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Abstract: Spinal medical image segmentation is critical for diagnosing and treating spinal disorders.
However, ambiguity in anatomical boundaries and interfering factors in medical images often cause
segmentation errors. Current deep learning models cannot fully capture the intrinsic data properties,
leading to unstable feature spaces. To tackle the above problems, we propose Verdiff-Net, a novel
diffusion-based segmentation framework designed to improve segmentation accuracy and stability
by learning the underlying data distribution. Verdiff-Net integrates a multi-scale fusion module
(MSFM) for fine feature extraction and a noise semantic adapter (NSA) to refine segmentation masks.
Validated across four multi-modality spinal datasets, Verdiff-Net achieves a high Dice coefficient of
93%, demonstrating its potential for clinical applications in precision spinal surgery.

Keywords: spinal segmentation; diffusion model; multi-modality

1. Introduction

Spinal surgical conditions are prevalent and frequently result in high rates of disability,
significantly diminishing patients’ quality of life. They have gradually emerged as major
health concerns, profoundly impacting individuals’ daily lives [1–3]. An essential first step
toward a thorough diagnosis and treatment of spinal illnesses is the automated extraction
of the vertebral form from various vertebrae medical pictures. Specifically, the evaluation,
diagnosis, surgery planning, and image-guided interventional processes of numerous
vertebrae illnesses depend on the precise segmentation of vertebrae and intervertebral
disks (IVDs) in vertebrae images. Extensive research efforts have been made by several
researchers to enhance the segmentation performance of models for vertebrae images.
Specifically, the methods in this field are mainly divided into two categories, such as single-
modality and multi-modality. The single-modality approaches [4,5] are common and have
drawbacks in clinical practice, and frequently necessitate an extended development cycle.
A multi-modal approach [6] can leverage data from multiple imaging modalities at the
same time, each of which offers distinct anatomical and pathologic details that contribute to
a more thorough reveal of the spinal system and its diseases. Furthermore, by minimizing
the dependence on a single imaging technology, the multi-modality approach lowers the
possibility of misdiagnosis and enhances diagnostic accuracy and reliability through thor-
ough analysis. However, investigations on multi-modality vertebrae image segmentation
techniques in clinical settings are still very scarce. Meanwhile, researchers must overcome
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the following two primary obstacles in order to produce accurate and dependable multi-
modality vertebrae segmentation results because of the variety of imaging modalities used
on spinal medical pictures as well as the distinctiveness of their anatomical structures:

(1) Data heterogeneity. The term “heterogeneity of data” describes the variety and di-
versity of the data, or the variations in the data across various dimensions. These
variations could be caused by a variety of things, including the characteristics of the
chiropractic data itself, the acquisition technique, the equipment used, the duration of
the acquisition, and more. For instance, feature extraction varies throughout different
types of imaging data (e.g., MRI, X-ray, CT, etc.), and variations in acquisition equip-
ment can result in issues with data quality such as noise and distortion in vertebrae
imaging. Figure 1a illustrates the blurred outlines caused by the physical properties
of X-ray imaging. Second, interclass similarity is seen in spinal MR images [5]. This
means that neighboring vertebrae (intervertebral disks) in the same subject (Figure 1b)
exhibit a high degree of morphological resemblance, making it more challenging to
distinguish between individual vertebrae. The surrounding tissues in Figure 1c have
similar physics and tissue densities to the vertebrae in CT imaging, which leads to
identical CT values that confuse the background features and result in erroneous
detections. Analogously, variations in the duration of acquisition may cause data
drift and variability. As a result, data heterogeneity must be taken into account and
managed throughout data processing and analysis since it is one of the key elements
influencing the outcomes of data analysis and mining.

(2) Anatomical shape. Vertebral pictures show features such as blurriness, uneven
grayscale distribution, high noise levels, and low contrast because of the state of
spinal medical imaging today. The vertebrae that make up the spinal structure also
have a similar form but different types. Spinal illnesses like vertebral strain alter
the anatomical form of the vertebral bodies, as shown in Figure 1d. Furthermore,
the vertebrae are spatially displaced as a result of trauma, bad posture, muscular
imbalance, and congenital deformities [7]. This causes aberrant modifications or
misalignment of their locations in space, which severely distorts the morphology of
the vertebral bodies. Particularly, in Figure 1e, the individual had fractures or breaks
in the sacral vertebrae as a consequence of external pressures. This may lead to further
deformation, which makes the connections between the lumbar and sacral vertebrae
extremely tight. As such, defining the borders between these joint vertebrae based
on pixel intensity is difficult. This frequently results in semantic segmentation of
these linked vertebrae as a single object during vertebral segmentation, which causes
misidentification as a single vertebra. Given the increased unpredictability in the
contour forms and placements of the vertebral bodies, these features surely make
vertebral segmentation tasks more challenging.

Most of the existing deep learning (DL)-based image segmentation methods perform
prediction and discrimination by directly learning the probability of classifying image
pixels, and these methods fall into two main categories: convolutional neural network
(CNN)-based methods [8,9] and visual Transformer (ViT)-based methods [10–12]. These
methods typically use the cross-entropy or Dice loss function to train a model that learns a
mapping function from an input medical image to a segmentation mask. Although these
methods have been effective in specific applications, they mainly focus on learning decision
boundaries in the pixel feature space [13], ignoring the distributional properties of the
underlying data [14] and failing to adequately capture the intrinsic class characteristics
of the data. Additionally, the learned feature space of existing methods exhibits a rapid
decline in performance in regions far from the decision boundary [15], posing challenges
for handling fuzzy boundaries and fine objects. This instability limits the model’s ability to
recognize subtle variations in images, which is particularly significant in medical image
segmentation where these variations can be crucial for diagnosis and treatment. There-
fore, despite the progress made by CNN- and ViT-based methods in the field of image
segmentation, there is still room for improvement in terms of deeply understanding data
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distribution and enhancing the stability of the feature space. Generative models [16–20]
discover intricate probabilistic correlations between images and segmentation masks in
the field of medical image segmentation. Instead of producing a fixed segmentation result,
these algorithms generate a probabilistic distribution that directly models the underlying
data distribution and predicts the segmentation mask conditional distribution. On the
other hand, this method is more likely to capture image ambiguity [17,21] and produce
segmentation results that are smoother and more reliable.

Figure 1. Challenges in resolving multi-modality vertebral images include: (a) boundary-blurring
from X-ray imaging methods. (b) interclass similarity when vertebrae are present in MR. (c) The
misdiagnosis in CT imaging of vertebrae and adjacent tissues with similar CT values. (d,e) weak
vertebral contouring from the encroachment of vertebral degeneration/disease.

Diffusion probabilistic models are renowned as powerful generative models, pos-
sessing excellent capabilities for modeling (un)conditional data distributions. This brings
significant advantages to the field of medical image segmentation. In practice, researchers
have adopted two strategies: on the one hand, diffusion models are directly applied to
treat image segmentation as a generative task, leveraging DDPM’s ability to capture fine
details in data distribution [20,22,23]. On the other hand, some studies aim to integrate the
precision of discriminative methods with the creativity of generative methods [17,24,25],
striving for superior performance in segmentation tasks. However, existing methods still
have shortcomings in integrating the features of input data and segmentation masks. They
often adopt a rather coarse concatenation approach when combining these two types of
features for joint probabilistic modeling, leading to the loss of critical information. More-
over, although these methods are effective in general scenarios, they still require further
customization and optimization in specific application contexts to meet unique demands
and address corresponding challenges.

In this study, we built upon the foundation of diffusion models and cleverly integrated
conditional models to provide more refined feature guidance. This approach achieves
a deep combination of the advantages of existing discriminative segmentation models
and generative diffusion probabilistic models. Our objective is to explore an efficient
and high-quality method for precise segmentation of spinal multi-modal images. To this
end, we propose a conditional diffusion segmentation framework named Verdiff-Net (as
illustrated in Figure 2, which shows a conceptual diagram of our proposed segmentation
framework). We observed that conventional diffusion segmentation models often adopt
a simple concatenation approach when learning and modeling the joint probability of
features from the original image and segmentation mask. To overcome this limitation,
we introduced a multi-scale fusion module in the conditional U-Net to comprehensively
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capture the feature information of the original image. Additionally, by ingeniously applying
the noise semantic adapter, we filtered out irrelevant information, allowing the model to
focus more on the vertebral regions, thereby effectively enhancing the fineness of the
segmentation masks and overall performance.

Figure 2. Modeling conceptual diagram. The diffusion model alternates between the noise addition
phase and the sampling phase to train the network and ultimately generate the final prediction mask.
The conditional U-Net model induces the diffusion model to synergize the advantages of the existing
discriminative segmentation and generative diffusion models.

The innovations and contributions of this study can be summarized as follows:

(1) Synergistic combination of models: Verdiff-Net effectively blends the advantages
of diffusion and conditional models, improving segmentation tasks’ accuracy and
stability, especially when modeling discrete targets.

(2) Multi-scale fusion module: Verdiff-Net integrates a multi-scale fusion module into
the conditional U-Net to overcome the drawbacks of traditional diffusion models. By
efficiently capturing and maintaining the underlying spinal feature information, this
module lessens the loss that is commonly brought about by coarsely fusing image
and mask features.

(3) Noise semantic adapter (NSA): During the diffusion process, the NSA serves as
a selective filter, drawing the model’s attention to important spinal aspects while
rejecting unimportant data. This breakthrough increases inference efficiency as well
as the model’s accuracy in spinal segmentation.

(4) Comprehensive evaluation: The effectiveness and generalizability of the model are
validated on four vertebrae medical datasets with three different modalities. To the
best of our knowledge, this study is the first to thoroughly evaluate the model’s
robustness and generalization on a multi-modality vertebrae dataset.

2. Methodology
2.1. Framework Overview

Our proposed Verdiff framework consists of two key components: Conditional U-Net
and diffusion U-Net. The core idea is to combine the discriminative power of existing
segmentation models with the generative capabilities of diffusion models to enhance
medical image segmentation. The conditional U-Net provides a prior segmentation mask
for the diffusion model, while the diffusion U-Net iteratively refines the segmentation mask
in an effective, efficient, and interactive manner.

In this section, we briefly introduce the proposed diffusion model framework. Unlike
traditional medical image segmentation methods that directly input raw image data to
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predict the corresponding segmentation label map, the prior mask f (b) generated by the
conditional U-Net undergoes iterative refinement through the diffusion U-Net, ultimately
producing the final segmentation mask. During the forward diffusion process, the prior
mask is used for noise addition, and during the reverse diffusion process, it serves as the
initial sampling point. The entire diffusion process can be represented as follows:

xT ⇌ · · ·⇌ xt
pθ(xt−1|xt, f (b)))

GGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGG

q(xt|xt−1, f (b))
xt−1 ⇌ · · ·⇌ x0 (1)

The diffusion model takes noisy segmentation labels xt and the original image b
as input and learns spinal features under the guidance of prior information from the
original image. It predicts clear mask results through a reverse denoising process. Figure 3
illustrates the overall architecture of the proposed network, which consists of a forward
diffusion stage and a reverse stage. Next, we provide a detailed explanation of the two key
modules: the multi-scale fusion module (MSFM) and the noise semantic adapter (NSA).

Condition Unet : f ( )

𝑥𝑥𝑇𝑇 𝑥𝑥𝑡𝑡−1 𝑥𝑥0𝑥𝑥𝑡𝑡

⋅⋅⋅

~ convergence

~

Forward process

Ground-truth noise 

ℒ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑞𝑞 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑓𝑓(𝑏𝑏) = 𝒩𝒩 𝑥𝑥𝑡𝑡; 𝛼𝛼𝑡𝑡𝑥𝑥𝑡𝑡−1 + 1 − 𝛼𝛼𝑡𝑡𝑓𝑓(𝑏𝑏), 1 − 𝛼𝛼𝑡𝑡 𝐼𝐼

NSA

MSFM

Diffusion Unet 

𝑡𝑡

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡: 𝑏𝑏 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 𝑓𝑓(𝑏𝑏) Ground Truth: 𝑥𝑥0

𝑡𝑡
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Timestep embedding
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ℰ

Figure 3. Overview of the Verdiff-Net framework. It contains two different U-Net backbone encoder–
decoder structures.

2.2. Training Strategies for Diffusion Models
2.2.1. Diffusion Forward Process

During the training phase, variational inference is performed over a Markov process
with T time steps. In the forward process at each time step t ∈ T, successive Gaussian
noise is added to the label x0 until the image becomes pure isotropic Gaussian noise xT ,
thereby learning the data distribution. To better guide the diffusion process, we introduce
an initial segmentation mask f (x) provided by the conditional U-Net f (b), which is used
to correct the noise process. The forward noise process in the Markov chain at time step t
in the forward diffusion process is represented as follows:

q(xt | xt−1, f (b)) = N (xt;
√

αtxt−1 +
√

1− αt f (b), (1− αt)I), (2)

where N (·) denotes a normal distribution with a mean of αtxt−1 + (1− αt) f (x), and a
variance of (1− αt)I. Here, f (x) represents the segmentation prior generated by the dis-
criminative model, which is used to correct the noise distribution at each time step, allowing
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Gaussian noise to better align with the segmentation prior. The parameter αt controls the
noise variance and determines the amount of noise added. (x0, x1, . . . , xT) denotes the T
steps in the Markov chain, and I is the identity matrix, representing isotropic noise.

After T steps, the data transform into a pure Gaussian noise image, represented by xT ,
and we can establish the relationship between x0 and xt as follows:

xt =
√

ᾱtx0 +
√

1− ᾱt f (b) +
√

1− ᾱtϵ (3)

where ᾱt = ∏t
s=1 αs is the cumulative noise scheduling, which controls the degree of

interpolation between x0 and the noise. The term f (b) is the output of the conditional U-
Net, which helps to guide the noise interpolation process. The term ϵ ∼ N (0, I) represents
standard Gaussian noise.

During the training process, after obtaining the noisy label xt at time step t, the
objective is to predict a clear label map x0 during the sampling phase. By combining
the prior information from the conditional U-Net f (b), the generative model can more
efficiently recover the segmentation mask x0 from the noise, while further optimizing
the synergy between the discriminative model and the generative model throughout the
learning process.

2.2.2. Diffusion Reverse Process

Where ᾱ is the cumulative product of α, used to simplify the relationship formula from
the initial time step to the current time step. After obtaining the noisy label xt at time step t,
our goal is to predict the clean label map x0 at the sampling stage. The holistic network Φθ

uses the knowledge gained from the forward process to generate a sequence of incremental
denoising operations in the reverse denoising process, which yields a clear image. The
reverse distribution, as shown in Equation (4), reduces to a problem of minimizing the KL
divergence between the forward and reverse distributions for all time steps.

p(xt−1 | xt, f (b)) := N (xt−1; µθ(xt, t, f (b)), Σθ(xt, t, f (b))) (4)

where xt−1 follows a normal distribution (Gaussian distribution) with its mean and variance
determined by the parameterized functions µθ and Σθ . µθ is the conditional mean function,
and Σθ is the conditional variance (covariance) function. The optimization of the overall
function requires sampling from the distribution q(xt | xt−1). Given x0, the marginal
distribution of xt can be obtained from the intermediate latent variables.

q(xt | x0, f (b)) = N (xt;
√

ᾱtx0 +
√

1− ᾱt f (b), (1− ᾱt)I) (5)

By utilizing the posterior distribution q(xt | xt−1, x0), the KL divergence between the
forward and reverse distributions is further simplified and reduced. Under the Markov
assumption, the posterior distribution q(xt−1 | xt, x0) is obtained through the iterative
denoising process at each time step, yielding the estimate of xt−1.

q(xt−1 | xt, x0, f (b)) = N (xt−1; µ(xt, x0, f (b)), σ2 I) (6)

where

µ(xt, x0, f (b)) =
√

ᾱt−1(1− αt)

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
1− ᾱt f (b)

and σ2 = (1−ᾱt−1)(1−αt)
1−ᾱt

. Assuming that the covariance matrices of the two distributions
q(xt−1 | xt, x0) and p(xt−1 | xt) are the same, the corresponding expression of xt−1 as shown
in Equation (7) is further obtained by the iterative inference process of the denoising model.

xt−1 ←
1√
αt

(
xt −

1− αt√
1− ᾱt

Φθ(xt, t, f (b))
)
+ σtz (7)
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where z ∼ N (0, I), t = 1, . . . , T, σ is the inverse variance that can be learned, and z is
the random sampling parameter. According to the above Equations (4)–(6), the simplified
training objective is finally obtained by the following:

Lsimple = Ex0,ϵ

[
∥ϵ−Φθ(x̃, t, f (b))∥2

2

]
(8)

where ϵ ∼ N (0, 1). We model the medical image segmentation task as a discrete data
generation problem and directly predict the expected value of a label xt with noise. Based
on the variational upper bound of the negative log-likelihood of previous diffusion models,
we use the Kullback–Leibler (KL) divergence and the binary cross entropy (BCE) mixed
loss. Based on the combining Equations (6) and (10), we obtain the total hybrid loss [22] by
the following:

LBCE = −E(ϵ,ϵ̂)

H,W

∑
i,j

[
ϵi,j log ϵ̂i,j + (1− ϵi,j) log(1− ϵ̂i,j)

]
(9)

Ltotal = Lsimple + LBCE (10)

By taking the average of different predicted segmentation masks generated by the
network Φθ, a clear mask of significance can finally be obtained, providing a valuable reference
for radiologists. The flow of the algorithm is shown in Algorithms 1 and 2.

Algorithm 1: Training
1. (b, x0) ∼ q(b, x0)
2. T ∼ Uniform({1, 2, . . . , T})
3. ϵ ∼ N (0, I)
4. Calculate Equation (5)
5. Take gradient descent on ∇θ(Ltotal)
6. until converged

Algorithm 2: Sampling
1. xT ∼ N (0, I)
2. for t = T, . . . , 1 do
3. z ∼ N (0, 1) if t > 1, else z = 0
4. xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
Φθ(xt, t, f (b))

)
+ σtz

5. end for
6. return x0

2.3. Multi-Scale Fusion Module (MSFM)

Conditional diffusion-based probabilistic models introduce noise into the original
label and iteratively predict the segmented label map. However, the noise-added mask
information at the current time step is often coarsely spliced and processed with the original
image during fusion, which undoubtedly leads to feature loss and degrades the capability
of subsequent network segmentation. To solve this problem, the proposed MSFM will play
a role. As shown in Figure 4, before the input raw image b enters the conditional U-Net
coding and decoding structure of the model, we first transform the raw data b ∈ RH×W×C

by three different convolutional kernel sizes of 3× 3, 5× 5, and 7× 7, and fuse the results
of the three branches by element summation to obtain b̃.

b̃ = Ã + B̃ + C̃ (11)



Bioengineering 2024, 11, 1031 8 of 18

where b̃ ∈ RH×W×C. After generating the channel information, the global information is
embedded by using global average pooling to obtain S ∈ RC. The n-th element of S is
obtained through contracting b̄ by using the spatial dimension H ×W.

sn = Fgp(b̄) =
1

H ×W

H

∑
i=1

W

∑
j=1

(b̄)n(i, j) (12)

Specifically, we use the ELU activation function in the fully connected layer along
with the batch normalization technique for fine-tuning. To filter out useless dimensions to
improve efficiency, we use the fully connected layer to create a compressed feature z ∈ Rd

to achieve an accurate and adaptive selection guide.

z = Fc(b̄) (13)

where d is a hyperparameter that can be fine-tuned, it is used to control the dimensionality
of the compressed feature z.

Then, cross-channel soft attention is used to adaptively select information at different
spatial scales. Where a, b, c denote the soft attention vectors of Ã, B̃, C̃, respectively, and an
is the n-th element of a and an + bn + cn = 1, A, B, C ∈ RC×d. Finally, the final feature map
X is obtained from the attention weights on each convolutional kernel:

Xn = an · Ãn + bn · B̃n + cn · C̃n, (14)

where X = [X1, X2, . . . , Xn], Xn ∈ RH×W ,

an =
eAnz

eAnz + eBnz + eCnz ,

bn =
eBnz

eAnz + eBnz + eCnz ,

cn =
eCnz

eAnz + eBnz + eCnz .

The output of X from this fusion module is then refined to extract the segmentation
features of the original image, being fused with the information from the current step’s
noise-added mask xt, and finally input to the U-Net coding structure of the diffusion model.

MSFM ( Multi-scale Fusion Module ) 

element-wise sum
element-wise product

Figure 4. Schematic structure of the multi-scale fusion module (MSFM).

2.4. Noise Semantic Adapter (NSA)

Spinal pictures are used in anatomy to illustrate very intricate systems such as the
spinal cord, IVD, and vertebrae. Not only are these structures connected, but they are also
all extremely intricate. A continuous succession of structurally similar but individually
unique vertebrae make up the vertebrae. The vertebrae are distinguished by their symmetry
and continuity, which may not be as noticeable in other kinds of medical pictures. Vertebrae
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images from current medical imaging methods frequently have high aspect ratios, which
makes processing image size and feature extraction difficult for popular deep learning
networks. To further complicate the picture segmentation process, the key target regions
of the vertebrae are typically more concentrated than in other medical images, and there
is a certain semantic coherence between these regions. Relatively speaking, if researchers
choose to compress the original vertebrae image into a square, or resize the original image
to make it easier to input into the model, these operations will undoubtedly cause great
damage to the spatial information features of the original image and lead to semantic loss.
For example, in a single step in the diffusion process, t, the U-Net decoder of the diffusion
model receives the fusion information from the noise mask, xt, and the original image, and
finally predicts the resultant clear mask. Along with input of different types of medical
images, the lack of the model’s ability (namely, to extract semantic information from a
particular image) can lead to large discrepancies in the model’s predictions.

To overcome this negative effect, we adopted the backbone structure of MedSegDiff [20].
The NSA was introduced into the standard U-Net of the conditional model to extract the
spinal semantic information from the fused features. Specifically, we introduce the NSA
into the U-Net encoder of the diffusion model. As shown in Figure 5, compared to the
standard 2D convolution embedded in the standard U-Net, the NSA provides an operation
to automatically select the convolution kernel. The input U-Net feature image information
X ∈ RH×W×C is first operated by the initial sliding window (kernel operation of the fine-
grain convolution layer), and then by the spatial convolution layer of the 7 × 7 convolution
kernel. The corresponding matrix obtained by these two operations is F and S, where
F, S ∈ RH×W×C/2. The first fine-grained convolution layer can be selected with a 3 × 3 or
5 × 5 convolution layer, keeping the number of channels constant. Here, note that the spe-
cific selection strategy (for the convolution kernel geometry size) depends on the number
of mask pixels around the center pixel. For fine particle extraction, 3 × 3 volume nodes are
used when processing pixel data within the vertebrae, including vertebrae boundaries. For
extracting large area background feature information, a 5 × 5 volume combination with a
padding of 2 is used for coarse extraction, which improves the model’s degree of matching
to the target region features. In the next spatial convolution layer, a larger 7 × 7 convolution
kernel with a dilation of 3 is employed. This approach increases the receptive field without
adding more parameters, and each input channel is convolved with its own set of filters.

Figure 5. Noise semantic adapter (NSA) structure.

The two convolution layers are used to halve the dimension of the channel, and the
obtained results are concatenated by aggregating the average and maximum attention. The
sigmoid function is then applied to smoothly activate the weighted attention, attempting
to expand the channel dimension back to its original size to retain the most relevant
information and obtain the detailed features T of each channel.

T = Sigmoid · f (F ∗ S) (15)

where ∗ represents the product, T ∈ RH1×W1×C.
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The two convolution layers are used to halve the dimension of the channel, and the
obtained results are concatenated by aggregating the average and maximum attention,
and the sigmoid function is applied to smoothly activate the weighted attention, trying
to expand the channel dimension back to its original size to retain the most relevant
information and obtain the detailed features T of each channel.

After multiplying and superimposing the matrices F and S obtained from two scale
convolution layers, V ∈ RH×W×C is then obtained. The final output feature V ∈ RH×W×C

results from multiplying with the residual connection of the original input information X.
The V can be expressed as follows:

V = V ∗ X, V = F ∗ T + S ∗ T (16)

3. Experiments and Results
3.1. Dataset Introduction

To validate the generalizability and robustness of the proposed model, we comprehen-
sively evaluated our proposed model on four vertebrae imaging dataset, including two
sets of CT datasets, respectively, from publicly and privately available ones, a single set of
MR ones, and a single set of X-ray ones.

Public CT dataset. We used the 42 sets of 3D spine1K data in the “verse” folder of the large-
scale spine CT dataset called CTSpine1K. Based on this dataset, we conducted vertebrae
segmentation experiments to select slices and contacted radiologists to manually select
images one by one, and finally selected 2508 images with clear layers and anatomical
information with masks for training and sampling. All the image sizes are standardized to
166 × 369.
Private CT dataset. Sagittal CT images of the vertebrae were collected from 630 volunteers
(396 females, 234 males; mean age 26 ± 3 years, range 19 to 36 years). Three radiologists
and one vertebral surgeon labeled these vertebral image regions as the ground truth for the
vertebrae segmentation task and checked the labeled regions against each other to ensure
reliability. Thus, each subject had a T2-weighted MR image and a corresponding mask
as the initial ground truth, where each vertebra was assigned a unique label. We chose
images of clean lumbar vertebral regions containing the caudal vertebrae and standardized
the dimensions to 534 × 768 as inputs.
Private MR dataset. The dataset, collected from a local hospital, consists of T2-weighted
MR volumetric images from 215 subjects. Among the 215 subjects, there were 6 normal
subjects, 177 patients with vertebrae degeneration (VD), 204 patients with intervertebral
disk degeneration (IDD), 21 patients with lumbar spondylolisthesis (LS), 91 patients with
spinal canal stenosis (SCS), 22 patients with Schmorl’s node (SN), and 53 patients with
vertebral endplate osteochondritis (VEO). The delineated mask was corrected by the senior
expert using the ITK-SNAP1 to be the ground truth of vertebrae parsing [26]. The average
pixel spacing within the plane of the MR image was 0.35 mm, while the average slice
thickness was 4.42 mm. By focusing solely on segmenting the vertebrae and excluding
the spinal fluid portion between them, we first removed the spinal fluid from the labels of
these data. We then smoothly extracted the 3D raw data and their corresponding mask
data from the sagittal plane, ultimately obtaining pure 880 × 880 paired images and mask.
Public X-ray dataset. The dataset consists of 609 spinal anterior–posterior x-ray images [27].
The landmarks were provided by two professional doctors at the London Health Sciences
Center. Each vertebra was located by four landmarks with respect to four corners. All
the image sizes were 250 × 750. In addition, since the noise artifacts in this dataset were
extremely severe, and some of the data were mixed with medical clinical instruments
on the vertebrae, in order to further test the segmentation ability of the model in this
particular condition, we ignored the detailed features of the vertebrae contour lines and
performed a binary transform only for the vertebral trunk regions in order to obtain the
original annotations.
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3.2. Data Preprocessing

We used dynamic data augmentation during training to avoid network overfitting and
to increase the robustness of our model. Three types of data augmentation are included, as
follows: (1) randomly rotating the image from−30◦ to 30◦ to simulate the rotation variance;
(2) randomly shifting the image by 1–5% to simulate the shift variance; (3) random elastic
deformation and random contrast adjustment to improve the generalization of the model.
To ensure all the methods used the same augmented training data, we used the same
random state (seed = 35) for all methods when conducting data augmentation.

3.3. Training/Validation Setup and Evaluation Metrics

All the networks were built using PyTorch on a Linux 20.04 system, and the code
ran on a server equipped with an A6000 GPU unless otherwise specified. The training
process had a maximum iteration limit of 9000 steps. In our implementation, we trained
our networks from scratch without relying on any pre-trained models. We employed the
Adam optimization algorithm to minimize the loss function as described in Equation (9).
Given our computational resources, a batch size of 1 was chosen. Batch normalization was
utilized to facilitate a higher learning rate, resulting in relatively shorter training times. The
learning rate was set to 10−4. The stopping criterion was determined by the point where
the validation loss stopped decreasing.

The Dice similarity coefficient (DSC) and intersection over union (IoU) serve as quan-
titative metrics for assessing segmentation performance. The DSC quantifies the overlap
between the ground truth segmentation (Y) and the predicted segmentation results (X). The
IoU describes the ratio of the overlapping area to the union area between the predicted and
annotated segmentation regions. Specifically, the IoU is calculated as the area of intersection
divided by the area of union between the predicted and annotated regions.

Dice =
2|X ∩Y|
|X|+ |Y| (17)

IoU =
TP

TP + FP + FN
(18)

Here, TP is the number of true positive pixels, which are correctly identified as part of
the segment of interest. FP is the number of false positive pixels, representing the count
of pixels incorrectly classified as part of the segment. FN is the number of false negative
pixels, which are the pixels that are part of the segment in the ground truth but were missed
by the prediction.

3.4. Vertebrae Segmentation Results

To quantitatively evaluate Verdiff-Net, we used Dice and IoU to measure the dif-
ference between the predicted results and the ground truth. During the evaluation, the
ground truth labels for the vertebrae were obtained by manually drawing lines along the
vertebral contours and were confirmed by certified radiologists. Verdiff-Net achieved
average Dice scores of 94.37 ± 4.75%, 93.84 ± 1.56%, 93.86 ± 1.98%, and 88.74 ± 21.6% for
vertebral structure segmentation on four different spinal multi-modality datasets. These
quantitative results indicate that Verdiff-Net effectively balances over-segmentation and
under-segmentation. As shown in Figure 6, we visualized the segmentation results of a sin-
gle sagittal slice of the lumbar vertebrae. The high similarity between the model-predicted
masks and the ground truth masks demonstrates that the model successfully achieves
precise 2D spinal image segmentation across four multi-modality datasets.



Bioengineering 2024, 11, 1031 12 of 18

Figure 6. Verdiff-Net achieves reliable spinal segmentation performance. Above are the midsagittal
sections of the vertebrae of each of the four subjects. The four subjects were imaged using different
vertebrae imaging devices.

3.5. Comparison of the Results

In a comparative evaluation across four multi-modality datasets, we compared our
proposed segmentation method with state-of-the-art deep learning approaches, as detailed
in Table 1. We evaluate our approach against a number of cutting-edge segmentation
approaches, such as U-Net [28], FCN [29], DeepLabv3 [30], nnU-Net [31], and Swin-U-
Net [12]. For a thorough comparison, we additionally take into account the most recent
state-of-the-art methods, SAM [32], and MedSegDiff [20].

Table 1. Metrics unique to each experiment for the four datasets.

CT-Verse CT-Pri X-ray MR
Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%)

U-Net [28] 83.25 ± 4.08 71.35 ± 3.23 93.22 ± 1.83 87.34 ± 3.19 60.78 ± 10.23 43.75 ± 9.82 91.23 ± 2.76 84.00 ± 4.59
FCN [29] 82.22 ± 4.34 69.88 ± 3.61 93.24 ± 1.79 87.36 ± 3.07 65.30 ± 9.53 52.60 ± 8.17 91.50 ± 2.75 84.44 ± 4.57

DeepLabv3[30] 80.41 ± 4.50 67.29 ± 3.27 93.06 ± 1.88 86.94 ± 4.05 72.44 ± 8.59 63.91 ± 6.72 91.06 ± 2.93 83.70 ± 5.15
nnU-Net [31] 92.98 ± 3.86 86.97 ± 2.93 93.33 ± 1.69 88.04 ± 2.97 89.77 ± 6.69 81.69 ± 5.26 92.16 ± 2.73 84.97 ± 4.53

Swin-U-Net [12] 81.65 ± 4.19 69.27 ± 3.44 91.27 ± 2.15 84.02 ± 5.64 68.93 ± 9.06 53.13 ± 8.08 85.86 ± 7.94 75.39 ± 16.48
SAM [32] 79.78 ± 4.23 66.89 ± 3.50 80.36 ± 3.44 76.35 ± 8.21 67.89 ± 9.22 52.56 ± 13.32 81.00 ± 9.27 70.92 ± 17.57

MedSegDiff [20] 92.44 ± 3.75 88.27 ± 2.91 91.07 ± 1.69 84.51 ± 2.86 87.59 ± 7.24 76.68 ± 5.78 92.96 ± 2.87 86.53 ± 3.71
Verdiff-Net(ours) 94.37 ± 3.73 90.89 ± 2.87 93.84 ± 1.56 91.87 ± 2.79 88.74 ± 7.04 77.04 ± 5.75 93.86 ± 1.98 88.58 ± 3.83

All experiments were conducted on the same datasets, and statistical significance
was noted in the results. The results show that Verdiff-Net performs better than its ri-
vals, attaining the highest Dice similarity in the datasets CT-Pri, CT-Verse, and MR. More
specifically, on the MR public dataset, Verdiff-Net demonstrated a considerable Dice im-
provement of roughly 1.7% over nnU-Net, and improvements of 0.51% and 1.4% on CT-Pri
and CT-Verse, respectively. Verdiff-Net demonstrated its supremacy by routinely delivering
Dice scores above 93% on CT-Pri, CT-Verse, and MR. Verdiff-Net reduces false positives
and improves Dice and IoU scores by incorporating the suggested module and taking
advantage of diffusion models’ pixel-level semantic segmentation capabilities. Verdiff-Net
generates smoother and more accurate vertebral mask edges with a considerable reduction
in pixel shifts and misclassifications as compared to other DDPM-based techniques such as
MedSegDiff [20]. Figure 7 makes clear that alternative deep learning techniques are not
able to reliably produce accurate spinal segmentation in all datasets, especially when it
comes to X-ray data, where Dice coefficients for U-Net, FCN, Swin-U-Net, and SAM were
less than 70%. In regions above the implant, FCN and DeepLabv3 are unable to segment
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the vertebrae; in contrast, nnU-Net, MedSegDiff, and our suggested model can recognize
and find the vertebrae.

In conclusion, Verdiff-Net outperforms other techniques in terms of Dice similarity
and robustness to alterations in input modalities, demonstrating its strength in delivering
accurate spinal segmentation, even in difficult settings.

Figure 7. The comparison of Verdiff-Net with several SOTA segmentation methods.

3.6. Ablation Study

We conducted a thorough ablation experiment on the MR dataset to confirm the
efficacy of our proposed module. To assess how well the three activities were performed,
we used dice scores (%). The segmentation results of the underlying denoising diffusion
probabilistic model (DDPM) on the MR dataset are greatly improved by both the Noise
semantic adapter (NSA) alone and the multi-scale fusion module (MSFM) module, as
shown in Table 2. In particular, the model’s Dice coefficient is improved by 3.28% just by
using the suggested multi-scale fusion module (MSFM) in place of the earlier technique.

Table 2. Ablation study results on the MR dataset.

MSFM NSA MR (Dice) MR (Iou)

0.8868 0.8396
✓ 0.9196 0.8682

✓ 0.9027 0.8521
✓ ✓ 0.9386 0.8858

This shows that by helping to retrieve the original vertebrae image’s finely segmented
features, which can then be used to include semantic requirements in the diffusion U-
Net model that follows, multi-scale fusion module (MSFM) can optimize the DDPM-
based model. By learning an architecture based on the content-switching convolutional
kernel of the original vertebrae images, the noise semantic adapter (NSA) improves the
interaction between the noise mask and the anatomical semantic features of the images.
This greatly improves the segmentation results of the underlying diffusion model, leading
to an improvement of the Dice coefficients by 1.59%, respectively. In this MR dataset, our
suggested two modules enhance the base denoising diffusion probabilistic model by over
5%, yielding cutting-edge segmentation outcomes. The ablation study’s findings confirm
the efficacy of the suggested modules by demonstrating that the semantic feature extractor
is responsible for the notable increase in vertebrae parsing performance.
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4. Discussion
4.1. Segmentation Effects

We analyzed the segmentation effects across four disparate datasets. The comparative
trials revealed significant variations in the models’ performance, as depicted in Figure 8.
Specifically, on the CT-Verse and CT-Pri datasets, the models exhibited superior segmenta-
tion capabilities, accompanied by a notably smaller total standard deviation. In contrast, the
X-ray dataset presented a challenge, with the segmentation metrics Dice and IoU recording
lower values and the overall standard deviation being slightly elevated. To elucidate these
discrepancies, we undertook an exhaustive review of the dataset composition. Less overall
variability of the pictures in the dataset was caused by the subject’s mid-sagittal vertebrae
segment data in the CT dataset being smoother and having higher resolution. On the other
hand, the X-ray dataset’s poor segmentation can be attributed to two key factors. Firstly,
there is a lot of noise and artifacts in the X-ray collection, and the vertebrae shape differs a
lot from patient to patient, making segmentation more challenging. Second, with no dis-
cernible edge enhancement or description, the target vertebrae region is remarkably similar
to the background pixels. Many of the most advanced segmentation methods struggle
to handle this high degree of similarity, making it simple to confuse the vertebrae region
with the backdrop. Furthermore, our observations indicate that the standard deviation of
the SAM model’s segmentation outcomes on the MR dataset is significantly higher when
compared to other models, including Swin-U-Net. The spinous processes in the MR images
exhibit substantially lower resolution and brightness compared to the vertebral trunk, often
blending in with the background. Additionally, the manually annotated masks for these
areas are less regular, contrasting with the more uniform imaging conditions typical of
CT scans. In this context, the absence of pre-training hinders the SAM model’s ability
to effectively segment the vertebral feature region from a semantic standpoint, thereby
reducing the overall segmentation accuracy of the dataset.

Dice Iou

UNet
FCN
DeeplabV3
nnU-Net
Swin-Unet
SAM
Medsegdiff
Verdiff-Net

Dice Iou

Dice IouDice Iou

X-ray MR

CT-PriCT-Verse

UNet
FCN
DeeplabV3
nnU-Net
Swin-Unet
SAM
Medsegdiff
Verdiff-Net

UNet
FCN
DeeplabV3
nnU-Net
Swin-Unet
SAM
Medsegdiff
Verdiff-Net

UNet
FCN
DeeplabV3
nnU-Net
Swin-Unet
SAM
Medsegdiff
Verdiff-Net

Figure 8. Vertebrae segmentation metrics (Dice vs. IoU) on the four datasets. In the majority of
vertebrae datasets, Verdiff-Net achieved the highest average Dice (%) results.
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Due to Swin-U-Net’s relatively slow global sensitivity and convergence rate during
actual training, its segmentation performance is further compromised by the system’s
limited capability to extract meaningful features from the vertebral region. The perfor-
mance of these models on the MR dataset also highlights their limitations in dealing with
low-resolution images of vertebrae that have a background highly similar to the fore-
ground, underscoring the need for more sophisticated models that can better handle such
challenging imaging conditions.

Furthermore, we examined the instances in which certain models failed the com-
parison test, as illustrated in Figure 7. Of the models tested on the X-ray dataset, only
nnU-Net, MedSegDiff, and Verdiff-Net were able to accurately predict the specific regions
that belong to the vertebrae in the X-ray images when bone nails were present, and they
also maintained a high degree of similarity with the mask that the qualified physicians
had labeled. Based on our analysis, MedSegDiff and Verdiff-Net’s segmentation success
can be attributed to distinct factors. Specifically, the DDPM algorithm, which emphasizes
learning only the vertebrae region’s specific features during the noise addition process,
disregards the features of the other parts as noise. By classifying all non-vertebrae pixels on
the vertebrae layer as noise during the reverse denoising stage, these models successfully
segment the vertebrae area. On the other hand, nnU-Net’s integrated data preparation
module improves the vertebrae region’s semantic information and sensory field, which
helps the network better collect vertebrae properties.

4.2. Limitation

From an application perspective, we acknowledge that we only considered the seg-
mentation of spinal images and did not evaluate its generalizability to other medical images.
Additionally, due to the difficulty in obtaining and annotating data, there are differences in
the spinal regions (such as thoracic and lumbar spine) among different datasets, and the
annotation methods vary. The imaging techniques for different spinal regions also lead to
variations in imaging directions, resulting in different morphological representations of
the spine. This not only increases the difficulty of data annotation but also complicates the
model’s ability to recognize vertebral regions.

On the one hand, our initial intention was to explore the generalization performance
of the diffusion model on multi-modal spinal images and the stability of segmentation
performance across different modality datasets. This led us to overlook the model’s multi-
class segmentation performance, simplifying the spinal segmentation task to a binary
segmentation task. On the other hand, the segmentation task for the generative model
requires significant CUDA memory, thereby increasing computational demands. Segment-
ing multiple types of spinal regions (≥9 categories) inevitably leads to high CUDA usage,
potentially causing errors.

Despite the algorithm’s superior segmentation performance, there are still shortcom-
ings. First, the DPM-based algorithm takes a long time to train. Due to the necessity of
performing addition and denoising operations over several iterations, the training pro-
cess is time-consuming. Secondly, this approach heavily relies on GPU resources. The
training phase requires handling a large number of computational operations, typically
necessitating high-performance GPU support, which limits its applicability to some extent.
It is recommended that future research focus on optimizing the algorithm, enhancing
training efficiency, and reducing dependence on hardware resources to further promote the
application of this technology in clinical settings.

5. Conclusions

This study proposes a novel medical image segmentation method called Verdiff-Net,
which combines the advantages of discriminative segmentation models and generative
diffusion probabilistic models to achieve accurate segmentation of multi-modal spinal
images. The contributions of this study are summarized as follows:
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**Feature extraction mechanism**: A feature extraction mechanism incorporating
multi-scale convolutional layers is introduced into the conditional U-Net. This mechanism
reduces the loss of low-level features, effectively models the underlying data distribution,
and maximizes the model’s ability to learn multi-scale spatial features from the original
spinal images.

**Noise semantic adapter (NSA)**: Given the characteristic large aspect ratio of spinal
medical images, NSA is proposed. NSA filters the fused features input into the diffusion
model and further adjusts the model to focus on attention feature responses in the spinal
target area, thus accommodating the unique morphology and structural factors of the spine.

**Validation and generalization capability**: The effectiveness and generalization
capability of the model were thoroughly evaluated on four medical datasets covering three
different imaging modalities. The results demonstrate that Verdiff-Net exhibits outstanding
performance in the domain of spinal medical image segmentation, effectively identifying
and segmenting low-level spinal features while showing strong potential for application
across different datasets. This study is the first to comprehensively evaluate the robustness
and generalization capability of the model on multi-modal spinal datasets, providing new
perspectives and references for research in this field, and promoting further exploration
and development in medical image segmentation technology.
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