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Abstract: Accurate segmentation of thyroid nodules in ultrasound images is crucial for the diagnosis
of thyroid cancer and preoperative planning. However, the segmentation of thyroid nodules is
challenging due to their irregular shape, blurred boundary, and uneven echo texture. To address
these challenges, a novel Mamba- and ResNet-based dual-branch network (MRDB) is proposed.
Specifically, the visual state space block (VSSB) from Mamba and ResNet-34 are utilized to construct
a dual encoder for extracting global semantics and local details, and establishing multi-dimensional
feature connections. Meanwhile, an upsampling–convolution strategy is employed in the left decoder
focusing on image size and detail reconstruction. A convolution–upsampling strategy is used in the
right decoder to emphasize gradual feature refinement and recovery. To facilitate the interaction
between local details and global context within the encoder and decoder, cross-skip connection
is introduced. Additionally, a novel hybrid loss function is proposed to improve the boundary
segmentation performance of thyroid nodules. Experimental results show that MRDB outperforms
the state-of-the-art approaches with DSC of 90.02% and 80.6% on two public thyroid nodule datasets,
TN3K and TNUI-2021, respectively. Furthermore, experiments on a third external dataset, DDTI,
demonstrate that our method improves the DSC by 10.8% compared to baseline and exhibits good
generalization to clinical small-scale thyroid nodule datasets. The proposed MRDB can effectively
improve thyroid nodule segmentation accuracy and has great potential for clinical applications.

Keywords: thyroid nodule; visual Mamba; ResNet; ultrasound image segmentation

1. Introduction

Thyroid cancer is the most widespread type of cancer affecting the endocrine system.
According to global cancer statistics from 2022, there were approximately 821,000 new cases
of thyroid cancer, representing an increase of about 1.5 times compared to the incidence in
2020 [1,2]. Despite the relatively low overall mortality rate associated with thyroid cancer,
the rise in incidence has led to a corresponding increase in related deaths. The condition
not only impacts patients’ physical health but also threatens their overall quality of life
and may leave lasting psychological effects. Fortunately, early detection and prompt treat-
ment of thyroid nodules can greatly ease the progression of thyroid disease and prevent
thyroid cancer. Traditionally, the diagnosis of thyroid nodules has relied heavily on the
rich clinical experience of doctors. However, this method, which depends on empirical
judgment, can be subjective, leading to inconsistencies in diagnosis accuracy. Additionally,
it is both time-consuming and labor-intensive. With advancements in deep learning (DL),
artificial-intelligence-assisted thyroid ultrasound diagnosis shows promise as a replace-
ment for conventional diagnostic techniques, offering a potentially more convenient and
precise approach.
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However, existing DL methods still have some limitations in processing ultrasound
images of thyroid nodules. The main reasons for this are that the inherent characteristics
of ultrasound images result in a low contrast between the nodule boundary and the
surrounding tissue, making it difficult for automatic segmentation algorithms to accurately
capture the true boundary of the nodule, and noise and artifacts are often present in the
ultrasound images, further increasing the difficulty of the segmentation task. In addition,
the structural characteristics of thyroid nodules place higher demands on the generalization
ability and robustness of the model. For example, in clinical practice, the size and shape of
nodules vary greatly, ranging from tiny nodules to larger masses, which requires strong
adaptability and robustness of the model. There is also the fact that the thyroid gland
usually contains a variety of tissue structures, such as muscle, fat, and other glands, and
this complex background information also interferes with the accurate segmentation of
nodules. What is more, most nodules usually occupy only a very small portion of the
entire image, which leads to category imbalance and makes the model prone to ignore
small targets.

In order to improve the accuracy of thyroid nodule segmentation in ultrasound im-
ages, it is crucial to comprehensively consider the characteristics of ultrasound images
and thyroid nodules. Above all, there is a need to enhance the model feature extraction
capability, which is particularly capable of dealing with nodule boundaries and size vari-
ations in dimensions. To cope with these difficulties, we propose a novel Mamba- and
ResNet-based dual-branch network (MRDB). The proposed method enhances the accu-
racy of thyroid nodule segmentation in ultrasound images by leveraging the strengths
of both Mamba and CNNs. Specifically, it improves the model’s understanding of the
global context while retaining the robust local feature extraction capabilities of CNNs. The
MRDB model comprises three key components: a dual-encoder structure, a dual-decoder
structure, and cross-skip connection linking the two branches. In the encoder, VSSB is
integrated with ResNet-34 to capture multi-scale features of nodules and handle long-
distance dependencies effectively. Meanwhile, the decoder employs distinct decoding
strategies to accommodate both rapid image resolution recovery and detailed feature learn-
ing. Finally, cross-skip connection enables complementary feature integration between the
different network branches. To summarize, the principal contributions of this research are
outlined below:

• The Mamba- and ResNet-based dual-branching network (MRDB) aims to leverage
Mamba’s capability for long-distance information modeling while combining the
strong robustness and feature extraction abilities of ResNet to capture nodule features
at multiple levels.

• A dual decoder is designed within the network. The left decoder focuses on the rapid
recovery of image size while ensuring accurate and coherent details. The right decoder
emphasizes progressively finer feature learning and recovery, aiming to capture and
reconstruct image information from different perspectives.

• Cross-skip connection is introduced to facilitate feature interaction between the dual-
branch network, enabling local detail features and global context information to
complement each other and enhancing the model’s ability to capture boundaries and
improve overall segmentation performance.

• A novel hybrid loss function is proposed, incorporating Smooth L1 loss into the
traditional BCE and Dice loss to address issues of category imbalance and bound-
ary concerns. Experimental results demonstrate that the MRDB achieves optimal
segmentation performance.

2. Related Works
2.1. CNN-Based Segmentation Methods

CNNs represent a ubiquitous DL methodology within the field of computer vision,
achieving notable successes in various applications of medical imaging. Particularly, CNNs
have been highly effective in the segmentation of thyroid ultrasound images, marking
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one of the earliest successful applications of these networks in the medical domain. For
example, the proposal of UNet [3] is an important landmark of DL in medical segmentation
and a benchmark in the field of thyroid nodule segmentation. The success of this model
has inspired numerous researchers to improve and extend it to develop multiple variants.
Partial researchers have used prior knowledge to guide network learning to improve
segmentation accuracy and robustness, including feature prior [4,5], shape prior [6–9],
and so on. However, the validity of a priori knowledge is highly dependent on the
quality of the training data, and improper a priori knowledge may amplify the errors
present in the training data. Therefore, most of the studies focus on the improvement
of the network structure to obtain higher accuracy improvement. These improvements
include the use of convolutional variants to enhance the feature extraction capability of the
model and expand the receptive field of the network. Specifically, improvements include
replacing the basic block with multi-scale attentional convolution [10] or selective kernel
convolution [11] in UNet, or introducing a stacked dilated convolution module [12–16]
in the bottleneck of the network. However, for specific thyroid nodule segmentation
tasks, blurred nodule boundaries in ultrasound images often pose significant challenges to
the model. To overcome these challenges, researchers have adopted various strategies to
improve the boundary segmentation capability of the model. EANet [17] proposed the edge
attention preservation module so that the edge flow only processes information related to
the boundary. The method based on boundary regression [18] uses the generated boundary
heatmap as an additional supervised branch to reduce boundary segmentation errors.
BFG&MSF-Net [19] captures edge details by designing a boundary feature guide module.
Moreover, some researchers also use multi-branch networks to improve the segmentation
ability of the model for nodules. MshNet [20] uses dual decoders to gradually segment
nodules from coarse to fine. HNet [21] designs a dual-branch network based on CNN to
realize the simultaneous learning of low-level detail and high-level semantic. Research on
CNN-based thyroid nodule segmentation has made considerable progress. However, due
to the specific spatial relationships between the morphology and location of thyroid nodules
and the surrounding tissues, the local convolution operations of CNNs are insufficient for
perceiving the pixel relationships over long-distance dependencies within the image. This
limitation often results in inaccurate segmentation of thyroid nodules.

2.2. Transformer-Based Segmentation Methods

In contrast, a transformer [22] is capable of capturing the dependencies among each
position in the input sequence through a self-attention mechanism. However, single-
transformer-based models often lack spatial inductive bias when modeling local informa-
tion. Therefore, integrating CNNs with transformers for thyroid nodule segmentation
emerges as an effective approach. LCA-Net [23] designs contextual attention module based
on the transformer. This module simultaneously utilizes the local feature information of
CNN and the global feature advantage of transformer, which can effectively extract global
context and local detail features. However, the effectiveness of the method in segment-
ing the boundary of insignificant nodules needs to be improved. Therefore, BTNet [24]
improves the boundary attention mechanism so that it focuses more on the learning of
boundary information to improve the segmentation accuracy of nodal boundaries. In
addition, the boundary point supervision module designed by BPAT-UNet [25] enhances
boundary features and generates desirable boundary points through a novel self-attentive
pooling method to obtain more accurate boundary information. Trans-CEUS [26] combines
a dynamic swin transformer into UNet to accurately segment thyroid nodules in contrast-
enhanced ultrasound images. HEAT-Net [27] designs a channel-enhanced transformer to
enhance the extraction of global features. SkaNet [28] combines convolutional features with
self-attention mapping in the encoding stage, while using local and global information in
thyroid nodule images to enhance feature discernment. Enhanced-TransUNet [29] builds
enhanced transformer modules for improving the understanding of vector relations to
realize remote connection. GLFNet [30] is designed to combine self-attention global–local
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fusion block, fusing global semantic information with local details. MLMSeg [31] proposes
a multi-channel transformer module for capturing remote dependencies of global view
between different nodes. In addition, Manh et al. [32] introduced the self-attention mech-
anism into adversarial learning to guide the segmentation model to learn lesion features
from global features. This approach allows the model to learn more information about
boundaries, shapes, and sizes, thus producing more reliable predictions. The fully super-
vised approach relies on manual labeling, and pixel-level labeling is a time-consuming and
laborious process. Therefore, SABR-Net [33] uses a semi-supervised approach to design
shadow-masked transformer to perceive the missing structures in the shadow region, which
further improves the segmentation performance of the model in complex backgrounds.
Transformer-based image segmentation algorithms model global information in the input
sequence through the self-attention mechanism. While this approach addresses the issue of
long-distance dependencies in the image segmentation process, it also introduces a higher
computational cost in terms of floating-point operations. Consequently, this limitation
restricts the further application of transformers in the medical field.

2.3. Mamba-Based Segmentation Methods

Mamba [34], with its unique state space models (SSMs), has demonstrated higher
efficiency than transformers in processing long sequences. This makes Mamba a very
promising choice for current applications. Ruan et al. [35] constructed the first pure Mamba-
based medical segmentation model called VM-UNet. The model employs a visual state
space block (VSSB) as a basic block for U-shaped networks to capture a wide range of con-
textual information. Du et al. [36] proposed a hybrid Mamba and CNN U-shaped network
named MM-UNet for magnetic resonance (MR) images to achieve optimal segmentation of
prostate in MR by designing a Mamba-based global-context-aware module with powerful
remote modeling capabilities. However, standard convolution is usually used for feature
extraction in CNNs, which has a fixed receptive field that makes it limited when dealing
with deformed objects in images. Therefore, Zou et al. [37] utilized the synergistic effect
of deformable convolution with specific dynamic receptive fields (DCN) and state space
model (SSM) to design the DeMambaNet model. This enables the model to adapt to local
structural deformations and spatial features in dental images, and improves the model’s
adaptability and accuracy to overlapping structures and fine structures in dental X-ray
images. Tang et al. [38] introduced a rotational Mamba-UNet for redundant structures in
Mamba. This model solves the degradation problem of information transfer from shallow
to deep networks by designing residual VSSB and rotated SSM. All these methods can
effectively improve the segmentation performance in the corresponding medical tasks,
but the introduction of complex modules will bring an increase of computational resource
demand. In order to satisfy the requirement of device lightweighting, researchers have
proposed several efficient network architectures in conjunction with the novel Mamba.
Zhou et al. [39] proposed a lightweight and high-performance HL-UNet network. This
network integrates the VSSB on a residual-enhanced adaptive attention module, which
enables the model to utilize both global and local information for accurate heart segmen-
tation. LightCF-Net [40] modeled remote spatial dependencies while maintaining high
performance by adding a novel design of visually attentive Mamba modules to skip connec-
tions for modeling contextual dependencies and reducing background noise interference.
Ultralight VM-UNet [41] achieves superior performance with the lowest computational
complexity while keeping the total count of treatment channels unchanged. In addition,
Ma et al. [42] proposed Semi-Mamba-UNet by integrating Mamba-based UNet and CNN-
based UNet into a semi-supervised learning framework in order to address the high cost
of expert annotation. The model is able to simultaneously generate pseudo-labels which
cross-supervise each other at the pixel level, which enhances the model’s learning ability
on unlabeled data. Mamba alleviates the modeling limitations of CNNs by employing a
global receptive field and dynamic weighting, thereby offering advanced modeling capabil-
ities comparable to those of transformers, without incurring the additional computational
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complexity typically associated with transformer models. These advantages make Mamba
a current research hotspot and offer a novel solution for medical image segmentation.

3. Methods

The MRDB network structure consists of three parts: a dual-branch encoder, a dual-
branch decoder, and a cross-skip connection, as illustrated in Figure 1. Specifically, the
encoder captures global and local features of the image using VSSB and ResNet-34, re-
spectively. During the decoding stage, two distinct strategies are employed to efficiently
recover image features from different perspectives. Finally, a multi-dimensional feature
connection is established between the encoder and decoder via the cross-skip connection,
thereby addressing nodule segmentation in complex scenes.
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3.1. Dual-Encoder Branch

The encoder is designed to extract richer feature representations using the advantages
of VSSB and ResNet-34 in global receptive field and local feature processing. Its main
structure is shown in Figure 2.
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3.1.1. Visual State Space Block

The core VSSB of Mamba as one of the MRDB encoders aims to better capture the global
contextual information of the image to compensate for the limitation of the localization of
the convolutional operation. VSSB implements global receptive fields, dynamic selection
of weights, and linear complexity, and uses 2D-selective-scan (SS2D) to selectively scan
the input data. The detail structure of VSSB is shown in Figure 2a, and its core component
SS2D is shown in Figure 3.
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VSSB uses layer normalization on the input feature maps at first to ensure the stability
of the data distribution. Subsequently, two parallel branches are used to process the
feature. The first branch consists of a linear layer, depth-wise separable convolution, and
an activation function that aims at digging into the deeper correlation of features. The
features are then finely scanned and filtered by SS2D and normalized by layer normalization
to further enhance feature differentiation and expressiveness. The second branch uses
a simple linear layer and activation function to preserve the integrity of the original
features. Subsequently, features originating from different paths are fused by element-wise
multiplication to promote complementarity and integration of information. Finally, the
fused features are added with the input features after a linear layer to form the output
of VSSB.

SS2D is shown in Figure 3. The data transfer consists of three steps: scan expand,
S6 block, and scan merge. The scan expand operation carries the input image through
four paths to expand it into a sequence. Then, it is computed in parallel through S6
blocks. Subsequently, scan merging reconstructs and merges each sequence to form diverse
features from different scan paths. Through a four-way scanning mechanism for spatial
domain traversal, SS2D is able to bridge the discrepancy between the sequential structure
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of 1D selective scanning and the non-sequential structure of 2D visual data to help gather
contextual information from different sources and perspectives.

3.1.2. Residual Network

The amount of data is often small in thyroid nodule segmentation tasks, so choosing
the right network is crucial. Residual networks enable better propagation of gradients
during network training by introducing jump connections between convolutional layers
so that the raw information from the input can be passed directly to the output layer.
This mechanism effectively solves the problem of gradient vanishing in deep networks,
allowing the model to maintain good performance during deep training. When working
with small datasets, it is important to choose the right version of ResNet, because overly
complex models can lead to overfitting. ResNet-34 has more layers than ResNet-18 and still
maintains a relatively low number of parameters, which makes it more efficient in training
and inference, while avoiding the risk of overfitting that comes with overly complex models.
The depth of layer 34 is sufficient to capture more complex features without overfitting
as easily as deeper models (such as ResNet-50, ResNet-101, or ResNet-152). Therefore,
we adopt ResNet-34 as the second branch of MRDB in the encoder and utilize its local
feature extraction capability to complement VSSB. The structure of ResNet-34 is shown in
Figure 2b, and the module can be defined as:

y = F(x, {W}i) + x (1)

where x and y are the input and output vectors for each layer, and the function F(x, {W}i)
denotes the residual mapping to be learned. The F + x operation denotes connection and
element-wise summation. As shown in Figure 2b, ResNet-34 has two convolutional layers,
which can be expressed as F = W2σ(W1x), where σ denotes ReLU. The details of ResNet-34
are presented in Table 1.

Table 1. Architecture of ResNet-34. Building layers are shown in brackets (shown in Figure 2b) and
the numbers of blocks stacked.

Layer Name Output Size 34-Layer

conv 1 128 × 128 7 × 7, 64, stride 2

Layer 1 64 × 64
3 × 3 max pool, stride 2[

3 × 3, 64
3 × 3, 64

]
× 3

Layer 2 32 × 32

[
3 × 3, 128
3 × 3, 128

]
× 4

Layer 3 16 × 16

[
3 × 3, 256
3 × 3, 256

]
× 6

Layer 4 8 × 8
[

3 × 3, 512
3 × 3, 512

]
× 3

The introduction of residual block allows the network to learn the mapping more
easily and maintains a stable training process even as the network layers deepen. When
applying ResNet-34 as an encoder in MRDB, the final global average pooling layer and the
layer fully connected to softmax are removed, and a sigmoid is set in the last convolutional
layer for converting the feature map to a probability value between 0 and 1 to predict
nodule and non-nodule regions.

3.2. Dual-Decoder Branch

In the decoder, a transpose convolution with learnable parameters is used for upsam-
pling instead of the interpolation method predefined in UNet. The decoder also employs
a dual-branch structure with a different convolution strategy in each branch, and the
complete structure is shown in Figure 4.
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The design of the left decoder focuses on quickly recovering image resolution, mean-
while ensuring accuracy and coherence of image details. The resolution of the feature
map is quickly restored by first performing an upsampling operation using the transpose
convolution. Next, the sampled features are deeply learned and refined by two 3 × 3
convolutional layers. The feature map details are further learned and refined to ensure the
accuracy and coherence of the image details.

The design of the right decoder focuses on progressively finer feature learning and
recovery. Initial feature learning is first performed on the feature map output from the
encoder through a 3 × 3 convolutional layer to capture and enhance local details. Sub-
sequently, a transpose convolutional layer is used for upsampling to recover the feature
map resolution without loss of information. Finally, another 3 × 3 convolution is used
to further refine the features to ensure that the recovered image has clear details and
complete structure.

The different designs of the dual decoders reflect the differential treatment of the
feature recovery and learning process, aiming at capturing and reconstructing the image
information from different perspectives.

3.3. Cross-Skip Connection

The dual-branch network structure is designed to make the interaction between fea-
tures richer and more flexible. Employing a single skip connection connected in UNet
would limit the effective learning between different feature information. Therefore, an
improved cross-skip connection is used for establishing a multi-dimensional feature map-
ping between the encoder and the decoder on both sides. For example, the feature map
generated by the VSSB located on the left of the network is connected to the decoder on
the right via feature addition, and the residual information is learned by adding the pixel
values of the two feature maps together. The feature map generated by the right ResNet
is concatenated with the decoder on the left to combine features from different sources
through the feature information on the channel dimension. The decoder features generated
by cross-skip connection can be defined as follows:

Xi
D = f (x) =

 Xi
E ⊕ Xn−i+1

D , i f Xi
E ∈ VSSB

Concat
(

Xi
E, Xn−i+1

D

)
, i f Xi

E ∈ ResNet
(2)

where, ⊕ represents feature addition, Concat(·) represents feature concatenate, i ∈ (1, 2, · · · , n)
represents depth of encoder and decoder, Xi

E represents the ith encoder, and Xi
D represents

the ith encoder. Concatenate and addition are shown in Figure 5.
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3.4. Improved Loss Function

Binary cross-entropy (BCE) loss [43] and Dice loss [44] are two commonly used func-
tions in image segmentation tasks, and they perform well in thyroid nodule segmentation.
However, both approaches may expose certain limitations when dealing with small targets
such as small thyroid nodules. Specifically, the BCE loss function measures performance of
a model by calculating the difference between predicted probability distribution and true
label. LBCE is defined as follows:

LBCE(p, g) = − 1
N

(
N

∑
i=1

gi log(pi) + (1 − gi) log(1 − pi)

)
(3)

where pi and gi represent the predicted value and the ground truth of pixel i in the input
image, respectively. N is the total number of pixels. The difference value of all pixels in the
image is calculated in BCE, which causes it to overemphasize the importance of background
pixels and neglect the smaller but more important foreground pixels. However, in the
thyroid nodule segmentation task, most of the lesion region accounted for a relatively small
proportion of the entire image. Therefore, the introduction of Dice loss [45], which is more
sensitive to unbalanced data, makes the model more focused on mining for thyroid nodule
regions. LDice is defined as follows:

LDice(X, Y) = 1 − 2|X ∩ Y|
|X|+ |Y| (4)

where X and Y represent the predicted result and ground truth. Dice loss mitigates the
problem of foreground and background imbalance in a sample by focusing primarily on
the extent to which the segmentation result overlaps with the true label. Combining BCE
and Dice loss can effectively mitigate the negative effects of category imbalance, but their
insensitivity to border distributions may lead to irregular nodule segmentation profiles,
thus affecting the accuracy of diagnostic results.

Therefore, we introduce the Smooth L1 loss [45] constrained model to learn the bound-
ary information. LSmoothL1 is defined as follows:

LSmoothL1(p, g) = f (x) =
{

0.5(pi − gi)
2, |pi − gi| < 1

|pi − gi|0.5, otherwise
(5)

where pi and gi represent the predicted value and the ground truth of the nodule region
in the input image, respectively. Smooth L1 constitutes a regression loss by calculating
the difference between the predicted and labeled values of the nodule region and then
summing these loss values. In contrast to BCE loss, Smooth L1 optimizes for outliers by
separately constraining the foreground segmentation result to measure the difference value
of the segmentation boundary. Specifically, the dynamic adaptability of Smooth L1 and its
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robustness to outliers allows the model to segment more accurate nodule segmentations by
being smooth for large values of segmentation error and sparse for small errors.

Therefore, designing a hybrid loss that retains the superiorities of BCE, Dice, and
Smooth L1 helps to overcome the limitations of a single loss function in some specific
cases, to improving the overall performance and robustness. Specifically, the BCE loss
is responsible for quantifying the difference between the predicted probability and the
ground truth. Dice loss makes the model pay more attention to the similarity within the
prediction region to alleviate the class imbalance problem. The Smooth L1 loss constrains
the learning of the model with respect to the boundary. Lproposed is defined as:

Lproposed = LDice
(
Yp, Yg

)
+ LBCE

(
Yp, Yg

)
+ 0.5LSmoothL1

(
Yp, Yg

)
(6)

where Yp and Yg denote the segmentation result of the network and ground truth, respec-
tively. The design model with this hybrid loss function is able to improve its sensitivity
to boundaries while maintaining its sensitivity to small target detection. This method can
not only improve the final segmentation accuracy, but also ensure the convergence of the
model during the whole training.

4. Experiments and Results
4.1. Datasets

The performance of MRDB is evaluated on three publicly available thyroid nodule
ultrasound datasets: TN3K [7,8], TNUI-2021, and DDTI [46]. Below are specific descriptions
of these datasets.

TN3K: The dataset contains 3493 ultrasound images of thyroid nodules from 2421 patients,
collected in Zhujiang Hospital of Southern Medical University. The nodules are manually
marked by the sonographer. About 9% of ultrasound images have two or more thyroid nod-
ules. The number of training and test images for the dataset are 2879 and 614, respectively.
In addition, images from the same patient appear only in one subset when the dataset is
divided.

TNUI-2021: The dataset consists of 1381 ultrasound thyroid nodule images. The
images are obtained from 483 patients. They are acquired from two device species, Aixplorer
and SAMSUNG WS80A, by doctors from Union Hospital of Fujian Medical University. The
labeled images are labeled manually by expert pathologists at Union Hospital of Fujian
Medical University. There are 966 training, 276 validation, and 139 testing thyroid nodule
ultrasound images.

DDTI: The dataset contains 637 thyroid images taken from a single ultrasound device,
each accurately labeled with information about a single nodule. The DDTI dataset is
designated as an external test set due to its small amount of data, and is used to measure
the algorithm’s ability to generalize across datasets. Specifically, after the model completes
training on the TN3K dataset, it is evaluated on the DDTI dataset. In this way, the diagnostic
accuracy and adaptability of the model on unseen data is verified.

4.2. Experiment Settings

All experiments have been performed on NVIDIA GeForce RTX 4090 GPU, Pytorch
2.0, and CUDA 11.8. The Adam optimizer is used in the training phase, the initial learn-
ing rate is 0.001, the size of the input image is 256 × 256, the batch size is 32, and the
model is trained with 200 epochs. In addition, various data augmentation techniques
are applied in the training phase to further improve the robustness of the model, such as
randomly adding noise, histogram equalization, color gamut change, rectangle dropping,
and pixel enhancement.

4.3. Evaluation Metrics

In order to evaluate the effectiveness of the model, the common evaluation metrics
Dice similarity coefficient (DSC), Jaccard, sensitivity, 95% Hausdorff distance (HD95),



Bioengineering 2024, 11, 1047 11 of 20

and false negative rate (FNR) [47,48] are used to quantify the segmentation performance
of models.

DSC is a metric that measures the degree of overlap between two sets of samples and
is particularly suitable for medical image segmentation. A high DSC value indicates that
the segmentation result is highly consistent with the true label, which is crucial for disease
diagnosis and treatment planning. The definition is as follows:

DSC(A, B) = 2
|A ∩ B|
|A|+ |B| (7)

Jaccard is another commonly used overlap metric that calculates the ratio of the
intersection of two sets to their union. Jaccard can provide additional information about the
integrity of segmentation results in medical image segmentation, especially when dealing
with complex or irregularly shaped lesions. The definition is as follows:

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| (8)

Sensitivity measures the ability to correctly identify positive cases. This metric is
critical in medical diagnostics for assessing the reliability and safety of algorithms. The
definition is as follows:

Sensitivity =
TP

TP + FN
(9)

HD95 is used to measure the maximum distance between two-point sets and can be
used to assess the consistency of the segmentation boundaries of thyroid nodules. The
definition is as follows:

HD95 = max
k95%

[d(A, B), d(B, A)] (10)

FNR is a very important indicator in medical diagnosis, reflecting the proportion of
diagnoses that fail to correctly identify the actual sick individual. Since the number of
positive samples (nodules) in thyroid nodule images is usually much less than the number
of negative samples (non-nodule regions), FNR can more accurately reflect the performance
of the model in detecting positive samples. The definition is as follows:

FNR =
FN

TP + FN
(11)

where A represents the labeled thyroid nodule region, B represents the thyroid nodule
region segmented by the algorithm, and TP and FN denote true positive and false negative
in image processing, respectively.

4.4. Comparison with Different Methods

The proposed MRDB is compared with advanced medical segmentation methods
including UVM-UNet [41], TRFE [7], UNet [3], FCN [49], VM-UNet [35], HNet [21], and
U2Net [50] on TN3K, TNUI-2021, and DDTI datasets. To show the performance of the
proposed method visually, a comparison of the precision–recall (PR) curves of MRDB
and SOTA on the three datasets is shown in Figure 6. The PR curve provides a more
comprehensive evaluation of model performance by focusing on the accuracy and coverage
of the model in positive categories. It can be seen that MRDB achieved the highest PR-AUC
of 0.97, 0.84, and 0.82 on the three datasets, respectively. In addition, MRDB maintains a
high precision rate throughout the recall range. This shows that our method has stronger
robustness and accuracy in dealing with complex data.
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4.4.1. Comparison on TN3K Dataset

The comparison results on the TN3K dataset are shown in Table 2, where MRDB
achieves the highest accuracy rates of 0.9002, 0.8185, and 0.8911 for DSC, Jaccard, and
sensitivity, respectively. Compared with the baseline model UNet, DSC increases from
0.8622 to 0.9002, an improvement of 3.8%. Jaccard increases from 0.7578 to 0.8185, an
improvement of 6.07%. On HD95, a metric used to assess boundary fit, MRDB achieved
the optimal segmentation results, decreasing from 16.0933 to 10.3465 compared to UNet.
Moreover, MRDB is 1.1% higher in DSC, 1.8% higher in Jaccard, and 1.7675 lower in HD95
compared to U2Net. The superiority of MRDB in boundary segmentation is proved.

Table 2. Comparison results on TN3K.

Method DSC Jaccard Sensitivity HD95 FNR

UVM-UNet 0.7962 0.6614 0.7709 21.9785 0.2291
TRFE 0.8651 0.7622 0.8692 17.7802 0.1308
UNet 0.8622 0.7578 0.8867 16.0933 0.1133
FCN 0.8736 0.7755 0.8549 13.7297 0.1451

VM-UNet 0.8684 0.7674 0.8606 14.4468 0.1451
HNet 0.8830 0.7906 0.8764 14.1400 0.1236
U2Net 0.8892 0.8005 0.8906 12.1140 0.1023

Proposed 0.9002 0.8185 0.8911 10.3465 0.1089
Bold represents the best results.

Figure 7 provides the segmentation results of MRDB and other advanced methods
on the TN3K dataset. The first column is the input image, and the corresponding ground
truth is marked with a green line. The second to ninth columns show the segmentation
results of UVM-UNet, TRFE, UNet, FCN, VM-UNet, HNet, U2Net, and the proposed
method, respectively, where the red lines represent the model segmentation results. From
the segmentation results, existing methods produce varying degrees of over-segmentation
and under-segmentation for nodules with fuzzy boundaries of different sizes in the first
three rows. For example, UVM-UNet, TRFE, UNet, and HNet misclassified the black area
as a nodule when processing the small nodule in the first row, resulting in a segmentation
with multiple nodules. In the complex case species containing multiple nodules in the
third and fourth rows, HNet and U2Net tend to underestimate the actual extent of the
nodules and exhibit under-segmentation. In contrast, models such as UVM-UNet and
UNet incorrectly classify some non-nodule regions into the range of nodules, resulting in
over-segmentation. Compared with other methods, MRDB shows significant advantages
in dealing with the above situation. It is able to outline nodule boundaries that are close
to the ground truth and outperforms other methods in terms of accuracy and fineness of
multiple nodule segmentation.
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of small-sized nodules in the second to fourth rows, models such as UVM-UNet, TRFE, 
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Figure 7. Segmentation results achieved by eight distinct methods on the TN3K dataset. The green
and red lines represent ground truth and segmentation results, respectively.

4.4.2. Comparison on TNUI-2021 Dataset

The MRDB model is further experimentally validated on the TNUI-2021 dataset, and
the results are shown in Table 3. MRDB achieves an accuracy of 0.8060, 0.6750, and 0.7452
in DSC, Jaccard, and sensitivity, respectively. Compared with the base structure UNet, it
improves 3.1%, 4.24% and 0.39%, respectively. The HD95 is only 7.0530, which is 2.5971
lower than with U2Net, achieving the current optimal segmentation performance.

Table 3. Comparison results on TNUI-2021.

Method DSC Jaccard Sensitivity HD95 FNR

UVM-UNet 0.7495 0.5994 0.7048 11.9571 0.2952
TRFE 0.7753 0.6331 0.7232 11.0230 0.2768
UNet 0.7750 0.6326 0.7413 9.6501 0.2587
FCN 0.7680 0.6234 0.6871 7.6442 0.3129

VM-UNet 0.7797 0.6389 0.7206 10.1937 0.2794
HNet 0.7874 0.6494 0.7217 8.4846 0.2783
U2Net 0.7945 0.6590 0.7369 9.5981 0.2631

Proposed 0.8060 0.6750 0.7452 7.0530 0.2548
Bold represents the best results.

Figure 8 provides a visual comparison of the segmentation results obtained by the
MRDB method and other state-of-the-art techniques on the TNUI-2021 dataset. The ability
of each model to handle different sizes and shapes of nodules is presented visually. When
dealing with nodules with irregular edges in the first and second rows, the segmentation
boundaries of MRDB are closer to the true label than other methods. In the segmenta-
tion of small-sized nodules in the second to fourth rows, models such as UVM-UNet,
TRFE, and UNet suffer from over-segmentation. In contrast, the segmentation results
of MRDB are highly consistent with the ground truth. This indicates that MRDB has
higher robustness and accuracy in dealing with complex situations. By quantitative analy-
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sis and visualization of the results, MRDB demonstrates the best accuracy and excellent
segmentation performance.
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green and red lines represent ground truth and segmentation results, respectively.

4.4.3. Generalization on DDTI Dataset

To evaluate the generalization capability of the MRDB method, the trained model
is tested on the DDTI dataset as an external validation set. The results are shown in
Table 4. MRDB achieves the highest segmentation accuracy on the DDTI dataset, and its
segmentation accuracy is much higher than that of HNet and U2Net, both of which have
comparable segmentation accuracies to MRDB on TN3K and TNUI-2021. Compared to
U2Net, MRDB has improved DSC by 3.61%, Jaccard by 4.49% and sensitivity by 8.73%.
In addition, the boundary segmentation error is reduced by 3.5665, and FNR is reduced
by 0.873.

Table 4. Generalization results on DDTI.

Method DSC Jaccard Sensitivity HD95 FNR

UVM-UNet 0.5052 0.3380 0.3663 40.1927 0.6337
TRFE 0.6522 0.4839 0.5494 29.3721 0.4506
UNet 0.6416 0.4723 0.5249 26.8659 0.4751
FCN 0.6378 0.4682 0.5262 31.1645 0.4738

VM-UNet 0.6626 0.4954 0.5697 30.2809 0.4303
HNet 0.7115 0.5522 0.6345 28.1954 0.3655
U2Net 0.7135 0.5546 0.6496 28.2147 0.3504

Proposed 0.7496 0.5995 0.7369 24.6482 0.2631
Bold represents the best results.

The visualization of the thyroid segmentation methods on the DDTI dataset is shown
in Figure 9. By comparing the results, we can see that the segmentation accuracy of MRDB
for nodules is better than other methods such as UVM-UNet and TRFE, as it reduces over-
segmentation and under-segmentation. Existing methods may not cover the nodule region
comprehensively, or incorrectly include non-nodule regions in the nodule range. MRDB can
maintain high segmentation accuracy and completeness in different situations, effectively
avoiding the above problems. It shows excellent performance in handling unseen data.
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4.5. Ablation Study

In order to evaluate the effectiveness of each enhancement in the proposed MRDB
model, ablation studies are systematically performed on both the network components and
the loss function.

4.5.1. Network Components

The ablation experiments of the designed dual-branch network, encoder and decoder
block, and cross-skip connection (CSC) are conducted and analyzed. The impact of each
improvement on MRDB performance is fully verified. The results are shown in Table 5.

Table 5. Ablation Study.

Base Dual UNet CSC ResNet-34 R-Decoder VSSB DSC Jaccard HD95
√

0.8622 0.7578 16.0933√ √
0.8767 0.7804 15.5501√ √ √
0.8804 0.7864 15.2983√ √ √ √
0.8906 0.8027 13.2195√ √ √ √ √
0.8962 0.8120 12.3130√ √ √ √ √ √
0.9002 0.8185 10.3465

Bold represents the best results.

Effect of dual UNet in the MRDB: The impact on network performance of using a
single UNet to implement the dual encoder–decoder structure is compared. As shown
in the second row, compared with the baseline model UNet, the DSC improves by 1.45%,
Jaccard increases by 2.26%, and HD95 decreases by 0.5432 with the dual encoder–decoder
structure. The results show that the dual encoder–decoder structure can effectively improve
the segmentation accuracy.

Effect of CSC in the MRDB: In order to efficiently transfer information between en-
coders and decoders on both sides, CSC is introduced. Both concatenate and addition
interactions are used to increase the diversity of features and effectively convey key informa-
tion. As shown in the third row, the model with CSC has better segmentation performance
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compared to the method without CSC. This indicates that CSC is more conducive to feature
fusion in MRDB compared to the original skip connection.

Effect of ResNet-34 in the MRDB: ResNet-34 is used as a unilateral encoder in order
to enhance the feature extraction capability of the model. The deep features are captured
by the powerful feature extraction capability. As shown in the fourth row, the DSC and
Jaccard of the model with ResNet-34 are improved by 1.02% and 1.63%, respectively, and
the HD95 is reduced by 2.0788 compared to the unused method. The results show that the
combination with ResNet-34 achieves the accurate capture of deep features.

Effect of R-Decoder in the MRDB: A convolution–upsampling–convolution strategy is
used in the right decoder, focusing on progressively finer feature learning and recovery. As
shown in the fifth row, the model with the improved decoder structure improves the DSC
and Jaccard by 0.56% and 0.65%, respectively, and reduces the HD95 by 0.9065. The results
show that the dual decoder using different decoding methods helps to achieve richer and
more flexible feature interactions.

Effect of VSSB in the MRDB: In order to alleviate the problem of weak perception
of long-distance pixel relationship by convolutional neural network, VSSB is introduced
in another encoder to capture the contextual information. As shown in the last row, the
complete MRDB with VSSB achieves the highest DSC value of 90.02% and Jaccard value of
81.85%, and the HD95 is reduced to 10.3465. The results show that the introduction of VSSB
efficiently models the long-distance information in order to improve the segmentation
accuracy of the model.

4.5.2. Different Loss Function

In the process of model training, the choice of loss function is crucial. Table 6 shows
the performance impact of different loss functions on MRDB in the thyroid segmentation
task. The commonly used Dice loss, BCE loss, and their combinations are compared with
our proposed hybrid loss function.

Table 6. Loss function.

Loss Function DSC Jaccard Sensitivity HD95 FNR

LDice 0.8788 0.7839 0.8741 12.3978 0.1259
LBCE 0.8861 0.7955 0.8483 11.5968 0.1517

LCombined 0.8882 0.7988 0.8744 12.1296 0.1256
LProposed 0.9002 0.8185 0.8911 10.3465 0.1089

Bold represents the best results.

Dice Loss: Dice loss is widely used in image segmentation tasks, aiming to maximize
the Dice similarity coefficient between the predicted results and the real labels. The ex-
perimental results show that the MRDB model with Dice loss achieves a DSC of 0.8788, a
Jaccard index of 0.7839, a sensitivity of 0.8741, an HD95 of 12.3978, and an FNR of 0.1259
on the TN3K dataset.

BCE Loss: BCE loss is another commonly used loss function, mainly for binary
classification problems. When the BCE loss is applied in the MRDB model, the model has
a DSC of 0.8861, a Jaccard of 0.7955, a sensitivity of 0.8483, an HD95 of 11.5968, and an
FNR of 0.1517 on the TN3K dataset. BCE loss is more favorable for segmentation boundary
accuracy than Dice loss, but underperforms in sensitivity and FNR.

Combined Loss: The combination of BCE and Dice forms a composite loss function
that aims to synthesize the advantages of both. This is a common strategy currently used
to optimize segmentation models. The MRDB model using the composite loss function has
a DSC of 0.8882, a Jaccard of 0.7988, a sensitivity of 0.8744, an HD95 of 12.1296, and an FNR
of 0.1256 on the TN3K dataset. It shows that the combined loss can better balance the fine
segmentation of the boundary while improving the segmentation accuracy of the model.

Proposed Loss: Finally, we tried the innovative combined loss function combining
BCE, Dice, and Smooth L1. Experimentally, the MRDB model using the proposed loss has a
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DSC of 0.9002, a Jaccard of 0.8185, and a sensitivity of 0.8911 on the TN3K dataset, whereas
the HD95 and the FNR are reduced to 10.3465 and 0.1089, respectively. Thus, the proposed
loss function not only improves the overall segmentation performance of the model, but
also achieves significant improvement in boundary refinement and localization accuracy.

5. Discussion

Due to the variable size and blurred edges of thyroid nodules in ultrasound images,
accurate segmentation has become a significant challenge. Although existing methods
have made substantial improvements in segmentation performance for this task, various
limitations remain. Specifically, most methods struggle to accurately capture the true
boundaries of nodules when the edges are blurred, and they tend to over-segment or
under-segment when dealing with nodules of different sizes. Therefore, we propose a
Mamba- and ResNet-based dual-branch network (MRDB) to enhance the accuracy and
robustness of the model for challenging nodule segmentation tasks.

Global features in ultrasound images of thyroid nodules provide crucial information
about the surrounding tissues and organs, which is essential for understanding the develop-
mental status and potential impact of the nodule. The MRDB network extracts both global
and local features during the encoding stage, allowing for complementary and coordinated
information capture. This comprehensive approach enables the model to fully understand
the nodule and its environment. In contrast, U2Net focuses on multi-level feature extraction
and fusion but does not sufficiently prioritize global information in the initial stages. This
may affect the final segmentation performance when dealing with images in complex
backgrounds. Similarly, HNet utilizes a dual-branch structure aimed at learning both
low-level details and high-level semantics. However, the feature fusion module designed
by HNet at the bottleneck layer includes too many convolutional layers, which might
result in information loss and hinder subsequent feature recovery and interaction. The
integration of global and local features in MRDB facilitates a better understanding of the
developmental status and potential impact of nodules when processing ultrasound images
of thyroid nodules, thereby providing more reliable support for clinical diagnosis.

To further optimize the segmentation performance of the model, we employ a hybrid
loss function that combines BCE loss, Dice loss, and Smooth L1 loss. The limitations of
a single loss function in a given situation can be overcome by using it in combination to
improve the overall performance and robustness of the model. Specifically, BCE loss evalu-
ates model performance by calculating the difference between the predicted probability
distribution and the true label, and it excels in classification accuracy at the pixel level.
However, BCE loss may overemphasize the importance of background pixels, which is
particularly detrimental when dealing with the thyroid nodule segmentation task. Dice loss,
on the other hand, measures the degree of overlap between the predicted segmentation
results and the true labels, allowing the model to focus more on the detection of nodal
regions, which is particularly suitable for dealing with the problem of category imbalance.
However, Dice loss does not perform well in dealing with boundary blurring and may
result in inaccurate segmentation boundaries. Smooth L1 loss constitutes a regression
loss by calculating the difference between the predicted and true values, and is able to
optimize the foreground segmentation results, especially the accuracy of the segmentation
boundaries. Dynamic adaptation and smoothing of large errors allow it to perform well in
boundary learning. Therefore, by combining BCE loss, Dice loss, and Smooth L1 loss, our
model is able to improve classification accuracy, alleviate the category imbalance problem,
and optimize boundary learning for more accurate segmentation results.

Improving the lightweight performance of the model to meet the requirements of
embedded and mobile devices remains a major challenge for clinical applications. Therefore,
future research directions will focus on enhancing the operational efficiency of the model
to ensure that it can perform efficient and accurate segmentation tasks even in resource-
constrained environments. We aim to reduce redundant computations through in-depth
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research on model compression techniques and parameter sharing strategies, thereby
improving the generalizability and efficiency of the models to better serve clinical practice.

6. Conclusions

This paper proposes a novel Mamba- and ResNet-based dual-branch network (MRDB)
for accurate segmentation of thyroid nodules in ultrasound images, particularly focusing
on small-sized or irregularly shaped nodules. The MRDB network primarily consists of
a dual encoder for acquiring local and global features, a dual decoder for reconstructing
image information from multiple perspectives, and cross-skip connection for facilitating
feature interaction. Additionally, a hybrid loss function is designed for model training. Ex-
periments conducted on three publicly available thyroid nodule ultrasound image datasets
show that MRDB achieves the best segmentation accuracy and optimal performance on
an external dataset. This indicates that MRDB has strong generalization capabilities and
significant potential for clinical applications.
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