Skip to main content
. 2024 Oct 3;11(10):998. doi: 10.3390/bioengineering11100998

Table 3.

Details of the unsupervised lesion detector at each ConvNet’s layer (unit: pixel).

Layer Type Kernel Attribute Num of Filters
Image Input Layer
Lesion Detector Conv1 Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 64
ReLU Layer
Max Pooling 2 × 2
Conv2 Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 128
ReLU Layer
Max Pooling 2 × 2
Conv3 Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer
Lesion Detector Conv3 Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 256
ReLU Layer
Max Pooling 2 × 2
Conv4 Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Conv5 Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 ×3, stride = 1, padding = same 512
ReLU Layer
Convolutional Layer 3 × 3, stride = 1, padding = same 512
ReLU Layer
Conv6_1 - Conv6_5 Convolutional Layer 1 × 1, stride = 0, no padding 7 × 7 × 6
PS ROI Pooling 7 × 7
Fully Connected Layer