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Abstract: Within the central nervous system, synaptic plasticity, fundamental to processes like
learning and memory, is largely driven by activity-dependent changes in synaptic strength. This
plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are
bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence
show that the heart–brain axis could be severely compromised by both neurological and cardiovas-
cular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity,
diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition
known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and
molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or
LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by
heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that
endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synap-
tically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV
disorders impact on the proper function of central synapses will shed novel light on the molecular
underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific
pharmacological treatments.

Keywords: heart–brain axis; cardiovascular disorders; synaptic plasticity; cardiogenic dementia;
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1. Introduction

The heart–brain axis (HBA) is based upon the bidirectional flow of information be-
tween the heart and the brain, which becomes evident when the dysfunction in one system
leads to a significant impairment in the function (and even in the structure) of the other [1–3].
The functional interplay between the cardiovascular (CV) and nervous systems has shaped
the concept of neurocardiology, a branch of medicine that aims at investigating the patho-
logical and therapeutic implications of the HBA [4]. The HBA is perhaps more known to
cardiologists rather than neurologists as the potential ability of the central nervous system
(CNS) to cause CV disorders through the cardiomotor sympathetic and parasympathetic
outflow of the autonomous nervous system has long been recognized [1,4]. An imbalance
between the sympathetic (cardioexcitatory) and parasympathetic (cardioinhibitory) tone
could lead to emotional stress-induced cardiomyopathy syndromes, including Takotsubo
syndrome and neurogenic stunned myocardium [1,4,5]. In addition, the heart can promote
catecholamine secretion via the hypothalamic–pituitary–adrenal (HPA) axis, which also
promote cortisol release from the adrenal glands. The neuroendocrine storm triggered by
the HPA further contributes to myocardial injury by predisposing the heart to insults, such
as ischemia, inflammation, and ionic disturbances [6,7]. The autonomic imbalance induced
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by emotional and/or physical stress could also result in hypertension, increased afterload,
and, ultimately, congestive heart failure (HF) by impairing endothelial signaling, mean
arterial pressure, cardiac phenotype and function (e.g., left ventricular hypertrophy and ar-
rhythmia) and the renin–angiotensin–aldosterone system [5,8]. The harmful consequences
of the increased sympathetic tone on the CV system have gained further momentum during
the recent COronaVIrus Disease 19 (COVID-19) pandemic, in which the HBA dysfunction
has contributed to worsening the outcome of COVID-19 patients [9].

However, CV diseases, pivotal among which are HF, metabolic syndrome, and ar-
rhythmias, may also result in severe neurological disorders as a consequence of cerebral
hypoperfusion and cardioembolic stroke or, in the presence of myocardial injury, because
of systemic inflammation and neurohumoral activation [2,10–13]. The ability of the CV
system to regulate neuronal signaling and synaptic plasticity may lead patients with cardiac-
related risk factor to present severe cognitive deficits [2,12], a condition for which the term
“cardiogenic dementia” has been coined (Figure 1) [2,14]. The mechanisms by which CV
dysfunction may lead to cognitive defects and induce cardiogenic dementia have been
widely investigated and discussed in an excellent recent review article [2]. Nevertheless,
the pathophysiological link between CV disorders and the impairment of neuronal signal-
ing and synaptic plasticity, which underlies cardiogenic dementia at molecular/cellular
levels, remains still elusive. Herein, we first describe the ionic mechanisms of learning and
memory by focusing our attention on the excitatory glutamatergic synapses, which can
experience an increase or a decrease in the strength of synaptic transmission that underlie
cognitive and emotional processes. Then, we illustrate how HF, metabolic syndrome, in-
cluding hypertension, obesity, diabetes and insulin resistance, and endothelial dysfunction,
and arrhythmias may impair the ionic and synaptic mechanisms responsible for synaptic
plasticity in the CNS. A better understanding of how CV disorders impact on the proper
function (and structure) of central synapses is not only expected to shed novel light on the
molecular underpinnings of cardiogenic dementia but also to provide a new prospect for
more effective pharmacological treatments.
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Figure 1. Cardiogenic dementia: a multifaceted pathway. Cardiogenic dementia can result from
cognitive impairment following heart disease. This impairment can occur due to chronic cerebral
hypoperfusion (CCH) or independently of it. CCH arises when long-term heart damage reduces
cardiac output. This triggers a chain of events involving oxidative stress, local inflammation, immune
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responses, and blood–brain barrier (BBB) disruption. Cardiogenic dementia can also occur without
changes in cerebral blood flow (CBF). This involves systemic inflammation, neurohumoral activation,
and the release of exosomes. Increased norepinephrine (NE) and reactive oxygen species (ROS) can
result from sympathetic excitation. Additionally, the overactivation of the renin–angiotensin system
(RAS) leads to oxidative stress, BBB disruption, and inflammation. In conclusion, heart disease can
contribute to amyloid-beta protein (Aβ) deposition, neuronal damage, and neurotoxicity. It can
also hinder synaptic plasticity and neurogenesis through both CCH-dependent and -independent
mechanisms. These factors collectively worsen cognitive function. Made with BioRender.

2. The Ionic Mechanisms of Learning and Memory: The Unexpected Targets of
Cardiovascular Disorders

Synaptic plasticity, the ability of synapses to dynamically strengthen or weaken in re-
sponse to neural activity, is a fundamental mechanism underpinning learning and memory.
Therefore, cardiogenic dementia primarily affects the signaling pathways that underpin
memory formation consolidation and shape emotional behavior at excitatory synapses in
the hippocampus and other brain regions, such as the amygdala and prefrontal cortex (PFC).
Excitatory neurotransmission in the brain is mediated by glutamate, which is released
from pre-synaptic terminals and targets both ionotropic and metabotropic receptors on
the postsynaptic neurons. CV diseases severely interfere with glutamatergic signaling and
with the downstream pathways that lead to memory and learning and shape emotional
and behavioral skills.

Long-term potentiation (LTP) and long-term depression (LTD) are two well-characterized
forms of synaptic plasticity. LTP, characterized by a persistent increase in synaptic strength,
is often associated with the acquisition of new information. Conversely, LTD, a long-lasting
decrease in synaptic strength, is thought to be involved in processes such as forgetting
and the refinement of neural circuits. While the hippocampus has been the primary model
system for studying synaptic plasticity, recent evidence suggests that these mechanisms are
widespread throughout the brain [15–19]. The molecular mechanisms underlying LTP and
LTD are complex and involve a variety of signaling pathways, including those mediated
by N-methyl-D-aspartate (NMDA) receptors (NMDARs), calcium ions (Ca2+), and second
messenger systems (Figure 2) [17,20–25]. At excitatory synapses, synaptic plasticity is
primarily mediated by alterations in the function and number of postsynaptic ionotropic
glutamate receptors, particularly α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid
(AMPA) receptors (AMPARs), kainate receptors, and NMDARs (Figure 2) [26,27]. Given
AMPARs’ dominant role in basal synaptic transmission, much research on LTP and LTD
mechanisms has focused on understanding how AMPAR-mediated synaptic responses
are modulated [17,26,27]. A prevailing theory posits that NMDARs play a crucial role in
initiating various forms of activity-dependent LTP and LTD by acting as a coincidence
detector for pre- and postsynaptic firing patterns [15]. This property depends on the
Mg2+-dependent inhibition of the NMDAR channel at resting membrane potential and
their high permeability to Ca2+. An NMDAR-mediated rise in postsynaptic Ca2+ activates
kinases, notably Ca2+/Calmodulin-dependent protein kinase II (CaMKII), protein kinase A
(PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK), and protein
phosphatases, such as calcineurin, ultimately results in an increase (Figure 2) or decrease in
AMPAR density and/or conductance [17,28,29].

While synaptic AMPARs have long been recognized as undergoing long-lasting mod-
ulation by synaptic activity, the question of whether synaptic NMDARs exhibit simi-
lar plasticity has been a subject of intense interest. Once thought to be relatively stable
at synapses, synaptic NMDARs are now emerging as dynamic and capable of activity-
dependent modulation, akin to AMPARs. Our understanding of the mechanisms of LTP of
NMDAR-mediated excitatory postsynaptic potentials (NMDAR-EPSCs) has advanced sig-
nificantly [30–35]. These studies converged on the notion that NMDAR-EPSCs may also un-
dergo synaptic potentiation upon an increase in dendritic Ca2+ levels that is shaped by both
NMDARs and group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) [31,34–36].
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In contrast to LTP, LTD of NMDAR-mediated synaptic responses has been consistently
observed in response to induction protocols that elicit NMDAR-dependent LTD of AMPAR
responses [37–40]. Therefore, just like synaptic AMPARs, synaptic NMDARs can also be
bidirectionally modified by different patterns of synaptic activity. There is a wealth of
evidence, not addressed here, that NMDARs are tightly regulated by experience during de-
velopment. Our understanding of the mechanisms of activity-dependent synaptic plasticity
of NMDA receptors is only beginning to emerge.
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Figure 2. Molecular mechanisms of LTP in the hippocampus. The molecular mechanisms underlying
LTP, involving signaling pathways mediated by N-methyl-D-aspartate (NMDA) receptors (NM-
DARs) and calcium ions (Ca2+). At excitatory synapses, synaptic plasticity is primarily mediated by
alterations in postsynaptic ionotropic glutamate receptors, particularly α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors (AMPARs). NMDARs play a crucial role in initiating
LTP by acting as coincidence detectors for pre- and postsynaptic firing patterns. An NMDAR-
mediated rise in postsynaptic Ca2+ activates the Ca2+/Calmodulin (CaM)-dependent protein-kinase
II (CaMKII). CaMKII-dependent phosphorylation, in turn, drives AMPAR incorporation to post-
synaptic density in a post-synaptic density protein 95 (PSD-95)-dependent manner. Furthermore,
CaMKII may phosphorylate cAMP response element-binding protein (CREB), the transcription factor
regulating the expression of postsynaptic proteins and driving the physical expansion of dendritic
spines. Made with BioRender.

A more nuanced understanding of the temporal dynamics of synaptic plasticity has
been provided by the discovery of spike timing-dependent plasticity (STDP). STDP reveals
that the precise timing of pre- and postsynaptic spikes determines whether a synapse
will strengthen or weaken. This bidirectional nature of STDP suggests a Hebbian-like
learning rule, where synapses are strengthened when they are active during the generation
of a postsynaptic spike and weakened when they are active but do not contribute to the
generation of a postsynaptic spike. Recent studies have highlighted the role of various
molecular mechanisms, including NMDARs, Ca2+ signaling, and protein synthesis, in
regulating both LTP and LTD in canonical STDP [18,41,42].

Consistent with their critical role in learning and memory, as well as in socio-emotional
and behavioral skills, LTP and LTD induction and maintenance are severely compromised
in neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, Parkin-
son’s disease, dementia, schizophrenia, depression, and autism spectrum disorders [43–47].
Therefore, it is not surprising that cardiogenic dementia may also target the molecular
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mechanisms that strengthen or weaken synaptic transmission at central glutamatergic
synapses, thereby leading the patients to cognitive impairment.

3. Heart Failure and Cognitive Impairment

HF is a complex clinical syndrome characterized by the heart’s inability to pump
and/or refill with blood, thereby resulting in a reduced cardiac output (HF with reduced
ejection fraction or HFrEF) or in an adequate cardiac output secondary to an increase in the
left ventricular filling pressure due to robust neurohormonal activation (HF with preserved
ejection fraction, HFpEF) [48]. HF has been estimated to affect 30–50 million patients
worldwide, but its incidence is expected to rise as a consequence of the longer global
average life expectancy and the availability of novel medications that substantially improve
survival after HF diagnosis [49]. While the CV implications of HF are well documented,
its effects on cognitive function and synaptic integrity are increasingly recognized as
critical components of the disease [12,50]. Intriguingly, HF increases the risk of developing
cognitive impairment, including deficits in learning and working memory, more than four-
fold as compared to healthy control subjects [51]. In addition, HF patients are comorbid
with anxiety and depression, which contribute to further worsening their quality of life and
self-care [52]. This relationship underscores the necessity of understanding the molecular
mechanisms that link HF to synaptic dysfunction. HF may affect cognitive function by
reducing cerebral blood flow (CBF) [53,54], thereby resulting in hypoperfusion and/or
hypoxia, and by triggering a strong neuroinflammatory axis [55,56]. These, in turn, lead to
significant loss of cerebral grey matter loss and damage in brain regions that are involved
in memory and emotions, such as the hippocampus, amygdala, and PFC [57,58]. However,
the neural substrates and molecular mechanisms that contribute to HF-induced cognitive
and emotional decline are still unclear. The brain receives ≈20% of the cardiac output [59],
thereby consuming ≈60% of the energy-produced oxygen to maintain the neuronal resting
potential, support neuronal firing, and enable synaptic transmission [60]. In accordance
with this notion, it has long been known that persistent synaptic failure may result from
mild or moderate cerebral hypoxia due to ATP depletion and down-regulation of AMPARs
and NMDARs as well as of many proteins involved in synaptic vesicle trafficking, including
Syntaxin-1A, Synaptogyrin-1, and SV-2 [61–64]. However, the incidence of cognitive decline
does not differ significantly between HF patients with preserved versus reduced ejection
fraction. The prevalence of stroke is also similar in HFrEF and HFpEV patients [55].
Therefore, additional mechanisms must contribute to impair synaptic function and favor
cognitive and emotional decline in HF.

A recent investigation unveiled that neuroinflammation secondary to HF may impair
synaptic function and plasticity, particularly in the dorsal hippocampus (DH) [65], which
plays a pivotal role in memory and learning [16,25]. By using an ischemic HF rat model,
Althammer and colleagues first confirmed that microglia, the resident immune cells of
the CNS, undergo a transition towards a pro-inflammatory phenotype in DH, which is
progressive in time and depends on the severity of HF [65]. Then, they found an increase
in the inflammatory signal, including IL (interleukin) 1β (IL-1β), tumor necrosis factor-α
(TNF-α), and C1q, which was restricted to DH and was associated with an astrocytic shift
from a neuroprotective to a neurotoxic condition. In accordance with these findings, the
CA1 region of HF rats showed an increase apoptotic rate and a decreased excitability
of pyramidal neurons, as shown by their depolarized resting potential and reduced in-
put/output relationship [65]. Therefore, HF reduces the ability of CA1 pyramidal neurons
to properly process the incoming information by firing a train of action potential at the
proper rate. Furthermore, this investigation provided additional evidence in support of the
pathogenic role of the renin–angiotensin system in HF-induced neuroinflammation [56].
Angiotensin II (Ang II) is a pro-inflammatory peptide that is released in circulation after
AMI [56] and may target AT1a receptors (AT1aRs) in multiple brain cells, including neu-
rons, astrocytes, microglia, and oligodendrocytes [66]. The blood–brain barrier (BBB) was
found to be leaky in the DH of HF rats, thereby potentially enabling circulating Ang II
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to cross the BBB and trigger the local cascade of neuroinflammation [65]. In accordance
with this hypothesis, the expression of AT1aRs was primarily enhanced in the CA1 mi-
croglia of HF rats, which strongly suggests that Ang II could be critical in promoting
their pro-inflammatory transition [65]. Moreover, a local increase in Ang II levels has long
been known to suppress hippocampal LTP [67–69]. Notably, the infusion of losartan, a
specific AT1aR antagonist, ameliorated hippocampal inflammation and strongly reduced
hippocampal apoptosis [65], thereby rescuing the ability of CA1 pyramidal neurons to
properly process the incoming information.

While the secretion of inflammatory cytokines is significantly increased, a recent in-
vestigation carried out on a rat model of chronic HF showed that the hippocampal levels of
brain-derived neurotrophic factor (BDNF) are decreased [70]. BDNF is indispensable to
neurotransmitter release and synaptic plasticity in central synapses [71]. BDNF binds to the
tyrosine kinase tropomyosin-related kinase B receptor (TrkB) to potentiate neurotransmitter
(glutamate and γ-aminobutyric or GABA) release, to induce and maintain LTP, and to
participate in memory consolidation and cognitive function [71–73]. Consistent with these
notions, BDNF in the cerebrospinal fluid was associated with a severe synaptic loss and im-
paired synaptic ultrastructure in the hippocampal CA1 region. In addition, chronic HF rats
showed a reduction in spatial memory and a down-regulation of the cAMP/PKA/cAMP
Response Element-Binding Protein (CREB) pathway, which is crucial for LTP consolidation
and memory formation (Figure 2) [70]. Consistent with these findings, Parent and col-
leagues confirmed that the working spatial memory and the emotional long-term memory
are disrupted in the hippocampus and PFC of a rat model of HFrEF due to the down-
regulation of 84 genes critical for synaptic plasticity, including those encoding for NMDARs
and BDNF [74]. These findings suggest that BDNF deficiency secondary to HF contributes
to cognitive decline by impairing glutamatergic synapses and interfering with NMDAR sig-
naling. Intriguingly, the pharmacological blockade of phosphodiesterase-4 (PDE4), which
catalyzes cAMP hydrolysis, with Rolipram, BPN14770, or MK0952 has been proposed as
a therapeutic approach to rescue cognitive functions in HF [70]. A parallel investigation
further showed that the down-regulation of the BDNF/TrkB signaling pathway caused a
reduction in glutamate and GABA levels in the brains of HF rats [75]. Intriguingly, a shift in
the excitatory/inhibitory (E/I) balance may occur in hypothalamic magnocellular neurose-
cretory cells (MNCs) of HF rats due to a shift in glutamate–GABA ratio toward a relatively
stronger glutamate weight [76], thereby supporting the increased neurohumoral drive in
HF [77]. The imbalance of the E/I ratio is involved in the cognitive and emotional deficits
described in the majority of CNS pathologies, including neurodegenerative diseases and
autism spectrum disorders [22,46,47,78–80]. Therefore, future work might assess whether
the E/I ratio is affected by HF in brain regions that are involved in emotion and cognition,
such as the hippocampus, PFC, amygdala, and cerebellum. Overall, the available evidence
suggests that HF may promote cognitive decline by stimulating neuroinflammation, by
causing an increase in Ang II levels, and by down-regulating BDNF expression.

4. Metabolic Syndrome and Cognitive Impairment

Metabolic syndrome consists of a set of at least five cardio-metabolic disorders that
include hypertension, central obesity, hyperglycemia, insulin resistance (IR), and athero-
genic dyslipidemia, which may in turn increase the risk of developing type 2 diabetes
mellitus (T2DM) and atherosclerosis [81–83]. It has been estimated that about one quar-
ter of the world population, i.e., over a billion individuals, is now affected by metabolic
syndrome [84], with an increasing prevalence among young individuals due to the larger
spread of the Western diet and lifestyle [85]. Individuals with metabolic syndrome are also
at strong risk of developing severe neurological deficits, such as cognitive impairment and
memory loss, and neuropsychiatric disorders, such as anxiety and depression [23,81,82,86].
The emerging correlation between metabolic syndrome and cognitive impairment could be
explained by the subtle reduction in microvascular perfusion that is caused by cerebrovas-
cular atherosclerosis, which results in white matter damage and significantly reduces blood
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supply to firing neurons [3,87]. This hypothesis is supported by the evidence that subjects
suffering from atherosclerosis or T2DM may also be affected by vascular dementia or
Alzheimer’s disease [23,86,87]. However, growing evidence suggests that cardio-metabolic
alterations may also lead to changes in the neural circuits and molecular mechanisms that
underlie memory formation and emotion processing.

4.1. Hypertension

Hypertension is regarded as an independent risk factor for Alzheimer’s diseases
and vascular cognitive impairment (VCI), i.e., the prodromal stage of cognitive decline
that precedes vascular dementia (VD) [88–90]. An intensive lowering regimen of mean
blood pressure may delay the onset of cognitive deterioration or even preserve cogni-
tion in hypertensive subjects [88]. One of the primary mechanisms by which hyperten-
sion leads to cognitive impairment is through endothelial dysfunction and microvascular
rarefaction [88,89,91], which impair neurovascular coupling (NVC), i.e., the mechanism
by which the increased metabolic demand of active neurons is met by an increase in local
CBF [59,92]. In addition, hypertension may affect the structural and functional integrity of
the BBB, promote microglia activation, and induce an inflammatory response in the brain
parenchyma [88,89,91]. Hypertension-induced damage of cerebral microcirculation may
obviously exert adverse effects on neuronal activity and synaptic plasticity, but emerging
evidence suggests that the onset of cognitive decline in hypertensive individuals is also
driven by more subtle molecular alterations.

An early investigation demonstrated an inverse relationship between mean blood
pressure and glutamate concentration in the hippocampus of the hypertensive human
subjects [93]. Moreover, both the early and late phase of LTP were impaired in the den-
tate gyrus of a genetically hypertensive rat that was deficient of the nerve growth factor
(NGF). Hippocampal expression of TrkB protein was also down-regulated in hyperten-
sive rats [94,95]. Intriguingly, the intracerebroventricular injection of NGF rescued LTP
induction and maintenance [94], thereby suggesting that hypertension-induced synaptic
impairment may also be due to the down-regulation of neuroprotective growth factors. A
follow-up study confirmed that LTP impairment in the dentate gyrus was associated with
the disruption of long-term recognition memory and a decrease in BDNF expression [96],
as reported above for HF (seeSection 3). The impairment of hippocampal LTP has also
been documented in a mouse model of Ang II-induced hypertension [69,97]. In addition,
Tucsek and colleagues reported that hypertension was associated with a reduced synaptic
density in the mouse hippocampus and with the down-regulation of several genes that
are neuroprotective, such as BDNF and Igf1, or regulate postsynaptic signal transduction
events, such as Homer1 [69]. For instance, insulin-like growth factor-1 (IGF-1) is critical
for learning and memory via controlling the induction of NMDARs-dependent Hebbian
LTP [98,99], whereas Homer1 mediates metabotropic glutamate receptors-dependent gene
expression, which is indispensable for LTP consolidation [100,101]. Consistent with this
finding, the administration of IGF-1 has long been known to attenuate the age-dependent
decrease in learning and synaptic plasticity [102,103]. In addition, Dai and colleagues
demonstrated that the p38 MAPK, which is strongly activated by inflammatory cytokines
and thereby supports neuroinflammation [104], is up-regulated in the mouse hippocampus
of Ang II-dependent hypertensive mice [97]. The pharmacological blockade of p38 MAPK
with the selective inhibitor SKF86002 proved to be effective at rescuing hippocampal LTP
induction and, therefore, might provide a suitable strategy for attenuating cognitive decline
in hypertension [97]. LTP induction and retention of spatial memory are also impaired
in the hippocampus of spontaneously hypertensive rats (SHRs) [105–107], which were
originally bred from the progenitor Wistar Kyoto Rats. Interestingly, SHRs represent the
most widespread animal model of Attention-Deficit/Hyperactivity Disorder (ADHD),
which is characterized by a severe deficit in neuropsychological and psychosocial functions,
including hyperactivity, inattention, and impulsivity [108,109]. The impairment of synaptic
plasticity in SHRs may be due to the increase in oxidative stress [107], the down-regulation
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of NMDARs [105], CaMKII [110], dopamine D5 receptors [106], and BDNF [111], and
the up-regulation of the endosomal Na+/H+ exchanger member 9 (NHE9) [112,113]. The
latter can impair the postsynaptic trafficking of AMPARs [114] and deregulate dendritic
Ca2+ signaling [113,115,116] during LTP induction. Pre-clinical studies showed that the
most effective strategies to rescue synaptic plasticity and spatial learning in SHRs are
physical exercise [107,117] and chronic swimming [118]. It should be noted that, unlike
the SHR model [105], the hippocampal expression of NMDARs is not affected by Ang
II-induced hypertension [69]. As hypertension is a multifactorial disease [119], the molec-
ular mechanisms that favor the cognitive decline are likely to subtly change depending
on the underlying etiology. Our current knowledge suggests that hypertension may favor
synaptic impairment by reducing glutamate concentration, down-regulating the expression
of neuroprotective genes, such as BDNF and Igf-1, up-regulating Ang II levels and oxidative
stress, and interfering with several signaling pathways that support synaptic plasticity,
such as NMDARs, AMPARs, and CaMKII.

4.2. Obesity

The global obesity epidemic has emerged over the last half century, thereby leading to
the widespread diffusion of many chronic diseases that affect the population in the 21st
century, including T2DM, insulin resistance, and obesity-related malignancies [120,121].
Many aspects of our contemporary environment may contribute to weight gain, including,
but not limited to, sleep deprivation and stress, technology, and the high-caloric West-
ern diet, which is based upon the massive consumption of refined sugars and saturated
fat [121,122]. Recent studies revealed a bidirectional relationship between overweight and
cognitive functions [123]. While it has long been known that obesity may alter synaptic
processes [124,125], detrimental food intake habits may be a consequence of the dysregula-
tion of specific neuronal circuits that are involved in appetite regulation [123,126]. On the
other hand, obesity may cause a poorer cognitive performance by impairing learning and
memory functions, including episodic memory and working memory [120,127]. The hip-
pocampus has been shown to be rather vulnerable to the metabolic dysfunctions associated
with obesity [124,125]. Accordingly, hippocampal-dependent spatial learning and memory
are severely affected by a high-caloric diet [128–130]. Therefore, obesity is regarded as
a novel predisposing risk factor for cognitive disorders, including Alzheimer’s disease
and dementia [131,132]. The primary mechanisms by which obesity may lead to cognitive
decline include down-regulation of BDNF/TrkA signaling, increased neuro-inflammation
and oxidative stress, neurovascular uncoupling, and weakened BBB integrity [127,132–134].
However, obesity may also alter the neural circuits and molecular mechanisms that shape
spatial learning and memory.

Early work showed that a high-fat diet impaired both LTP and LTD at the Schaffer
collateral-CA1 synapse in mice by impairing glutamate metabolism and down-regulating
NMDAR expression [135,136]. A more recent investigation revealed that NF-E2-related
factor 2 (Nrf2) deficiency contributes to LTP dysfunction at the CA1 region of mice exposed
to a high-caloric diet [137]. In accordance with this, Nrf2 is a transcription factor that is
critical to mounting an antioxidant response [138,139] and to preventing cognitive decline
with aging [140]. Intriguingly, obesity further exacerbated aging-induced cognitive decline
and LTP impairment at the Schaffer collateral-CA1 synapse by promoting the degradation
of vasorelaxing and pro-LTP epoxy-eicosatrienoic acids (EETs), such as 8,9-EET and 11,12-
EET, and by decreasing the expression of several genes involved in memory formation and
storage [141]. Similarly, LTP was decreased at the dentate gyrus of high-fat-fed rats due to
the inhibition of group II metabotropic glutamate receptors (mGluR2/3) [142], although
neurogenesis was not affected [130]. Conversely, LTP was only reduced in the CA1 region,
but not in the dentate gyrus, of Obese Zucker Rats due to calcineurin down-regulation in
the latter region that maintains adequate levels of phospho-CaMKII [143]. On the other
hand, monosodium glutamate-induced obese mice, which are featured by glucose intoler-
ance, showed enhanced LTP and LTD, as well as impaired excitatory neurotransmission, in
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the CA1 region due to the up-regulation of the vesicular glutamate transporter 1 [144,145].
Nevertheless, the increased hippocampal excitability led to significant recognition mem-
ory deficits, as highlighted by the novel object recognition test [144]. Obesity is also a
multifactorial disease [121] and, therefore, it may differentially affect cognitive functions
depending on the underlying etiology and the brain region. In this view, it is noteworthy
that a high-fat diet was found to abolish LTP in the CA1 region and enhance LTP in the ba-
solateral amygdala [146], which is consistent with the impairment of amygdala-dependent
emotional memory reported in both humans and high-fat-fed rats [86,147,148]. Our cur-
rent knowledge suggests that obesity may promote cognitive decline by interfering with
glutamate-mediated neurotransmission, which could be either decreased or enhanced, and
impairing the Nrf-2 dependent anti-oxidant response.

A variety of pharmacological strategies have been described aiming to rescue hip-
pocampal LTP induction and restore cognitive functions in obesity, including the following:
catecholaminergic stimulation [149]; administration of Glucagon-like peptide-1 (GLP-1)
agonists, such as exendin-4 [150], or the insulin sensitizer, metformin [151]; blocking IL-1
signaling with the IL-1 receptor antagonist (IL-1RA) [152]; and rescuing the E/I ratio
with a mixture of memantine and allopregnanolone, which, respectively, block NMDARs
and GABAA receptors. These studies strongly suggest that the molecular mechanisms
responsible for obesity-induced cognitive decline include the alteration of these signaling
pathways. However, the multifactorial nature of obesity is unlikely to benefit of a general-
ized approach, e.g., supplementation of diets enriched with curcumin and omega-3 [122]
or Mediterranean diet [82], but rather requires an individualized approach to effectively
manage obesity according to its causation [121].

4.3. Hyperglycemia and Insulin Resistance

Long-term chronic hyperglycemia can be due to a deficiency in insulin production
or the development of insulin resistance, which can result in type 1 diabetes mellitus
(T1DM) or T2DM [153]. Both types of diabetes may cause mild to moderate cognitive
impairment, a significant pathological condition known as diabetic encephalopathy [154].
Furthermore, diabetes mellitus is regarded as a risk factor for Alzheimer’s disease [155,156].
Endothelial dysfunction is critical in mediating the impairment of cognitive decline by
hyperglycemia/diabetes due to the disruption of the BBB [157] and neurovascular un-
coupling [158]. Studies carried out in rodent models of hyperglycemia, T1DM, and
T2DM also suggested that oxidative stress and neuroinflammation may cause cognitive
impairment by damaging myelinated tracts, hippocampal neuronal circuits, and synaptic
contacts [159–162]. Furthermore, electrophysiological abnormalities, including alterations
in glutamatergic transmission throughout the CNS and in hippocampal-dependent learn-
ing, memory, and cognitive tasks, have been reported [163–165].

By using the streptozotocin-induced rat model of T1DM, it has been shown that high-
frequency stimulation (HFS) of the Schaffer collateral only results in weak LTP induction, if
any, while low-frequency stimulation (LFS) induces a larger LTD as compared to healthy
animals [166–169]. In accord, spatial learning and recognition memory were impaired
only in severely hyperglycemic rats [166,170,171]. However, LFS results in a weaker LTD
in juvenile streptozotocin-induced rats due to the reduction of cholinergic stimulation of
the hippocampus [172–174]. These findings suggesting the age of diabetes onset could
determine whether it also results in cognitive defects or not. Several mechanisms accounted
for the impairment of LTP in the hippocampal CA1 region, including a defect in presynaptic
glutamate release [155], the down-regulation of NMDAR expression [175] and CaMKII-
dependent phosphorylation [176,177], a reduction in the Ca2+-dependent recruitment of
postsynaptic AMPARs [167] and AMPAR-mediated EPSCs [178], a rightward shift in the
threshold of LTP induction, and a leftward shift in the threshold of LTD induction [179].
More recent investigations further showed that T1DM may interfere with synaptic potenti-
ation by decreasing the activity of the Na+/K+ ATPase [171,180], thereby preventing the
restoration of the ionic milieu during sustained neuronal activity [181]. Preliminary evi-
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dence indicates that the impairment of LTP induction at the Schaffer collateral-CA1 synapse
was associated with a reduction in AMPA/NMDA ratio in young adult, but not juvenile,
streptozotocin-injected rats [172]. This finding strongly suggests that the age of onset of
T1DM might be considered for selecting the most appropriate therapy to prevent cognitive
decline in patients. It should, however, be noted that insulin treatment rescues synaptic
potentiation in the hippocampal CA1 region [182,183]. Our current knowledge suggests
that T1DM may impair LTP induction by interfering with glutamate release and glutamate-
dependent postsynaptic signaling, including the down-regulation of NMDARs, AMPARs,
and CaMKII activation, and by preventing the restoration of the ionic gradients across the
neuronal membrane after intense synaptic activity upon Na+/K+ ATPase inhibition.

Therapeutic strategies that improved hippocampal-dependent learning and memory
by boosting NMDAR signaling and ameliorating LTP impairment in T1DM include the
nerve-protective drug extracted from the seed of Chinese celery, l-3-n-Butylphthalide
(NBP) [184], the isoquinoline alkaloid berberine [185], the phenolic compound vanillic
acid [186], probiotics treatment [187], inhibition of the receptor for advanced glycation end
products (RAGE) with the specific blocker FPS-ZM1 [188], physical exercise [189], and stem
cell transplantation [190].

Similar results have been obtained in multiple rodent models of T2DM. Impairment
of LTP induction in the hippocampal CA1 region of Obese Zuker rats is caused by the
alteration of pre-synaptic glutamate release [143,191]. Reduced LTP and impaired spatial
learning ability have also been documented in high-glucose-fed rats due to a significant
reduction in postsynaptic spine density and BDNF levels [192,193]. Finally, the magni-
tude of hippocampal LTP was dramatically attenuated in Otsuka Long-Evans Tokushima
Fatty (OLETF) rats, which spontaneously develop T2DM [194]. HFS-induced LTP at the
Schaffer collateral-CA1 region was also impaired in mouse models of T2DM, including
a transgenic murine model of adipocyte insulin resistance (AtENPP1-Tg) [195], diabetic
db/db mice [196,197], spontaneous obese KK-Ay type 2 diabetic mice [198], and transgenic
mice deficient of insulin receptor β subunit [199] or GLP-1 [200]. The molecular mecha-
nisms involved in T2DM-dependent impairment of LTP and hippocampal-related learning
and memory functions include the alteration in the molecular assortment of AMPAR sub-
unit [198], down-regulation of NMDAR expression and phosphorylation [198], reduced
glutamate release [200], CaMKII activation [196,201], CREB expression [201] during HFS,
and deregulation of GABAergic signaling [197]. The deficiency in hippocampal LTP, as
well as the impairment of memory recognition and spatial learning, could be ameliorated
by a variety of treatments, including diet intervention [198], NBP [196], RAGE inhibi-
tion with FPS-ZM1 [202], stem cell transplantation [195], metformin, and environmental
enrichment [193]. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, which have been
developed as anti-diabetic drugs, also proved to be more effective at tempering cognitive
dysfunction as compared to other anti-diabetic strategies [203–206]. Preliminary evidence
showed that SGLT2 inhibitors could rescue synaptic plasticity by increasing the hippocam-
pal levels of BDNF and NGF [204] and that dapagliflozin was able to improve LTP at
the Schaffer collateral-CA1 synapse [207]. Due to the emergence of SGLT2 inhibitors as
pleiotropic drugs that exert a broad range of beneficious systemic effects, future investiga-
tions should assess whether and how they directly affect pre- or postsynaptic mechanisms
of excitatory and inhibitory neurotransmission.

4.4. Dysregulated Endothelial Ion Signaling

As anticipated above, endothelial dysfunction is involved in metabolic syndrome-
induced cognitive decline by mining the BBB integrity, by supporting arterial stiffening and
microvascular rarefaction, and by favoring neurovascular uncoupling. Recent investiga-
tions showed that cerebrovascular endothelial cells may sense synaptic activity and thereby
release nitric oxide (NO) to increase blood supply to firing neurons [59,92,208]. Synaptically
released neurotransmitters and neuromodulators, such as glutamate, may induce endothe-
lial Ca2+ oscillations at the postarteriolar transition zone by activating Gq-protein-coupled
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receptors that lead to Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-
trisphosphate receptors [116,209,210]. This oscillatory increase in endothelial Ca2+ con-
centration can be enhanced by endothelial hyperpolarization through inward rectifier K+

channels (KIR2.1) [209,211] and stimulates the endothelial NO synthase (eNOS), thereby
leading to NO-dependent vasorelaxation and NVC [116,209,212]. In addition, cerebrovascu-
lar endothelial cells express NMDARs that can also be activated by synaptic activity and are
physically coupled to eNOS and NO production [25,213–215]. The metabolic syndrome may
compromise the endothelial ion signaling machinery [92,134,216–221], and a growing body
of evidence shows that endothelial KIR2.1 channels [222–224] and NMDARs [213] may be
impaired in Alzheimer’s disease [225]. This would, in turn, lead to reduced eNOS activation
and impaired NO signaling at the neurovascular unit. Intriguingly, eNOS-derived NO may
also regulate LTP induction and maintenance in the hippocampal CA1 region [226–229],
and the LTP/LTD balance is shifted towards LTD upon the genetic deletion of eNOS [230].
Endothelial ion signaling can be targeted by pharmacological manipulation and dietary
interventions [92,134,229]. Therefore, future work should assess whether the metabolic
syndrome also affects endothelial ion signaling at the neurovascular unit and whether
this contributes to the defects observed in hippocampal-dependent learning and memory
cognitive tasks.

5. Arrhythmias

Cardiac arrhythmias, including atrial fibrillation, ventricular tachycardia, and ventricu-
lar fibrillation, may cause cognitive decline and dementia through a variety of mechanisms,
such as cerebral hypoperfusion, thromboembolism, inflammation, and stroke [231–233].
Stroke is primarily caused by atrial fibrillation and is known to cause a maximum reduction
in cognitive function [234], whereas anoxic brain injury is more commonly associated
with ventricular arrhythmias [235]. Untangling the molecular mechanisms linking cardiac
arrhythmias to the impairment of the synaptic mechanisms underlying memory formation
and storage requires the use of appropriate transgenic animal models. But fatal arrhythmic
events could interfere with the successful exploitation of electrophysiological experiments
or voltage-sensitive dye imaging in ex vivo slices and in vivo brain preparations. For
instance, several mouse models of spontaneous atrial fibrillation have been developed,
but a straightforward analysis of LTP induction and maintenance, e.g., in the hippocam-
pal CA1 region, is still missing [236]. Notably, myocardial fibrosis, which is the primary
adaptative response to myocardial infarction, may also predispose HF patients to ven-
tricular tachycardia and ventricular fibrillation [237]. Therefore, we cannot rule out that,
in these patients, cognitive decline is driven by HF rather than by cardiac arrhythmias.
An intriguing possibility is that inheritable arrhythmias underlain by mutations in ion
channels that are expressed in both the heart and the brain are also associated with cog-
nitive impairment. Mutations in type 2 ryanodine receptors (RyR2) may lead to cardiac
arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia and arrhyth-
mogenic cardiomyopathy [238–240], and to cognitive dysfunctions, such as Alzheimer’s
disease [241]. However, mutations in the RYR2 gene cause either cardiac or neurologi-
cal disorders, not both. Conversely, a genetic mouse model of the Timothy syndrome,
a multi-organ form of long QT syndrome that is caused by mutations of the CACNA1C
gene [238,242], has recently been exploited to investigate the molecular mechanisms of the
neurological deficits, such as autism spectrum disorders, associated with this rare cardiac
disease. In accord, the CACNA1C gene encodes for the voltage-dependent L-type Ca2+

channel, CaV1.2, which regulates the excitation–contraction coupling mechanism in the
heart [243] and Ca2+-dependent gene expression and synaptic plasticity in the brain [244].
A sporadic single nucleotide change, which produces a missense mutation (G406R) in the
pore-forming subunit of CaV1.2, is the most common cause of the Timothy syndrome [242].
This mutation exerts a gain-of-function effect that shifts the threshold of activation towards
more negative potentials and removes the voltage-dependent inactivation of L-type Ca2+

currents, thereby leading to intracellular Ca2+ overload [242]. A preliminary investiga-
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tion confirmed that the intracellular Ca2+ signals produced by CaV1.2 G406R channels
showed larger spatial spread and amplitude as compared to wild-type channels. However,
the duration of the increase in intracellular Ca2+ concentration was significantly shorter,
thus suggesting the involvement of negative-feedback mechanisms that limit Ca2+ entry
through CaV1.2 G406R channels in neurons [245]. It has been suggested that the cellular
outcome of the G406R mutation in the CNS could be slightly different than in the heart
due to splice variants and the interaction with other ancillary subunits and regulatory
proteins [246]. A subsequent report showed that the mutant CaV1.2 G406R channels drive
CREB-dependent gene expression in a depolarization-independent manner due to the
channel activation at sub-threshold potentials [247]. Intriguingly, the occupancy of the
Ca2+-binding site within the selectivity filter, but not Ca2+ entry into the cytoplasm, is
required for the basal transcriptional activity of CaV1.2 G406R channels [247]. This finding
is consistent with the emerging view that both ionotropic receptors and voltage-gated
channels, including CaV1.2, may signal in a flux-independent manner [25,248,249]. A
recent investigation explored the impact of the G406R mutation in hippocampal synaptic
plasticity by exploiting a novel transgenic mouse model, in which the expression of the
CaV1.2 G406R mutant protein from exon 8 was blunted via transcriptional interference to
prevent fatal cardiac arrhythmias [246]. Ca2+ entry through L-type CaV1.2 channels during
plasticity induction may support the NMDARs-mediated recruitment of Ca2+-dependent
signaling pathways that stimulate AMPARs and GABAA receptor trafficking and post-
synaptic spine remodeling and expansion [18,22,250–252]. This novel transgenic mouse
model showed that the E/I balance was shifted towards excitation in the CA1 region due
to an increase in AMPARs-mediated excitatory transmission and a decrease in GABAA
receptors-mediated inhibitory transmission [246]. The loss of GABAergic inhibition could
also be due to a reduction in interneuron migration, which is also driven by Ca2+ influx
through CaV1.2 channels [253]. That the CACNA1 gene could provide a molecular link
between inherited arrhythmias and cognitive dysfunction is also suggested by the deletion
of exon 33, which causes a gain-of-function mutation in the CaV1.2 protein. The absence
or decrease in exon 33-containing CaV1.2 channels results in ventricular tachycardia and
lengthened QT interval [254], as well as in severe neurological deficits [255]. In accord,
the deletion of exon 33 caused an increase in late LTP and favored the transition of early
LTP to long-lasting LTP at the Schaffer collateral-CA1 synapse. Furthermore, LFS did
not induce LTD but rather synaptic potentiation [255]. The LTP/LTD imbalance did not
improve hippocampal-dependent functions, such as associative memory, while disrupting
social behaviors as they became less aggressive [255]. In accordance with this evidence, the
CACNA1 gene is also widely expressed in the amygdala [244], but the electrophysiological
evidence that synaptic mechanisms are altered by CaV1.2 mutation in this brain region
is missing. Future work is required to assess whether the deletion of exon 33 from the
CACNA1 gene has any pathological relevance for human health.

6. Conclusions

Cardiogenic dementia is a detrimental consequence of HBA that can exacerbate the
progression of CV disorders and worsen the prognosis and management of the patients.
Cardiogenic dementia can increase mortality, reduce the quality of life, and enhance the
economic burden imposed on the families of CV patients. The framework of the pathophys-
iological mechanisms by which disruption of the HBA leads to cognitive impairment, i.e.,
cerebral hypoperfusion, neuroinflammation, BBB breakdown, microvascular rarefaction,
and neurovascular uncoupling, has roughly been delineated. But obtaining novel insights
into the subtle cellular and molecular mechanisms that underpin memory storage and
formation, as well social behavior and emotional responses, requires a strong interaction
between cardiovascular physiologists and molecular neurobiologists. Most of the attention
has hitherto been paid to the CA1 region, which is critical to the formation, consolidation,
and retrieval of hippocampal-dependent memories. The available evidence suggests that
CV disorders tend to converge on the dysregulation of the same synaptic mechanisms, e.g.,
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glutamate release, AMPARs, NMDARs, and CaMKII activation, to reduce the antioxidant
defenses and to down-regulate neuroprotective genes, such as BDNF and Igf-1. In our opin-
ion, future studies will have to do the following: (1) consolidate these preliminary findings,
not only in the CA1 region but also in the other hippocampal areas; (2) gain further insights
on the alterations in the E/I balance that could favor LTD over LTP and thereby boost the
cognitive decline; (3) confirm that endothelial signaling plays a critical role in cognitive
tasks, as also recently shown in [256], and assess the contribution of endothelial dysfunction
to cognitive impairment not only in terms of cerebral hypoperfusion but also of direct
regulation of neuronal activity and synaptic transmission [25,229]; (4) investigate whether
the age of onset of the CV disorder, e.g., obesity and diabetes, may affect the extent and
the mode of cognitive dysfunction; and (5) exploit induced pluripotent stem cell-derived
neuronal cultures generated from CV patients to boost the therapeutic translation of animal
studies. As recently outlined by an American Heart Association scientific statement [257],
there is still a gap between our understanding of how CV diseases impact on brain function
at macroscopic (e.g., cerebral hypoperfusion and cerebral microembolism) and microscopic
(e.g., synaptic transmission and LTP induction) levels.

We expect that future work will have to focus on other brain regions, such as the PFC,
amygdala, and cerebellum, that also play a crucial role in various cognitive and behavioral
functions. For instance, PFC degeneration has been shown to correlate with cognitive
decline in older adults [258]. The PFC function is seemingly insensitive to changes in the
heart rate [259]. However, recent studies provided evidence that children and adolescents
with congenital heart disease showed lower cognitive performance, mainly in episodic
memory, executive function, and language, which are associated with cerebello–PFC con-
nectivity [260,261]. Furthermore, the structure and/or the activity of PFC, amygdala, and
cerebellum may also be affected by HF [262–264], insulin resistance [265], overweight and
obesity [266–268], and atrial fibrillation [269–271]. Functional magnetic resonance imaging
has clearly demonstrated that the different brain areas that underlie cognitive, executive,
and emotional functions are intimately interconnected and effectively interact to shape
human behavior. Therefore, clinical studies are expected to unveil how CV disorders affect
the resting-state functional connectivity and the coordination of these interactions, whereas
basic research will have to exploit animal models of such diseases to dissect the underlying
alterations at cellular and molecular levels.

The advent of novel, high-resolution recording tools, such as high-density multielec-
trode arrays and multiphoton imaging combined with rapid voltage-sensitive dye imaging,
is predicted to offer novel insights on the alterations of neural circuits and synaptic mecha-
nisms, both ex vivo and in vivo. The design of more appropriate therapeutic strategies to
delay or prevent cardiogenic dementia will also benefit from optogenetics, which is yet to
be applied to investigate the synaptic mechanisms of cognitive decline in mouse models of
CV diseases.
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