Skip to main content
. 2024 Oct 3;11(10):998. doi: 10.3390/bioengineering11100998

Table 2.

Details of the pre-train model at each ConvNet’s layer (unit: pixel).

Layer Type Kernel Attribute Num of Filters
Image Input Layer
Pre-train model—VGG16 [20] Conv1 Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer
Max Pooling 2 x 2
Conv2 Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer
Max Pooling 2 × 2
Conv3 Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer
Max Pooling 2 × 2
Conv4 Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Max Pooling 2 × 2
Conv5 Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Max Pooling 2 × 2