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Abstract: Background: The peptidyl-prolyl isomerase (PIN1) plays a vital role in cellular processes,
including intracellular signaling and apoptosis. While oxidative stress is considered one of the
primary mechanisms of pathogenesis in brain ischemic injury, the precise function of PIN1 in this
disease remains to be elucidated. Objective: We constructed a cell-permeable PEP-1–PIN1 fusion
protein and investigated PIN1’s function in HT-22 hippocampal cells as well as in a brain ischemic
injury gerbil model. Methods: Transduction of PEP-1–PIN1 into HT-22 cells and signaling pathways
were determined by Western blot analysis. Intracellular reactive oxygen species (ROS) production
and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by
MTT assay. Protective effects of PEP-1-PIN1 against ischemic injury were examined using immuno-
histochemistry. Results: PEP-1–PIN1, when transduced into HT-22 hippocampal cells, inhibited
cell death in H2O2-treated cells and markedly reduced DNA fragmentation and ROS production.
This fusion protein also reduced phosphorylation of mitogen-activated protein kinase (MAPK) and
modulated expression levels of apoptosis-signaling proteins in HT-22 cells. Furthermore, PEP-1–PIN1
was distributed in gerbil hippocampus neuronal cells after passing through the blood–brain barrier
(BBB) and significantly protected against neuronal cell death and also decreased activation of mi-
croglia and astrocytes in an ischemic injury gerbil model. Conclusions: These results indicate that
PEP-1–PIN1 can inhibit ischemic brain injury by reducing cellular ROS levels and regulating MAPK
and apoptosis-signaling pathways, suggesting that PIN1 plays a protective role in H2O2-treated
HT-22 cells and ischemic injury gerbil model.

Keywords: ischemia; PEP-1–PIN1; oxidative stress; MAPK; protein therapy

1. Introduction

Peptidyl-prolyl isomerase (PIN1) is primarily found in the nucleus of neurons and
plays a crucial role in various cellular processes, including aging and neurodegenerative
disorders. In addition, it regulates multiple physiological processes, such as the cell cycle,
proliferation, differentiation, cell death, and DNA damage and repair [1–5]. Several studies
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have shown that PIN1 activity is decreased in the hippocampus of Alzheimer’s disease
(AD) patients, which means that this protein plays important roles in the neuronal cell
death pathway, in turn suggesting that PIN1 has a neuroprotective role in AD [3,6,7]. It has
also been reported that a loss of PIN1 induces senescence and that PIN1 knock-out mice
show a senescent phenotype [8,9]. Additionally, PIN1 expression in the myocardium is
decreased with aging, suggesting that PIN1 is an important anti-aging protein [10]. Though
PIN1 involves the various cellular process, including brain diseases, the role of this protein
in ischemic injury has not yet been investigated.

It is known that transient forebrain ischemia is caused by an insufficient blood supply to
the brain and that this insufficient blood supply affects oxygen and glucose concentrations
in neurons and glia, ultimately causing neuronal cell death in the brain [11,12], and that the
mechanism of this cell death is linked to oxidative stress, excitotoxicity, and inflammatory
responses [13,14]. Many reports have shown that ischemic injury can markedly increase ROS
levels and induce oxidative damage in neurons [15,16] and that this ROS-induced oxidative
stress plays a crucial role in neuronal damage in the hippocampus [17–19].

It has been reported that excessive production of ROS is associated with neuronal
disorders of apoptosis signaling [20–23] and that mitogen-activated protein kinase (MAPK)
is involved in cell survival and apoptosis [24–26]. Therefore, studies of the modulation
of ROS and MAPK signaling pathways that aim to protect neuronal cells against damage
need to be elucidated. To attempt to deliver the therapeutic molecules into the brain for the
prevention or reduction of brain damage after an ischemic injury, passage through the blood–
brain barrier (BBB) is the most important factor. The protein transduction domain (PTD) can
solve this problem because PTD-fused therapeutic molecules can deliver into brain tissues
through the BBB. Of the various PTDs, PEP-1, consisting of three domains, has a greater
efficiency when delivering target proteins, regardless of size, into cells. Additionally, PEP-1
has advantages in protein transduction, including high stability, a lack of toxicity, and a lack
of sensitivity to serum [27]. Many reports have revealed that PTD fusion proteins can be
used as novel delivery tools for various diseases, including neuronal diseases [27–37]. In the
present study, a cell-permeable PEP-1–PIN1 fusion protein was constructed to investigate
PIN1’s function in HT-22 hippocampal cells and a gerbil model of brain ischemic injury.

2. Materials and Methods
2.1. Construction and Purification of PEP-1–PIN1 Proteins

To facilitate the delivery of PIN1 into hippocampus HT-22 cells and into gerbil brain
tissues, a PEP-1–PIN1 and a control PIN1 were constructed in the pET-15b vector by TA
cloning, with or without PEP-1-expression vector. PEP-1–PIN1 and control PIN1 plasmid
were transformed with Escherichia coli BL21 (DE3) cells and the cells were cultured and
added to 0.5 mM IPTG (Duchefa, Haarlem, The Netherlands) at 37 ◦C for 4 h to express
the PEP-1–PIN1 and control PIN1 proteins. The proteins were purified using a Ni2+-
nitrilotriacetic acid Sepharose affinity column and PD-10 column chromatography and the
concentration of purified proteins was confirmed using the Bradford assay [31,38].

2.2. Delivery of PEP-1–PIN1 into Hippocampal HT-22 Cells

Mouse hippocampal HT-22 cells were grown as described previously [31,32]. To
confirm the delivered PEP-1–PIN1, various concentrations of PEP-1–PIN1 (0.5–5 µM) were
added to HT-22 cells for 3 h, or were incubated with PEP-1–PIN1 (5 µM) for various
times (30–180 min). In addition, the stable persistence of PEP-1–PIN1 in HT-22 cells was
detected for 60 h after treatment with 5 µM protein. Next, the cells were harvested and
delivered proteins were confirmed by Western blotting using polyhistidine antibody (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) as described previously [31,32]. Intracellular
delivery of PEP-1–PIN1 into HT-22 cells was confirmed by visualization of the intracellular
localization of polyhistidine 3 h after treatment with 5 µM protein.
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2.3. Measurement of Oxidative Damage in HT-22 Cells

To assess the protective effects of PEP-1–PIN1 against the oxidative damage induced
by the H2O2 in HT-22 cells, the cells were incubated with various concentrations of PEP-1–
PIN1 (0.5–5 µM) for 3 h and exposed to H2O2 (1 mM) for 2 h. Thereafter, the MTT assay
was performed to detect cell viability. The absorbance was measured at 570 nm using a
Fluoroskan enzyme-linked immunosorbent assay (ELISA) microplate reader (Labsystems
Multiskan MCC/340, Helsinki, Finland). Cell viability was expressed as a percentage of
the normal control cells. [31,32,39].

To elucidate the effects of PEP-1–PIN1 on DNA fragmentation in HT-22 cells, the cells
were incubated with PEP-1–PIN1 (5 µM) for 3 h and sequentially exposed to H2O2 (1 mM)
for 6 h. To evaluate the production of ROS, HT-22 cells were incubated with PEP-1–PIN1
(5 µM) for 3 h and sequentially exposed to H2O2 (1 mM) for 1 h. Thereafter, TUNEL
and 2′,7′-Dichlorofluorescein diacetate (DCF-DA) staining was performed. DCF-DA- and
TUNEL-positive images were captured using a fluorescence microscope (Nikon Eclipse 80i,
Tokyo, Japan) and the fluorescence intensity was measured using an ELISA plate reader
(Fluoroskan Ascent, Labsystems Multiskan MCC/340, Helsinki, Finland) as described in
previous reports [31,32,40].

2.4. Western Blot Analysis

Cell lysates containing equal amounts of protein volumes of sample buffer were sepa-
rated in 12% SDS-PAGE and transferred to polyvinylidene difluoride membrane. Thereafter,
the membrane was blocked with 5% nonfat dry milk for 1 h in a Tris-buffered saline (TBS)
buffer containing 0.1% Tween 20. Membrane was then incubated with primary and appro-
priate secondary antibodies and immunoreactive protein bands were detected by enhanced
chemiluminescence (ECL, Amersham Bioscience, Amersham, UK). The bands were quanti-
fied by Image J software 1.54h (NIH, Bethesda, MD, USA) as described previously [30–32].

2.5. Experimental Animals and Treatments

Male gerbils (65–75 g; 6 months old), obtained from the Experimental Animal Center,
at Hallym University, were housed at a temperature of 23 ◦C, with humidity of 60%,
and exposed to 12 h periods of light and dark with free access to food and water. All
experimental procedures involving animals and their care conformed to the Guide for the
Care and Use of Laboratory Animals of the National Veterinary Research and Quarantine
Service of Korea. In addition, all animal experiments were performed according to the
ARRIVE guideline (https://www.nc3rs.org.uk/arrive-guidelines, accessed on 26 July 2017)
and were approved by the Hallym Medical Center Institutional Animal Care and Use
Committee [Hallym 2019-51].

Ischemic injury was induced as previously described [30,32]. Briefly, the animals were
anesthetized with a mixture of 2.5% isoflurane (Baxtor, Deerfield, IL, USA) in 33% oxygen
and 67% nitrous oxide. Bilateral common carotid arteries were isolated and occluded using
nontraumatic aneurysm clips. The complete interruption of blood flow was confirmed by
observing the central retinal artery using an ophthalmoscope. After 5 min of occlusion, the
aneurysm clips were removed from the common carotid arteries. The body temperature
under free-regulating or normothermic (37 ± 0.5 ◦C) conditions was monitored with a rectal
temperature probe (TR-100; Fine Science Tools, Foster City, CA, USA) and maintained using
a thermometric blanket before, during, and after the surgery until the animals completely
recovered from anesthesia. Thereafter, the animals were kept on the thermal incubator
(Mirae Medical Industry, Seoul, South Korea) to maintain body temperature until the
animals were euthanized. To examine the effect of PEP-1–PIN1 against ischemic injury, we
divided the gerbils into five groups (n = 10 per group) and PEP-1–PIN1 (2 mg/kg), PIN1
(2 mg/kg), and PEP-1 (2 mg/kg) were intraperitoneally injected to gerbils 30 min after
reperfusion.

https://www.nc3rs.org.uk/arrive-guidelines
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2.6. Immunohistochemical Staining

For histological analysis, gerbils were sacrificed 7 days after ischemia/reperfusion
and after brain tissues were extracted. Then, the brain tissues were cryoprotected, frozen,
sectioned (50 µm), and immunohistochemical staining was performed as previously de-
scribed [31,32,41]. Briefly, the sections from each animal were stained with a histidine
antibody, neuronal nuclei (NeuN), Cresyl violet (CV), ionized calcium-binding adapter
molecule 1 (Iba-1), glial fibrillary acidic protein GFAP (GFAP) and Fluoro-Jade B (FJB).

Personal computer (PC) images of the tissue were obtained using the CCD camera of
an Axiophot light microscope (Carl Zeiss, Jena, Germany). The images of positive neurons
were obtained by Apple scanner. The number of neurons was measured using an image
analysis system equipped with a computer-based CCD camera (software: Optimas 6.5,
CyberMetrics, Phoenix, AZ, USA). The staining intensity of the immunoreactive cells was
evaluated as the relative optical density (ROD), which was calibrated as the % of control
sham group as described previously [31,32,41].

2.7. Statistical Analysis

All statistical data were obtained using GraphPad Prism software (version 5.01; Graph-
Pad Software Inc., San Diego, CA, USA). Values are shown as mean ± standard error of the
mean from three experiments. Statistical comparisons between each group were performed
using one-way analysis of variance with Bonferroni’s post-hoc test. Difference at p < 0.05
was considered statistically significant.

3. Results
3.1. Delivery of PEP-1–PIN1 into HT-22 Cells

PEP-1–PIN1 expression vector was constructed using a pET-15b vector, which con-
tained human PIN1 cDNA, six histidine, and PEP-1 peptide. A control PIN1 expression
vector did not contain PEP-1 (Figure 1A). PEP-1–PIN1 and control PIN1 were overexpressed,
purified, and identified by Western blotting (Figure 1B).
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Figure 1. Construction of PEP-1–PIN1 and control PIN1 protein. Constructed map of PEP-1–PIN1
based on the pET-15b vector. PEP-1–PIN1 was designed to contain histidine, PEP-1-PTD and PIN1
(A). Purified PEP-1–PIN1 and control PIN1 were confirmed by Coomassie brilliant blue staining and
Western blot analysis using anti-histidine antibody (B).

Delivery efficacy of PEP-1–PIN1 was assessed by Western blot analysis after treat-
ment with various concentrations (0.5–5 µM) of proteins or different incubation times
(30–180 min). As shown in Figure 2A,B, PEP-1–PIN1 was delivered into HT-22 cells in a
concentration- and time-dependent manner, while control PIN1-treated cells did not show
delivery protein bands. Based on the results for PEP-1–PIN1 delivery into HT-22 cells, we
set the concentration to be 5 µM and the incubation time to be 180 min.
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Figure 2. Delivery of PEP-1–PIN1 into HT-22 cells. HT-22 cells were treated with PEP-1–PIN1
(0.5–5 µM) for 3 h (A) or PEP-1–PIN1 (5 µM) for different time periods (30–180 min) (B). The intracel-
lular stability of delivered PEP-1–PIN1 into the cells. HT-22 cells were treated with PEP-1–PIN1 for
3 h and washed. The cells were then further incubated for 1 to 60 h (C) and delivered PEP-1–PIN1
was assessed by Western blotting. The intensity of the bands was measured by a densitometer. Data
are represented as mean ± SEM (n = 3).

We also determined the stability of PEP-1–PIN1 using Western blot analysis. HT-
22 cells were treated with PEP-1–PIN1 for 3 h and washed. The cells were then further
incubated for 1 to 60 h. Delivered PEP-1–PIN1 levels decreased over time and existed up to
36 h after protein treatment (Figure 2C). Intracellular distribution of delivered PEP-1–PIN1
was identified by immunofluorescence staining using histidine antibody (Figure 3A). In
PEP-1–PIN1-treated HT-22 cells, histidine immunoreactive fluorescence was mainly shown
in the cytoplasm of HT-22 cells. In contrast, control PIN1 treatment did not show histidine
immunoreactive fluorescence in cells.
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Figure 3. Effects of delivered PEP-1–PIN1 against H2O2-induced cell death. HT-22 cells were treated
with PEP-1–PIN1 (5 µM) for 3 h. The localization of delivered PEP-1–PIN1 was confirmed by fluores-
cence microscopy (A). Scale bar = 20 µm. Effect of delivered PEP-1–PIN1 against H2O2-induced cell
viability. The cells were pretreated with PEP-1–PIN1 (0.5–5 µM) for 3 h and exposed to H2O2 (1 mM)
for 2 h. Cell viability was assessed by MTT assay (B). Data are represented as mean ± SEM (n = 3).
* p < 0.05 and ** p < 0.01 compared with H2O2-treated cells.
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3.2. Effects of PEP-1–PIN1 on Oxidative Damage in HT-22 Cells

Oxidative stress was induced by incubation with H2O2. The protective effects of
delivered PEP-1–PIN1 were then evaluated using MTT assay. As shown in Figure 3B,
treatment with H2O2 significantly decreased cell viability to 50% of that of control cells.
Cell viability was increased up to 72% in PEP-1–PIN1-treated cells, whereas control PIN1
and PEP-1 had no protective effect against H2O2-induced cell death.

We also performed DCF-DA and TUNEL staining to elucidate the effects of PEP-1–PIN1
on ROS production and DNA fragmentation. As shown in Figure 4, DCF and TUNEL
fluorescence levels were very weak in control cells. Control PIN1 and PEP-1 peptide-treated
cells showed DCF and TUNEL fluorescence levels similar to those of cells treated with
H2O2 alone. In contrast, a strong DCF and TUNEL fluorescence levels were markedly
decreased in cells treated with PEP-1–PIN1 than those in H2O2 alone and other treated cells.
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Figure 4. Effects of delivered PEP-1–PIN1 against H2O2-induced ROS production and DNA damage.
HT-22 cells were treated with PEP-1–PIN1 (5 µM) for 3 h before treatment with 1 mM H2O2 for 1 h or
6 h. Intracellular ROS levels (A) and DNA damage (B) were determined by DCF-DA and TUNEL
staining. Fluorescence intensity was quantified using an ELISA plate reader. Scale bar = 50 µm. Data
are represented as mean ± SEM (n = 3). ** p < 0.01 compared with H2O2-treated cells.

3.3. Mechanisms Involved in the Protection of PEP-1–PIN1 against Oxidative Damage in HT-22 Cells

As the ERK, JNK, p38 (MAPK), and NF-κB signaling pathways are associated with
oxidative stress-induced cell damage, we assessed expression levels of phosphorylated
MAPKs and NF-κB in H2O2-exposed HT-22 cells using Western blotting (Figure 5). In
cells treated with H2O2 only, phosphorylated MAPK and NF-κB expression levels were
increased over those in control cells. In control PIN1 and PEP-1-treated cells, phospho-
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rylated expression levels of MAPKs and NF-κB were similar to those in H2O2-treated
cells. However, phosphorylated MAPK and NF-κB levels in PEP-1–PIN1-treated cells were
significantly reduced over those in H2O2-treated cells.
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Figure 5. Effects of delivered PEP-1–PIN1 against H2O2-induced MAPK and NF-κB expression in
HT-22 cells. The cells were treated with PEP-1–PIN1 (5 µM) for 3 h before being exposed to H2O2

(1 mM) for 60 min or 30 min, respectively. The expression levels of MAPKs (A) and NF-κB (B) were
analyzed by Western blotting. The intensity of the bands was measured by a densitometer. Data are
represented as mean ± SEM (n = 3). * p < 0.05 and ** p < 0.01 compared with H2O2 treated cells.

We also assessed expression levels of Bax, Bcl-2, and phosphorylated p53 in H2O2-
exposed HT-22 cells using Western blotting (Figure 6). Bax and phosphorylated p53 levels
were markedly increased, whereas Bcl-2 expression level was significantly reduced in
H2O2-treated cells compared with those in control cells. In PIN1 and PEP-1-treated cells,
expression levels of Bax, Bcl-2, and phosphorylated p53 were not significantly different
from those in H2O2-treated cells. However, Bax, Bcl-2, and phosphorylated p53 expression
levels in PEP-1–PIN1-treated cells were opposite those in H2O2-treated cells.
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Figure 6. Effects of delivered PEP-1–PIN1 against H2O2-induced Bax, Bcl-2, and p53 protein expres-
sion in HT-22 cells. Three-hour pretreatment of HT-22 cells with PEP-1–PIN1 (5 µM) was followed by
treatments with H2O2 (1 mM) for 120 min (Bcl-2), 240 min (Bax), and 360 min (p53). The expression
levels of Bcl-2 and Bax (A) and p53 (B) were determined by Western blot analysis. The intensity of
the bands was measured by a densitometer. Data are represented as mean ± SEM (n = 3). * p < 0.05
and ** p < 0.01 compared with H2O2 treated cells.

3.4. Protective Effects of PEP-1–PIN1 against Ischemic Injury in an Animal Model

The neuroprotective effects of PEP-1–PIN1 were confirmed by immunohistochemical
staining in the CA1 region of the hippocampus at 7 days after ischemia (Figure 7). First,
PEP-1–PIN1 and NeuN staining were performed to determine whether PEP-1–PIN1, when
delivered into the brain, could protect neurons in the CA1 region. In sham-, PIN1-, and PEP-
1-treated groups, histidine immunoreactivity was not shown in the CA1 region. However,
histidine immunoreactivity was strongly detected in the PEP-1–PIN1-treated group.

NeuN- and CV-immunoreactive cells were detected throughout the CA1 region, whereas
only a few NeuN-and CV-immunoreactive cells, because of neuronal cell death, were shown
in the vehicle group. In the PEP-1-PIN-treated group, NeuN-and CV-immunoreactive cells
were markedly increased compared with those seen in the vehicle group. In contrast,
in PIN1- and PEP-1-treated groups, NeuN- and CV-immunoreactive cells did not show
significant changes compared with those in the vehicle treated group. However, FJB stained
cells showed the opposite pattern in the hippocampal CA1 region.

Furthermore, we determined whether PEP-1–PIN1 could protect activated astrocytes
and microglia using GFAP- and Iba-1 immunoreactive staining. In the vehicle group, GFAP-
and Iba-1-immunoreactivities were significantly increased compared with those in the
vehicle group. In PIN1- and PEP-1 -treated groups, GFAP- and Iba-1-immunoreactivities
showed a distribution pattern similar to those in the vehicle group. However, GFAP- and
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Iba-1-immunoreactivities were significantly decreased in the PEP-1–PIN1-treated group
when compared with those in the vehicle group.
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Figure 7. The neuroprotective effects of delivered PEP-1–PIN1 against ischemic damage. Gerbils
were treated with a single injection of PEP-1–PIN1 (2 mg/kg) and sacrificed after 7 days. Delivery of
PEP-1–PIN1 into the CA1 region of the hippocampus was determined by anti-histidine immunohisto-
chemistry. Scale bar = 400 µm. The hippocampus was stained with NeuN, CV, GFAP, Iba-1 and FJB in
sham-, vehicle-, PEP-1–PIN1-, PIN1-, and PEP-1-treated gerbils after ischemic injury. The graphic
shows the relative numerical analyses of CV, GFAP, Iba-1 and FJB positive neurons in the CA1 region.
Scale bar = 400 and 50 µm. Each bar represents the mean ± SEM of ten mice. ** p < 0.01, significant
difference from the vehicle group.

4. Discussion

PIN1, an 18 kDa protein, has a peptidyl-prolyl isomerase (PPIase) and a WW domain
and plays a crucial role in different processes, including cell cycle, immune response, apop-
tosis, proliferation, and maintenance of the cytoskeleton [42,43]. It has been reported that
PIN1 is distributed in the brain and has an important role in aging-related pathologies [44],
an importance that has been demonstrated by the way that its expression decreases with
aging in the myocardium [8–10]. Kuboki et al. have reported that PIN1 is required for
NF-κB-DNA binding in hepatocytes during ischemia/reperfusion injury, suggesting that
PIN1 is a critical regulator of NF-κB activation in hepatocytes and that it can protect against
hepatic ischemia/reperfusion injury [45].
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In this study, we investigated the roles of PIN1 after brain ischemic injury by using
the cell-permeable PEP-1–PIN1 fusion protein and whether this protein protects against
the cell damage in H2O2-induced HT-22 cells and in brain ischemic injury animal models.
It is already known that many PTD-fusion proteins can be delivered into the cells by
crossing the cell membrane [31–36,41,46]. We have observed that PEP-1–PIN1 fusion
protein was delivered into HT-22 cells in a concentration- or time-dependent manner and
that it degraded in a time-dependent manner.

To elucidate the effects of PIN1 on oxidative damage, we determined cell viability,
ROS formation, and DNA fragmentation in H2O2-treated HT-22 cells after transduction
of PEP-1–PIN1. This fusion protein markedly ameliorated H2O2-induced cell death by
decreasing ROS formation and DNA fragmentation. Zhao et al. have reported that ox-
idative stress induced by H2O2 in HT-22 cells can increase ROS and cell death [47] and
that oxidative stress induced by ROS also plays a key role in neuronal damage in the
hippocampus [21,48,49].

As it is well known that ROS can modulate MAPKs and NF-κB signaling pathways,
that MAPKs are known to play a crucial role in ROS-induced HT-22 cell death and that
H2O2 can markedly increase the expression of MAPKs phosphorylation [48,50–53], we
investigated the effect of PEP-1–PIN1 on changes in MAPKs and NF-κB pathways and
observed that oxidative stress induced by H2O2 in HT-22 cells increased MAPKs and NF-κB
phosphorylation, whereas PEP-1–PIN1 suppressed MAPKs and NF-κB phosphorylation.
It is also known that excessive ROS can lead to mitochondria damage and the release of
pro-apoptotic proteins such as Bax [54,55]. Therefore, we determined protein levels of Bcl-2
and Bax. HT-22 cells after treatment with H2O2 showed a significant increase of Bax levels
but decrease of Bcl-2 levels. However, PEP-1–PIN1 modulated the expression levels of
these proteins, suggesting that PEP-1–PIN1 might play a crucial role in cell survival against
oxidative stress.

To elucidate the effects of PEP-1–PIN1 on brain ischemic injury, we investigated the
morphology of the hippocampus using immunohistochemistry in a brain ischemic injury
model. We found that PEP-1–PIN1, when delivered into the CA1 region of the hippocampus
and crossing through the BBB, protected against cell death in the brain. It has been reported
that the activation of astrocytes and microglia is associated with ischemic brain injury, and
that this has been used as a marker for the detection of ischemic brain injury [56–59]. Several
studies have reported that activation of astrocytes and microglia can induce ischemic injury
and change the morphology in the CA1 region of the hippocampus [60–63]. Consistent
with these results, we also observed the suppression of the activation of astrocytes and
microglia after treatment of PEP-1–PIN1.

In this study, we showed the protective effects of PEP-1–PIN1 against brain ischemic
injury, but further studies are needed, including confirmation of the role of PEP-1–PIN1
in signaling pathways in primary hippocampal neurons and in ischemia animal models.
Additionally, studies on the exact function of PEP-1–PIN1 in brain ischemia are required.
Although further study for the exact molecular mechanisms still needs to be explained, we
expect PEP-1–PIN1 to help develop an efficient therapeutic agent for brain ischemia.

5. Conclusions

We showed that transduced PEP-1–PIN1 into HT-22 cells could attenuate cell death
by not only reducing intracellular ROS levels, but also modulating MAPK and apoptosis
signaling. Although further studies are needed to elucidate its protective mechanisms, our
results demonstrate that PIN1 plays a neuroprotective role against ischemic brain injury,
suggesting that it might be used as therapeutic protein for ischemic brain injury.
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