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Abstract: Background: Myocardial Infarction (MI) and severe mental disorders (SMDs) are two types
of highly prevalent and complex disorders and seem to have a relatively high possibility of mortality.
However, the contributions of common and rare genetic variants to their comorbidity arestill unclear.
Methods: We conducted a combined genome-wide association study (GWAS) and exome-wide
association study (EWAS) approach. Results: Using gene-based and gene-set association analyses
based on the results of GWAS, we found the common genetic underpinnings of nine genes (GIGYF2,
KCNJ13, PCCB, STAG1, HLA-C, HLA-B, FURIN, FES, and SMG6) and nine pathways significantly
shared between MI and SMDs. Through Mendelian randomization analysis, we found that twenty-
seven genes were potential causal genes for SMDs and MI. Based on the exome sequencing data of
MI and SMDs patients from the UK Biobank, we found that MUC2 was exome-wide significant in the
two diseases. The gene-set analyses of the exome-wide association study indicated that pathways
related to insulin processing androgen catabolic process and angiotensin receptor binding may be
involved in the comorbidity between SMDs and MI. We also found that six candidate genes were
reported to interact with known therapeutic drugs based on the drug–gene interaction information
in DGIdb. Conclusions: Altogether, this study revealed the overlap of common and rare genetic
underpinning between SMDs and MI and may provide useful insights for their mechanism study
and therapeutic investigations.

Keywords: comorbidity; mental disorder; myocardial infarction; GWAS; EWAS; association study

1. Introduction

Cardiovascular diseases (CVDs), affecting the heart and blood vessels, are the pri-
mary cause of mortality worldwide. In recent decades, the global burden of CVDs has
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significantly increased. From 1990 to 2019, the number of people affected by CVDs nearly
doubled, rising from an estimated 271 million to approximately 523 million, and the num-
ber of CVD deaths increased from 12.1 million to 18.6 million [1]. Myocardial Infarction
(MI) is one of the most severe and life-threatening manifestations of CVDs, which is defined
as myocardial cell death due to prolonged ischemia [2,3].

Severe mental disorders (SMDs), such as schizophrenia (SCZ) and bipolar disorder
(BD), have affected approximately 1% of the UK population. SCZ and BD are two typical
types of SMDs and share a common genetic cause of mainly additive genetic effects [4].
People with mental disorders are at an almost four times higher risk of death than those
without mental disorders, and life expectancy in SCZ patients is approximately 15 to
20 years shorter compared to the general population [5,6].

Several intriguing relationships have been observed between SMDs and MI. For
example, the high mortality among patients with SMDs is attributable to heart disease. In a
U.S. national study of adult patients with schizophrenia aged 20 to 64, CVDs were identified
as the leading cause of death, with a mortality rate of 403.2 per 100,000 person-years [7].
Similarly, an eight-year follow-up study of individuals with severe mental illness found that
the mortality rates from respiratory and cardiovascular conditions were up to four times
higher than those in the general population [8]. Additionally, research has shown that MI
patients are at a higher risk of developing bipolar disorder [9]. Several environmental and
lifestyle factors contribute to the increased risk of both MI and SMDs. These include tobacco
use, inadequate physical activity, limited access to healthcare, and the metabolic side effects
of antipsychotic medications [10]. Various biological mechanisms have been proposed to
explain the complex interplay between mental health and cardiovascular health, including
the dysfunction of the autonomic nervous system, the dysregulation of the hypothalamic–
pituitary–adrenal axis, chronic inflammation, imbalanced neurotransmitters, and increased
platelet reactivity [11–14].

From a genetic perspective, pleiotropy occurs when one gene affects multiple phe-
notypes. Meta-analyses of GWASs can elucidate the regions of the genome that associate
with a disease, quantitative trait, or biomarker by tagging and testing the association
of single-nucleotide polymorphisms (SNPs) in certain populations. Sivakumaran et al.
conducted a systematic evaluation of pleiotropy among SNPs and genes recorded in the
National Human Genome Research Institute’s Catalog and found abundant evidence of
pleiotropy, specifically, that 16.9% of the genes and 4.6% of the SNPs have pleiotropic effects
on common complex diseases and traits [15]. So et al. applied Mendelian randomization
and polygenic risk scores to investigate the shared genetic basis of cardiovascular and
metabolic effects of SCZ and BD, which showed that patients with SCZ might be genetically
predisposed to cardiometabolic abnormalities, although this genetic predisposition was not
observed in patients with BD [16]. Rødevand et al. revealed a polygenic overlap of 163 dis-
tinct common variants shared between loneliness, SMDs, and CVD risk factors, suggesting
that the genetic basis of loneliness may increase the risk of both SMDs and CVD [17].

For most traits, even the most important loci identified by GWASs have small effect
sizes and only explain a modest fraction of the predicted genetic variance, which is referred
to as the mystery of the “missing heritability” [18,19]. Population-based whole-exome
sequencing (WES) can discover rare risk alleles and complement established gene-mapping
paradigms [20]. Rare coding variants with lower allele frequencies but larger effect sizes
also contribute to genetic variance, especially for diseases with complex etiology such as
SCZ [20,21]. However, to the best of our knowledge, the potential common and rare genetic
underpinning of comorbidity between MI and SMDs remains unexplored.

In this study, taking SCZ and BD as representatives of SMDs, we investigated the
potentially shared rare and common genetic underpinnings, including genes and pathways,
that might contribute to the comorbidity relationship between MI and SMDs. We used both
meta-analysis GWAS and discovery WES approaches to provide additional insights into
the role of genes and pathways with pleiotropic effects on MI and SMDs. We hope that
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our investigation can help reveal the potential pleiotropy that might have implications for
understanding the comorbidity of MI and SMDs and finding some candidate drug targets.

2. Materials and Methods
2.1. GWAS Summary Statistics

We used the publicly available GWAS summary statistics from the Psychiatric Ge-
nomics Consortium (PGC, https://pgc.unc.edu/for-researchers/download-results/, ac-
cessed on 29 August 2023) and the Cardiovascular Disease Knowledge Portal (CVDKP,
https://cvd.hugeamp.org/, accessed on 29 August 2023). Basic information on the cohorts
is listed in Table 1, and clinical information on cases and controls was in the original publi-
cations [22–24]. All samples in the cohorts of GWAS summary statistics were individuals
of European ancestry.

Table 1. Overview of the cohorts in the MAGMA analyses.

Cohort Phenotype 1 N Cases/Controls Ancestry

Psychiatric Genomics Consortium (PGC) BD 41,917/371,549 European
Psychiatric Genomics Consortium (PGC) SCZ 53,386/77,258 European

Cardiovascular Disease Knowledge Portal (CVDKP) MI 17,505/454,212 European
1 The specific phenotype for the GWAS summary statistics. BD: Bipolar Disorder; SCZ: Schizophrenia;
MI: Myocardial Infarction.

2.2. Gene-Based and Gene-Set Analyses for Common Variants

We applied the Multi-marker Analysis of GenoMic Annotation (MAGMA version
1.10) approach to discover the genes and gene sets associated with each disorder [25]. The
summary statistics, including the p value and SNP IDs, were as the input for MAGMA.

We annotated SNPs to genes based on their NCBI 37.3 genomic location (downloaded
from http://ctglab.nl/software/magma, accessed on 13 September 2022) by using the
1000 Genomes European reference panel. To include regulatory elements for further anal-
yses, we extended a 5 kb upstream and downstream window around each gene. Then,
the gene-based analyses were conducted based on the annotation results by using the
SNP-wise mean model.

For gene-set analyses, we collected pathways including GO Biological Process (GOBP),
GO Cellular Component (GOCC), and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) from the Human Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb, accessed on 26 July 2023), version 2023.1.Hs. The gene p values
from the gene-based analyses was converted to Z-scores, which were used to assess whether
genes in the gene sets above were associated with a given phenotype compared with other
genes not in the gene sets [25].

We manually investigated the shared significant genes between MI and SMDs in
the International Mouse Phenotyping Consortium (https://www.mousephenotype.org/,
accessed on 20 March 2024) to discover their significant phenotypes in knockout mice.

2.3. The Potential Causal Genes for Myocardial Infarction and Severe Mental Disorders

For SCZ, BD, and MI, we used the driver-tissue estimation by selective expres-
sion to predict the most relevant tissue. Default parameters were employed except for
statistical adjustments, where we implemented the Benjamini–Hochberg procedure to
control false discovery rate (FDR) at a p value threshold of 0.05 for MI and the stan-
dard Bonferroni correction to conservatively maintain a Family-Wise Error Rate below
the p value threshold of 0.05 for SCZ and BD. We found that Artery-Tibial was the
most significant tissue for MI and Brain Frontal Cortex (BA9) was the most significant
tissue for SCZ and BD (Supplementary Tables S4–S6). Then, we used the effective-
median-based Mendelian randomization framework for inferring the causal genes of
complex phenotypes (EMIC) to assess the candidate causal genes based on the GWAS

https://pgc.unc.edu/for-researchers/download-results/
https://cvd.hugeamp.org/
http://ctglab.nl/software/magma
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://www.mousephenotype.org/
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summary results of MI, SCZ, and BD and the expression quantitative trait loci (eQTL) sum-
mary statistics of Artery-Tibial and Brain Frontal Cortex (BA9) which were downloaded
from https://mailsysueducn-my.sharepoint.com/:f:/g/personal/limiaoxin_mail_sysu_
edu_cn/EnhWhqLUNcpOrh6O3enFvCUBRvQ13v2970tcpOnNmmlKyg?e=1jkl06, (accessed
on 2 February 2024), calculated by Li et al. based on the GTEx database (v8) [26,27]. The
EUR panel (Phase 3) of the 1000 Genomes Project was used to generate LD matrices for
EMIC. Only eQTLs with a p value less than 1 × 10−6 were included in the MR analyses.
Genes with an EMIC p value lower than 0.05 were used to further perform the EMIC
pleiotropy fine-mapping analyses. Other parameters were default.

2.4. Exome Sequencing in UK Biobank and Case–Control Ascertainment

UK Biobank (UKBB) is a large population-based cohort that collected approximately
500,000 individuals aged 40–69 years at enrollment from the United Kingdom with pheno-
type data and genotype data. Here, we conducted analyses for ~200,000 individual WES
data released in October 2020 from UKBB under application number 34716. All participants
had granted written informed consent for their participation.

In the UKBB 200k exome cohort, 590, 322, and 3673 individuals were classified as
BD with F31 (mean age 55.5 years), SCZ with F20 (mean age 54.0 years), and MI with I21
(mean age 61.7 years), according to the International Classification of Diseases version-10
(ICD-10, UKBB Data-Field 41202). In addition, 2000 randomly selected individuals without
any mental and behavioral disorder, nervous system disease, or circulatory system disease
diagnoses (F00-F99, G00-G99, or I00-I99) were defined as control (mean age 54.8 years) for
the next step analyses. Demographic and clinical characteristics of all UKBB samples, cases,
and controls in this study are listed in Table 2. Cases and controls of European ancestry
were retained for further study.

Table 2. Demographic and clinical characteristics of cases and controls in UK Biobank.

Ancestry Characteristic All Subjects BD SCZ MI Control

All ancestry
No. 200,632 590 322 3673 2000

Male, No. (%) 90,154 (44.9) 242 (41.0) 195 (60.6) 2907 (79.1) 841 (42.1)
Female, No. (%) 110,478 (55.1) 348 (59.0) 127 (39.4) 766 (20.9) 1159 (57.9)

Age, mean (SD), y 56.5 (8.1) 55.5 (8.1) 54.0 (8.3) 61.7 (6.0) 54.8 (8.1)

European
ancestry

No. (%) 118,251 (93.8) 543 (92.0) 255 (79.2) 3453 (94.0) 1890 (94.5)
Male, No. (%) 84,515 (44.9) 227 (41.8) 158 (62.0) 2736 (79.2) 787 (41.6)

Female, No. (%) 103,736 (55.1) 316 (58.2) 97 (38.0) 717 (20.8) 1103 (58.4)
Age, mean (SD), y 56.7 (8.0) 55.8 (8.0) 54.8 (8.1) 61.9 (5.8) 55.1 (8.0)

Others No. (%) 12,368 (6.2) 47 (8.0) 67 (20.8) 220 (6.0) 110 (5.5)

BD: Bipolar Disorder; SCZ: Schizophrenia; MI: Myocardial Infarction.

Due to the UKBB 200k exome cohort lacking essential quality control and filtering,
we applied several quality control steps on variants and samples. On the variant-level
quality control, we removed SNPs with missing genotype rate > 5% and Hardy–Weinberg
equilibrium test (p value < 1 × 10−6). On the sample-level quality control, individuals
with non-European ethnic backgrounds (Data-Field 21000), a missing genotype rate > 5%,
and a heterozygosity rate > 3*sigma were removed from further analyses for reasons of
genetic outliers or blood relationship. Variant- and sample-level quality control steps were
performed using the Variant Quality Score Recalibration of Genotype Analysis ToolKit
(GATK, version 4.2, https://software.broadinstitute.org/gatk/, accessed on 19 February
2021), PLINK (version 1.9, http://www.cog-genomics.org/plink, accessed on 13 August
2023), and R (version 4.3.2) [28–30].

https://mailsysueducn-my.sharepoint.com/:f:/g/personal/limiaoxin_mail_sysu_edu_cn/EnhWhqLUNcpOrh6O3enFvCUBRvQ13v2970tcpOnNmmlKyg?e=1jkl06
https://mailsysueducn-my.sharepoint.com/:f:/g/personal/limiaoxin_mail_sysu_edu_cn/EnhWhqLUNcpOrh6O3enFvCUBRvQ13v2970tcpOnNmmlKyg?e=1jkl06
https://software.broadinstitute.org/gatk/
http://www.cog-genomics.org/plink
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2.5. Exome-Wide Association Study

To identify genes and pathways associated with each trait, we analyzed the combined
effects of rare missense or loss of function (including frameshift, stop-gain, and splicing)
variants. Variants with a minor allele frequency lower than 0.01 in European ancestry public
databases, including the Genome Aggregation Database (gnomAD, exome and genome)
and the 1000 Genomes Project, were defined as rare variants. The filtration, annotation,
and statistical tests of the gene-based and gene-set association analyses for rare variants
were performed using KGGSeq [31].

Genes with at least 2 rare missense or loss of function variants were analyzed using
the optimal sequencing kernel association test (SKAT-O), which combines burden test
and SKAT and provides high power for variants that had different directions of effects on
increasing disease risk or protecting from disease [32].

In the gene-set association analyses, we performed both the Combined Multivariate
and Collapsing (CMC) burden test and the SKAT-O approach for each of the case–control
groups in BD, SCZ, and MI, separately on canonical pathways, GOBP, GOCC, and GO
Molecular Function (GOMF).

2.6. Prediction of Drug-Gene Interaction

The Drug–Gene Interaction Database (DGIdb v4.2.0, https://dgidb.org/, accessed on
27 February 2024) is a public database containing more than 10,000 genes and 15,000 drugs
involved in over 50,000 drug–gene interactions [33]. The shared genes identified from
GWAS analyses, MR analyses, and WES analyses were considered as potential pharmaceu-
tical targets and submitted to DGIdb to explore existing drugs for the potential treatment
of SMD-MI comorbidity. Interactions that were supported by one or more reliable pub-
lication(s) were considered trustworthy. The relationships between targets, drugs, and
disorders were visualized using Cytoscape 3.10.2.

2.7. Statistical Analysis and Significance Levels

In GWAS analyses, we used Bonferroni correction for multiple testing in gene-based
analyses, setting the significance threshold at 0.05/n, where n is the number of genes with
valid SNPs, and nominal p values below 0.05 and Benjamini–Hochberg FDR values below
0.25 were considered significant for gene-set analyses. In exome-wide association studies,
we applied the SKAT-O test for rare variants, with a nominal p value threshold of 0.05 and
an FDR less than 0.25 for the gene-level test, and the threshold for statistical significance
was set at a nominal p value of 0.05 for both CMC and SKAT-O tests for the gene-set
association test. For causal gene prediction, we used the EMIC framework, considering
genes with p values < 0.05 as candidate causal genes. All analyses were conducted using
MAGMA (version 1.10), KGGSeq (V1.0+), GATK (version 4.2), PLINK (version 1.9), and R
(version 4.3.2).

3. Results
3.1. Potential Pleiotropic Genes for Myocardial Infarction and Severe Mental Disorders in GWAS Analyses

We used MAGMA to determine the combined effect of common genetic variants
within genes. There were 18,206 genes in MI, and 18,360 and 18,358 genes in SCZ and BD,
respectively. Through MAGMA gene-based analyses, 146 genes were MI-related signifi-
cant genes; 619 genes and 191 genes were SCZ-related and BD-related significant genes
(p value < alpha/number of genes tested; alpha = 0.05). We identified nine pleiotropic
genes shared between SCZ and MI, and three pleiotropic genes shared between MI and BD.
Notably, among those genes, three genes (HLA-C, HLA-B, and FURIN) were significant in
SCZ, BD, and MI. The detailed information of these pleiotropic genes is listed in Table 3.

https://dgidb.org/
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Table 3. Shared genes among Myocardial Infarction and severe mental disorders in GWAS analyses.

Gene MI p Value BD p Value SCZ p Value

GIGYF2 1.04 × 10−6 ns 2.80 × 10−11

KCNJ13 1.34 × 10−6 ns 3.05 × 10−14

PCCB 1.37 × 10−7 ns 1.90 × 10−9

STAG1 1.96 × 10−6 ns 2.01 × 10−7

HLA-C 9.56 × 10−7 1.68 × 10−6 1.82 × 10−10

HLA-B 4.98 × 10−7 3.24 × 10−10 2.45 × 10−18

FURIN 5.00 × 10−10 4.03 × 10−7 5.22 × 10−15

FES 5.00 × 10−10 ns 6.94 × 10−14

SMG6 6.51 × 10−13 ns 1.51 × 10−7

ns = Not significant at a Bonferroni corrected p value. BD: Bipolar Disorder; SCZ: Schizophrenia; MI: Myocardial Infarction.

3.2. Shared Pathways of Myocardial Infarction and Severe Mental Disorders by Gene-Set Analyses
for Common Architecture

We integrated the gene-level analysis results from three different diseases or disorders
to elucidate the common functional pathways shared between MI and SMDs. We conducted
gene-set association analyses using GOCC, GOBP, and KEGG pathways as predefined gene
sets in MAGMA. Gene-set analyses identified seven significant gene sets shared between
BD and MI, and two significant gene sets shared between SCZ and MI, each achieving a
p value less than 0.05 and a FDR below 0.25 (Figure 1).Biomedicines 2024, 12, x FOR PEER REVIEW 7 of 17 
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Figure 1. Shared gene sets among Myocardial Infarction and severe mental disorders in GWAS
analyses. Gene sets enriched in MAGMA analyses of the BD (A), SCZ (B), and MI (C) significant
common architecture are shown in the plots. The dots colored red represent significant common
gene sets based on a Benjamini–Hochberg correction for multiple testing at FDR < 0.25 and nominal
p value < 0.05. The data are available in Supplementary Tables S1–S3. The specific term names of
gene sets from GO or KEGG are listed below. GO:0048878, chemical homeostasis; GO:0001505, regu-
lation of neurotransmitter levels; GO:0006836, neurotransmitter transport; GO:0034364, high-density
lipoprotein particle; GO:0042627, chylomicron; GO:0034385, triglyceride-rich plasma lipoprotein
particle; GO:0140059, dendrite arborization; GO:0051940, regulation of catecholamine uptake in-
volved in synaptic transmission; PATHWAY: hsa04720, long-term potentiation. BD: Bipolar Disorder;
SCZ: Schizophrenia; MI: Myocardial Infarction.
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Multiple shared gene sets, including GOBP regulation of catecholamine uptake in-
volved in synaptic transmission (p value = 5.26 × 10−4 for SCZ, p value = 1.38 × 10−2 for
MI), GOBP neurotransmitter transport (p value = 9.90 × 10−4 for BD, p value = 1.56 × 10−2

for MI), and GOBP regulation of neurotransmitter levels (p value = 8.73 × 10−4 for BD,
p value = 8.23 × 10−3 for MI) that achieved statistical significance, revealed the importance
of neurotransmitters in the shared genetic basis of MI and SMDs.

The GOBP dendrite arborization gene set, consisting of ten genes, was the top-scoring
GOBP shared pathway in both SCZ and MI gene sets. This gene set identified Neuropilin
1 (NRP1) as significantly associated with SCZ and MI (p value = 1.18 × 10−5 for SCZ;
p value = 1.04 × 10−3 for MI; gene analyses in MAGMA).

3.3. Shared Causal Genes for Myocardial Infarction and Severe Mental Disorders in Mendelian
Randomization Analyses

We further estimated the potential causal genes through Mendelian randomiza-
tion analyses. Using GWAS summary statistics for SMDs and MI, along with gene-
level eQTLs, the MR analyses detected 127, 165, and 288 nominally significant causal
genes (p value < 0.05). Among these, nine genes (RNF5P1, SERBP1P3, HLA-DQB1-AS1,
CYP21A1P, HLA-C, MTRF1L, HLA-DQA2, C15orf40, and KANSL1-AS1) displayed consis-
tent significance across BD, SCZ, and MI (Supplementary Table S7). Of particular note,
HLA-C (p value = 0.0433 for BD, 3.76 × 10−4 for SCZ, and 4.16 × 10−4 for MI) was shared
in both MR analyses and GWAS gene-based analyses (Table 3). Additionally, the anal-
yses revealed that four genes (CENPQ, STK19B, HLA-DRB6, and GSTM3) and fourteen
genes (ERAP2, NBR2, TRMT61B, LRRC37A4P, WFDC3, SFTA1P, MAPK8IP1P2, HLA-DOB,
NPIPB2, DND1P1, AMH, LRRC37A2, ZNF589, and LRRC37A) were associated with a po-
tentially increased risk of comorbidity between BD and MI (Supplementary Table S8) and
between SCZ and MI (Supplementary Table S9), respectively.

3.4. Potential Pleiotropic Genes for Myocardial Infarction and Severe Mental Disorders in WES Analyses

To find the rare shared architecture of MI and SMDs, we further examined the rare
functional variants within WES data of approximately 200,000 participants in UKBB and
then performed gene-based exome-wide association analyses. After sample-level quality
control, a total of 540 European cases for BD, 254 for SCZ, and 3401 for MI were retained
for further analysis.

Genes containing more than two rare missense or loss of function variants were
tested in the gene-based association by RVtests. Mucin 2, oligomeric mucus/gel-forming
(MUC2), presented significance in both SCZ (p value = 0.039; FDR = 0.249) and MI
(p value = 9.01 × 10−5; FDR = 0.0492) (Figure 2).
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for multiple testing at FDR < 0.25 and p value < 0.05. BD: Bipolar Disorder; SCZ: Schizophrenia;
MI: Myocardial Infarction. The data are available in Supplementary Tables S10–S12.

3.5. Shared Pathways of Myocardial Infarction and Severe Mental Disorders by Gene-Set Analyses
for Rare Architecture

To identify the underlying shared pathways associated with MI and SMDs in WES
analyses, we performed gene-set based analyses using a list of predefined candidate
pathways. Gene sets with both CMC and SKAT-O p values less than 0.05 were viewed as
significant related to the certain disorder.

Shared significant canonical pathways included mammary gland development path-
way embryonic development stage 1 of 4 between BD and MI, and RIP-mediated NFkB
activation via ZBP1 between SCZ and MI. When using GOBP as input gene sets for RVtests,
all shared significant biological processes consistently achieved statistical significance
across two tests including insulin processing (in BD and MI), neutrophil-mediated killing
of Gram-negative bacterium (in SCZ and MI), and androgen catabolic process (in BD, SCZ,
and MI). Only one shared GOMF gene-set showed significance between MI and SMDs
(angiotensin receptor binding in BD and MI). No GOCC gene set achieved shared signifi-
cance between BD and MI or between SCZ and MI. Further information about the gene-set
analysis results of WES is listed in Supplementary Tables S13–S15.

3.6. Potential Therapeutic Drugs from Gene–Drug Interaction Prediction

The drug–gene interaction results from DGIdb indicated that 28 drugs or compounds
interacted with the six shared genes of BD, SCZ, and MI (Figure 3). Multiple drugs can
target the same gene for their effects (such as 16 drugs targeting HLA-B, 10 drugs targeting
HLA-C, and 3 drugs targeting NRP1).

We found that 21 drugs interacted with HLA-B and HLA-C, which were the shared
genes of BD, SCZ, and MI. One antipsychotic (i.e., olanzapine) had been reported to interact
with GSTM3, which was shared by BD and MI.
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4. Discussion

Herein, we separately applied gene-based and gene-set association analyses on GWAS
and WES data to discover the shared common and rare genetic underpinnings including
genes and pathways between MI and SMDs. Through meta-analyses of the largest GWASs
to our knowledge, we identified nine genes shared between SCZ and MI, three genes
shared between BD and MI, and nine pathways significantly shared between these two
types of disorders. Notably, three genes (HLA-C, HLA-B, and FURIN) were found to have a
joint effect on BD, SCZ, and MI. The association analyses on WES from the UKBB cohort
revealed one additional gene (MUC2) showing exome-wide significance in SCZ and MI
and several gene sets shared by both types of disorders.

Through genome-wide and exome-wide association studies, our results support the
hypothesis that both rare and common genetic underpinnings, including specific genes
and pathways, can mediate the interplay between SMDs and MI. This finding suggests that
integrating rare functional variants, which may have fewer carriers but larger effect sizes,
with common variants can provide a more comprehensive understanding of the genetic
mechanisms underlying the comorbidity of these conditions. By combining the effects
of both rare and common genetic variations, we can better explain the complex interplay
between SMDs and MI, leading to a more complete picture of the genetic underpinnings
involved in their co-occurrence.

We used MAGMA [25] to reveal common architecture overlap between SMDs and MI.
Grb10-interacting GYF protein 2 (GIGYF2), as an RNA-binding protein promotes endothe-
lial cell senescence, dysfunction, and inflammation and has high expression in senescent
human endothelial cells and the aortas of aged mice [34]. GIGYF2 also implicates the trans-
lational control process in SCZ by a zebrafish mutant ortholog study of SCZ-associated
genes focusing on abnormal behavior and brain activity [35]. FES Upstream Region (FU-
RIN) is located at an open reading frame upstream of FES Proto-Oncogene, Tyrosine Kinase
(FES). FURIN may have opposing effects in the pathogenesis of SCZ and MI. The inhibition
of FURIN in mice results in the prevention of vascular MMP2 activation and a decrease
in vascular remodeling and may attenuate the development of CVDs [36]. FES exerts a
protective effect against CVDs by a genome editing study and suggests that enhanced
FES activity may be a potential new treatment for CVDs intervention [37]. The attenuated
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expression of furin1, a FURIN homolog in Drosophila, presents defective habituation to recur-
rent footshocks, which constitutes a SCZ endophenotype [38]. SMG6 nonsense-mediated
mRNA decay factor (SMG6) also impacts myocardial injury and neurogenesis defects in
mice [39,40]. The manual curation of these shared genes in the International Mouse Phe-
notyping Consortium found that GIGYF2 related to phenotypes of tremors and increased
fasting circulating glucose levels in knockout mice, and SMG6 related to phenotypes of
abnormal startle reflex and decreased hematocrit, which are risk factors for MI and SMDs.
Our results suggested that identifying pleiotropic genes through meta-analyses of GWASs
was biologically sensible.

The gene-set analyses by MAGMA showed nine pathways shared between MI and
SMDs. These pathways can be categorized into four main groups: neurotransmitter regu-
lation, lipid metabolism, chemical homeostasis, and neuronal development and function.
GOBP regulation of catecholamine uptake involved in synaptic transmission (GO:0051940),
GOBP neurotransmitter transport (GO:0006836), and GOBP regulation of neurotransmitter
levels (GO:0001505) altogether showed the importance of neurotransmitters in this comor-
bidity. Neurotransmitters are fundamental chemical messengers in the nervous system
governing chemical communication between cells and playing a vital role in physiology
and physical health. Dysfunction and abnormalities in the levels of neurotransmitters play
a critical role in the pathophysiology of SMDs, and there are several generations of pharma-
ceutical drugs designed based on neurotransmitters such as atypical antipsychotics, selec-
tive serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors [41].
In GOBP regulation of neurotransmitter levels (GO:0001505), Catechol-O-methyltransferase
(COMT) achieved nominal significance both in BD and MI (p value for BD = 0.023, p value
for MI = 4.65 × 10−3). COMT is an enzyme that plays a crucial role in the metabolism of
neurotransmitters, including dopamine, norepinephrine, and epinephrine, and has often
been suggested as a famous candidate gene in the development of schizophrenia. Func-
tional COMT Val158Met polymorphism is also linked to a higher risk of acute coronary
events [42]. Additionally, several significant cellular components from GOCC as gene sets
indicated that lipid metabolism can exert effects on SMDs and MI such as high-density
lipoprotein particle (GO:0034364), chylomicron (GO:0042627), and triglyceride-rich plasma
lipoprotein particle (GO:0034385). In the high-density lipoprotein particle (GO:0034364)
pathway, APOA1 (p value for BD = 5.58 × 10−4; p value for MI = 0.0421), APOA5 (p value
for BD = 0.0187; p value for MI = 2.98 × 10−6), APOC4 (p value for BD = 0.0126; p value for
MI = 7.72 × 10−4), and APOM (p value for BD = 1.20 × 10−5; p value for MI = 3.07 × 10−3)
achieved nominal significance in BD and MI, and influence MI by modulating the struc-
ture and function of high-density lipoprotein particles. Compared to healthy individuals,
patients with schizophrenia exhibited a decrease in ApoA1 levels [43]. A decreased level
of ApoA1 in BD patients is also reported by Song et al. and Sussulini et al. [44,45]. These
research studies, together with our findings, indicate that lowered ApoA1 levels might be
associated with cognitive dysfunction and neuroinflammation, and thereby contribute to
the development of SMDs. Other pathways, such as long-term potentiation (PATHWAY:
hsa04720) and dendritic arborization (GO:0140059), suggest that neuronal development
and function may also play a significant role in the pathogenesis of SMDs and MI. These
pathways may explain the interplay between SMDs and MI. An interesting result of NRP1
identified by gene-set analyses indicated that its function may contribute to the pathophys-
iology of these disorders. The altered expression or function of NRP1 may affect processes
such as neuronal development, synaptic plasticity, and neurovascular coupling in SCZ and
BD [46]. A knockout mouse study shows that the knockout of NRP-1 in cardiomyocytes
and vascular smooth muscle cells leads to the development of cardiomyopathy and causes
the mice to be prone to heart failure after MI [47]. The genes identified in the GWAS analysis
with nominal significance in both BD and MI of GO:0001505 and GO:0034364 pathways
were listed in Supplementary Tables S17 and S18.

To investigate the contribution of rare variants to the genetic basis of MI and SMD
comorbidity, we performed gene-based and gene-set association analyses using UKBB
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WES. Only one gene (MUC2) achieved exome-wide significance. MUC2 is a key gel-
forming glycoprotein that is abundantly secreted and constitutes the primary constituent
of the mucus layer lining the gastrointestinal tract, particularly in the large intestine
or colon [48]. The possible mechanism behind this result may be the role of the gut
in both MI and SMDs. Alterations in MUC2 function can lead to increased intestinal
permeability, which has been implicated in systemic inflammation, a factor associated
with severe mental disorders through the gut–brain axis and the onset of cardiovascular
diseases [49,50]. Akkermansia muciniphila, the mucin-degrading bacterium, can improve
cardiovascular health by modulating gut inflammation [51]. From a clinical standpoint,
probiotic supplementation can enhance gastrointestinal well-being, cognitive performance,
and immune function, and may also have potential benefits for psychiatric symptoms [52].
Several zinc-finger protein (ZFP) genes, including ZNF774 in BD (p value = 8.19 × 10−4),
ZNF311 in SCZ (p value = 5.04 × 10−4), and ZNF652 in MI (p value = 9.67 × 10−4), were
found to be nominally and FDR-significant in all disease tests (Supplementary Tables
S10–S12). ZFPs are a family of transcription factors characterized by zinc-binding motifs
that facilitate DNA recognition and binding. The dysfunction of ZFPs may contribute to
disrupted neurotransmitter systems, neuronal networks, and cardiovascular development
linked to SMDs and CVDs [53,54]. Zinc-finger protein gene therapy targeting VEGF-
A can contribute to treating brain damage and artery disease [54,55]. As for gene-set
analyses, we revealed that insulin processing, neutrophil-mediated killing of Gram-negative
bacterium, androgen catabolic process, and angiotensin receptor binding were shared
between multiple phenotypes, which indicated that these biological processes may play a
vital role in comorbidity and have already been proven by some studies [56–59].

Our results demonstrated the value of rare functional variant calling in a case–control
study design for understanding comorbidity. Notably, we performed an exome-wide
association study on genes and gene sets in addition to GWAS analyses unlike prior
studies [17,60]. Moreover, by selecting controls from the same cohort (i.e., UKBB) as cases,
our approach allows us to identify more credible genes and gene sets contributed by rare
variants with potentially larger effect sizes, compared to relying solely on allele frequency
information from databases such as ExAC and gnomAD.

Some of the genes illustrated above interacted with therapeutic drugs for MI or SMDs
according to the drug–gene interaction analysis. In total, we found 28 drugs targeting six
genes. Our findings on these drugs showed clinical importance. Antipsychotics such as
olanzapine and clozapine are the mainstay treatment for people with schizophrenia or
related disorders. Both lamotrigine and carbamazepine are used in clinical practice for the
treatment of bipolar disorder, particularly for managing manic or depressive episodes. The
administration of ticlopidine can be part of secondary prevention strategies for patients
who have experienced MI with an apparent trend toward a lower reinfarction rate [61]. A
double-blind study shows that methazolamide is a potential therapy for CVDs with clinical
benefits beyond glucose control [62].

The present study has several limitations. First, the sample size of WES was not large
enough to detect convincing genes and pathways related to MI and SMDs. Larger sample
sizes or replication studies may find that more genes and pathways achieved statistical
significance. Second, we only considered genetic factors from a genomic perspective.
Integrating results from other omics, such as metabolomics or proteomics, may provide
new insights into these genetic underpinnings of comorbidity. Thirdly, environmental
factors such as smoking, lack of exercise, and adverse metabolic effects of antipsychotic
medications were not considered in our study.

5. Conclusions

In conclusion, our study provides a comprehensive analysis of the genetic under-
pinnings underlying the comorbidity between MI and SMDs by employing a combined
GWAS and EWAS approach. Our findings highlight several key genes, such as HLA-B,
HLA-C, NRP1, and MUC2, and pathways, such as neurotransmitter regulation and lipid
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metabolism, which are implicated in the development and progression of MI and SMDs.
The combination of GWAS and EWAS data, along with the identification of specific genes
and pathways, opens up new possibilities for future research.

Our study adds to the existing evidence that underscores the relationship between
cardiovascular and mental health. It sets the stage for further exploration of the shared
genetic and biological mechanisms underlying this comorbidity. By elucidating shared
mechanisms among MI and SMDs, we hope to facilitate the development of integrated
treatment approaches that address both the physical and mental aspects of these conditions,
ultimately improving patient outcomes and quality of life.
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estimation for schizophrenia (SCZ); Table S6: Driver tissues estimation for Myocardial Infarction (MI);
Table S7: Causal genes associated with bipolar disorder (BD), schizophrenia (SCZ), and Myocardial
Infarction (MI); Table S8: Causal genes associated with bipolar disorder (BD) and Myocardial Infarc-
tion (MI); Table S9: Causal genes associated with schizophrenia (SCZ) and Myocardial Infarction (MI);
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