Table 5.
Evaluation Metric | Sen@0.5 ± std | Sen@1 ± std | Sen@2 ± std | Sen@4 ± std | Sen@8 ± std | Sen@16 ± std | mAP ± std | IT(ms) ± std |
---|---|---|---|---|---|---|---|---|
Faster R-CNN [25] | 58.93 ± 1.87 | 68.46 ± 0.18 | 76.69 ± 0.99 | 82.27 ± 1.75 | 85.98 ± 2.02 | 88.52 ± 1.88 | 52.80 ± 1.19 | 200 ± 3.79 |
Original R-FCN [21] | 57.89 ± 0.64 | 68.69 ± 0.56 | 76.60 ± 1.17 | 82.12 ± 1.38 | 86.28 ± 1.73 | 88.61 ± 1.79 | 50.13 ± 1.02 | 222 ± 31.77 |
3DCE, 9 slices [1] | 62.70 ± 0.71 | 72.20 ± 0.46 | 79.85 ± 1.58 | 84.51 ± 1.76 | 87.43 ± 1.73 | 89.67 ± 1.85 | 57.09 ± 1.93 | 239 ± 24.83 |
Dense DAL 3DCE R-FCN, 9 slices [3] | 63.32 ± 1.10 | 72.79 ± 0.95 | 80.94 ± 2.29 | 85.93 ± 2.29 | 88.88 ± 2.50 | 90.82 ± 2.38 | 58.28 ± 0.77 | 235 ± 3.51 |
DA-SHT Dense 3DCE R-FCN, 9 slices (ours) | 64.86 ± 1.43 | 74.39 ± 1.01 | 81.41 ± 2.08 | 86.04 ± 2.38 | 89.26 ± 1.82 | 91.38 ± 1.77 | 59.22 ± 1.19 | 241 ± 2.09 |