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
128 |
ReLU Layer |
|
|
|
Max Pooling |
|
2 × 2 |
Conv3 |
Convolutional Layer |
3 × 3, stride = 1, padding = same |
256 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
256 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
256 |
ReLU Layer |
|
|
|
Max Pooling |
|
2 × 2 |
Conv4 |
Convolutional Layer |
3 × 3, stride = 1, padding = same |
512 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
512 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
512 |
ReLU Layer |
|
|
|
Max Pooling |
|
2 × 2 |
Conv5 |
Convolutional Layer |
3 × 3, stride = 1, padding = same |
512 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
512 |
ReLU Layer |
|
|
Convolutional Layer |
3 × 3, stride = 1, padding = same |
512 |
ReLU Layer |
|
|
|
Max Pooling |
|
2 × 2 |