Skip to main content
. 2024 Oct 3;11(10):998. doi: 10.3390/bioengineering11100998

Table 5.

Universal lesion detection (ULD) task results and inference time on the selected small DeepLesion dataset. Sensitivity (%) at various FPs per image and the mean average precision (mAP) are used as the evaluation metrics. std denotes the standard deviation value. IT denotes the inference time.

Evaluation Metric Sen@0.5 ± std Sen@1 ± std Sen@2 ± std Sen@4 ± std Sen@8 ± std Sen@16 ± std mAP ± std IT(ms) ± std
Faster R-CNN [25] 58.93 ± 1.87 68.46 ± 0.18 76.69 ± 0.99 82.27 ± 1.75 85.98 ± 2.02 88.52 ± 1.88 52.80 ± 1.19 200 ± 3.79
Original R-FCN [21] 57.89 ± 0.64 68.69 ± 0.56 76.60 ± 1.17 82.12 ± 1.38 86.28 ± 1.73 88.61 ± 1.79 50.13 ± 1.02 222 ± 31.77
3DCE, 9 slices [1] 62.70 ± 0.71 72.20 ± 0.46 79.85 ± 1.58 84.51 ± 1.76 87.43 ± 1.73 89.67 ± 1.85 57.09 ± 1.93 239 ± 24.83
Dense DAL 3DCE R-FCN, 9 slices [3] 63.32 ± 1.10 72.79 ± 0.95 80.94 ± 2.29 85.93 ± 2.29 88.88 ± 2.50 90.82 ± 2.38 58.28 ± 0.77 235 ± 3.51
DA-SHT Dense 3DCE R-FCN, 9 slices (ours) 64.86 ± 1.43 74.39 ± 1.01 81.41 ± 2.08 86.04 ± 2.38 89.26 ± 1.82 91.38 ± 1.77 59.22 ± 1.19 241 ± 2.09