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Abstract: Reactive oxygen species (ROS) are generated during normal cellular energy production
and play a critical role in maintaining cellular function. However, excessive ROS can damage
cells and tissues, contributing to the development of diseases such as cardiovascular, inflammatory,
and neurodegenerative disorders. This review explores the potential of nuclear medicine imaging
techniques for detecting ROS and evaluates various radiopharmaceuticals used in these applications.
Radiopharmaceuticals, which are drugs labeled with radionuclides, can bind to specific biomarkers,
facilitating their identification in vivo using nuclear medicine equipment, i.e., positron emission
tomography and single photon emission computed tomography, for diagnostic purposes. This review
includes a comprehensive search of PubMed, covering radiopharmaceuticals such as analogs of
fluorescent probes and antioxidant vitamin C, and biomarkers targeting mitochondrial complex I or
cystine/glutamate transporter.

Keywords: reactive oxygen species; nuclear medicine; radiopharmaceutical; positron emission
tomography; single photon emission computed tomography; oxidative stress

1. Introduction

Reactive oxygen species (ROS) are highly reactive molecules derived from oxygen,
including perchloric acid, peroxide, superoxide, singlet oxygen, alpha oxygen, and hy-
droxyl radicals. These species are characterized by their property to easily lose or gain
electrons, which contributes to their reactivity [1]. The primary source of ROS in cells is
the mitochondria, where they are generated during oxidative phosphorylation, the process
by which mitochondria produce ATP [1–3]. While ROS play an essential role in cellular
signaling pathways, such as those involving nuclear factor kappa B and mitogen-activated
protein kinase, only small amounts are required for their functions. Excess ROS are consid-
ered toxic by-products and are mitigated by cellular antioxidant systems, which include
enzymes such as superoxide dismutase and small molecules such as vitamin C [1,2,4].

Residual ROS, which are not neutralized by antioxidants, can cause damage to proteins,
lipids, and DNA, leading to various diseases, including cardiovascular, inflammatory, and
neurodegenerative disorders [5–7]. This has led to growing interest in ROS as a biomarker
for disease [6–11].

Traditionally, fluorescent probes have been employed for imaging ROS in living cells or
tissue sections due to their simplicity and real-time imaging capabilities [12–21]. Common
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probes include dihydroethidium (DHE) and MitoSOX for superoxide (O2
•−), Amplex Red

and OxyR for hydrogen peroxide (H2O2), and dichloro-dihydro-fluorescein diacetate for
general ROS detection [12,14,16–19]. However, these probes have limitations in tissue
penetration and target-to-background ratio, restricting their use in vivo.

Advanced techniques, such as electron paramagnetic resonance (also known as elec-
tron spin resonance) and luciferin-based peroxy-caged luciferin, for fluorescence imaging
targeting ROS have been developed. Nevertheless, these methods face challenges that
hinder widespread adoption, including the toxicity of paramagnetic probes and difficulties
in clinical studies with fluorescent probes [1,21–29]. Nuclear medicine imaging, which
involves labeling molecules, also called radiopharmaceuticals, that bind to in vivo biomark-
ers or exhibit similar behavior to biomarkers with radioactive isotopes, offers a promising
alternative. This method allows for visualizing and quantifying biomarkers using meth-
ods such as positron emission tomography (PET) or single photon emission computed
tomography (SPECT) [22,30–38].

Despite the progress in developing ROS-specific radiopharmaceuticals, their optimiza-
tion for commercial use remains a critical area of ongoing research. Given the significant
role of ROS in various diseases, non-invasive in vivo detection methods are crucial for ad-
vancing disease diagnosis and understanding disease mechanisms. Therefore, this review
focuses on nuclear medicine imaging for ROS detection and discusses the radiopharmaceu-
ticals available for ROS detection and their applications.

2. Radiopharmaceuticals for ROS Imaging

Radiopharmaceuticals have played an essential role in advancing ROS imaging and
provide valuable tools for diagnosing and understanding various diseases. This section
details the development and application of radiopharmaceuticals specifically designed for
ROS imaging (Figure 1).
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utilized the keywords “reactive oxygen species, radiopharmaceutical,” “reactive oxygen
species, positron emission tomography,” and “reactive oxygen species, single photon emis-
sion computed tomography,” with no restrictions on the publication date. The inclusion
criteria were (i) preclinical and clinical studies and (ii) research involving in vivo ROS
imaging or the detection of biomarkers correlated with ROS levels. Exclusion criteria
encompassed (i) reviews, meta-analyses, and conference abstracts; (ii) non-English publica-
tions; (iii) duplicate articles; (iv) inaccessible articles; and (v) studies not directly related to
the research purposes. Various radiopharmaceuticals have been proposed for ROS imaging,
and numerous studies have been conducted on this objective (Table 1).

Table 1. Features of the original articles reviewed.

Radiopharmaceuticals Analog Target Target
Region Main Results Ref.

[18F]DHMT
([18F]12)

DHE superoxide

heart

In DOX-treated EMT6 cells, staining with compound 12
showed significantly higher fluorescence intensity than
in the control group. Only cells treated with [18F]12, not
its oxidized form, displayed uptake. DOX-treated mice
also exhibited twice the uptake of [18F]12 compared to
control group.

[39]

In rats with DOX-induced chronic cardiotoxicity,
[18F]DHMT uptake was significantly higher than in the
control group, enabling earlier diagnosis of
cardiotoxicity than with conventional LVEF.

[40]

The absorption pattern of [18F]DHMT was determined in
beagle dogs, providing valuable insights into its
biodistribution and pharmacokinetics.

[41]

Automated synthesis for [18F]DHMT ([18F]12) was
successfully optimized, achieving a moderate
radiochemical yield of 6.9 ± 2.8% within a reduced
preparation time of 77 min. Dynamic heart scans of a
healthy beagle dog were performed to assess [18F]DHMT
distribution and uptake.

[42]

[11C]HM

brain

[11C]HM uptake was observed after microinjecting SNP
into one side of the rat brain, allowing for the distinction
of specific brain regions with high ROS concentrations.

[43]

[18F]FDHM

[18F]FDHM uptake was observed after microinjecting
SNP into one side of the rat brain. [18F]FDHM
accumulated significantly in specific regions where SNP
induced ROS.

[44]

[18F]ROStrace

[18F]ROStrace successfully passed through BBB in mice
with brain nerve inflammation induced by LPS.

[45]

By comparing DHE fluorescence imaging and ex vivo
autoradiography images of [18F]ROStrace, a high
correlation was observed between signal intensity and
distribution in the two imaging modalities.

[20]

[18F]1a hydrocyanin
superoxide,

hydroxyl
radical

blood pool
Dynamic scans confirmed that [18F]1a does not
self-oxidize and is stable. Additionally, it is compatible
with both fluorescence and PET imaging modalities.

[46]

[68Ga]Galuminox luminol
superoxide,
hydrogen
peroxide

lung

The uptake of [68Ga]Galuminox was approximately
4-fold higher in the lungs of mice with LPS-induced
inflammation than in control mice. Additionally,
LPS-treated A549 cells showed fluorescence in the same
regions for both Galuminox and MitoSOX.

[47]

[125/131I]I-PISO HKSOX-1 superoxide abdomen,
ankle

In the abdomen of endogenous O2
•− mouse model,

[131I]PISO PET demonstrated increased uptake
compared to control subjects, but, this was significantly
decreased upon superoxide removal by Tiron.
Inflammation-induced ankles absorbed twice as much
[125I]PISO as healthy ankles.

[48]
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Table 1. Cont.

Radiopharmaceuticals Analog Target Target
Region Main Results Ref.

[11C]VitC

ascorbic acid

superoxide,
hydrogen
peroxide,

hypochlorous
acid

brain [11C]VitC uptake in the rat brain was selective,
depending on the presence or absence of oxidation.

[21]

[18F]KS1 tumor
In tumor-bearing rats, DOX-induced rats, and
tumor-bearing rhesus monkeys, [18F]KS1 showed
specific absorption at ROS expression sites.

[30]

[18F]BCPP-EF pyridazinone

MC-I brain

[18F]BCPP-EF PET scans were performed at 3 and 24 h
after QA injection into the rat striatum to induce brain
injury. No significant change in [18F]BCPP-EF uptake
was observed at 3 h, but uptake in the striatum and
cerebral hemisphere significantly decreased at 24 h.

[49]

[18F]2
curcumin/
melatonin

hybrid

In the comparison of [18F]2 uptake in the brain between
5× FAD transgenic and wild-type mice, lower uptake
was observed in AD mice.

[50]

[18F]FSPG glutamate

system xc
− tumor

A2780 tumor-bearing mice treated with DOX were
monitored using [18F]FSPG. Tumor retention of
[18F]FSPG decreased by 42% 24 h after DOX treatment.

[51]

[18F]FASu
L-

aminosuberic
acid

The efficacy of [18F]FASu was compared to [18F]FDG in
mice bearing SKOV-3 tumors. [18F]FASu exhibited a
5.2-fold higher tumor uptake and a 4.6-fold greater
tumor-to-blood ratio than [18F]FDG.

[52]

DHE, dihydroethidium; DOX, doxorubicin; EMT6 cell, murine mammary carcinoma cell; LVEF, left ventricu-
lar ejection fraction; SNP, sodium nitroprusside; ROS, reactive oxygen species; BBB, blood-brain barrier; LPS,
lipopolysaccharide; A549, human lung adenocarcinoma cell line; PET, positron emission tomography; MC-I, mito-
chondrial complex I; QA, quinolinic acid; AD, Alzheimer’s disease, system xc

−, cystine/glutamate transporter;
SKOV-3, human ovarian adenocarcinoma cell line.

2.1. Radiopharmaceuticals That Are Analogs of ROS-Binding Molecules
2.1.1. Analogs of Fluorescent Probes

Radiopharmaceuticals developed from labeling radioisotopes on fluorescent probes
have shown promise in ROS imaging. Examples include DHE, hydrocyanine, luminol, and
HKSOX-1 analogs.

Dihydroethidium

DHE is widely used for detecting superoxide due to its ability to permeate cell mem-
branes and the blood-brain barrier (BBB) [39,53]. Upon oxidation by superoxide, DHE
forms a positively charged product, 2-OH ethidium, which binds to DNA, providing long-
term intracellular retention [54]. On this basis, several [18F]DHE (fluorine-18: β+ decay,
half-life = 109.8 min) derivatives have been developed for ROS PET imaging.

In 2014, Chu et al. [39] reported the development of [18F]12, a radiopharmaceutical
suitable for PET imaging. Similar to DHE, compound 12, the non-radioactive standard
of [18F]12, exhibits minimal fluorescence before oxidation but demonstrates strong fluo-
rescence at 595 nm upon oxidation, reacting selectively with superoxide. In experiments
with the murine mammary carcinoma (EMT6) cell line treated with doxorubicin (DOX),
compound 12 showed significantly increased fluorescence intensity compared with that of
the control group. Moreover, in DOX-treated mice, [18F]12 displayed twice the absorption
relative to that of the control group, as confirmed by imaging (Figure 2).

[18F]12, also referred to as [18F]DHMT ([18F]6-(4-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-
yl)methoxy)phenyl)-5-methyl-5,6-dihydrophenanthridine-3,8-diamine), has been indicated
for the early detection of DOX-induced cardiotoxicity [40–42]. Using [18F]DHMT and
PET imaging, early-stage cardiotoxicity could be detected in a DOX-treated rat model by
assessing the left ventricular ejection fraction (LVEF) (Figure 3) [40]. Wu et al. [41] extended
this study to larger animals, demonstrating the feasibility of the early detection of chronic
DOX-induced cardiotoxicity using dynamic PET imaging in six beagle dogs.
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Figure 2. PET imaging of the heart in untreated (CTL) and DOX-treated (DOX) mice with [18F]12.
Initial radioactive uptake in the heart was similar between the two groups, but after 1 h, radioactive
uptake in DOX-treated mice was approximately 2-fold higher than in untreated mice. The images
(left) show PET scans of the heart, with corresponding quantitative data (right) illustrating the
difference in uptake over time. PET, positron emission tomography; DOX, doxorubicin. Reproduced
from [39], copyright © 2014, Organic & Biomolecular Chemistry.
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Figure 3. Quantitative evaluation of myocardial ROS activity using [18F]DHMT PET images.
[18F]DHMT PET imaging represents microPET (left, top) and microPET/CT (left, bottom), with
images from the control group (CTL) and DOX-treated mice (DOX) obtained at different time points
(weeks 4 and 6). The bar graph (right) shows the comparative analysis of radioactive uptake between
the groups (myocardial/blood SUV). PET, positron emission tomography; DOX, doxorubicin; ROS,
reactive oxygen species; CT, computed tomography; SUV, standardized uptake value. * p < 0.05.
Reproduced from [40], copyright © 2018, JACC: Basic to Translational Science.

For mass production and clinical application, optimizing the automatic synthesis of
radiopharmaceuticals is essential. Zhang et al. [42] successfully optimized an automated
synthesis method for [18F]DHMT ([18F]12), achieving a moderate radiochemical yield
of 6.9 ± 2.8% within a reduced preparation time of 77 min. Automated synthesis also
demonstrated effective ROS imaging with a high myocardial-to-background ratio in PET
imaging using [18F]DHMT in healthy beagle dogs.

ROS in the central nervous system have been implicated in neurodegenerative dis-
eases. For imaging the central nervous system, radiopharmaceuticals must be able to
specifically pass through the BBB. Several radiopharmaceuticals meeting this require-
ment have been developed. In 2017, Wilson et al. [43] developed and evaluated [11C]HM
([11C]Hydromethidine; carbon-11: β+ decay, half-life = 20.4 min) for ROS imaging in the
central nervous system. PET images using [11C]HM showed increased signals in mice
treated with sodium nitroprusside for ROS induction (Figure 4). The distribution and inten-
sity of radioactive signals accurately reflect ROS levels in the brain. However, 11C-labeled
derivatives present significant challenges for their practical application in clinical applica-
tions due to their short half-life of 20 min. This constraint complicates their practical use, as
it requires specialized infrastructure for on-site production and immediate administration
to patients.
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coronal, and sagittal views, showing cylindrical regions of interest (ROIs) representing the right (♦)
and left (□) striatum and cerebellum. Time-activity curves of the right and left striatum (B) and the
whole brain, right cerebellum, and left cerebellum (C) are shown. PET, positron emission tomography.
Reproduced from [43], copyright © 2017, Nuclear Medicine and Biology.

Egami et al. [44] reported a new PET radiotracer, 18F-labeled dihydromethidine
([18F]FDHM), for imaging ROS in the central nervous system (Figure 5). Their study
demonstrated that [18F]FDHM can visualize ROS production in specific brain regions of
living rats treated with sodium nitroprusside. [18F]FDHM was shown to pass through
the BBB and was trapped in cells after being oxidized by ROS. In 2018, Hou et al. [45]
reported [18F]ROStrace, another DHE analog. In a mouse model of lipopolysaccharide
(LPS)-induced neuroinflammation, [18F]ROStrace showed high brain accumulation, en-
abling quantification and imaging of neuroinflammation (Figure 6).
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Weng et al. [20] further validated [18F]ROStrace for imaging superoxide levels in a
model of LPS-induced neuroinflammation. [18F]ROStrace selectively reacts with superoxide
and is converted to [18F]ox-ROStrace, which cannot pass through the BBB, indicating that
superoxide can be selectively measured in the brain. The selectivity of DHE for superoxide
and the characteristics of its absorption process are particularly useful. Notably, the ability
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of DHE analogs to cross the BBB, which is essential for imaging the central nervous system,
represents a significant advantage.
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Figure 6. [18F]ROStrace PET imaging. Dynamic PET images were acquired for 60 min after intra-
venous [18F]ROStrace administration. (A) Representative image showing brain uptake from 40 to
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injection between control and LPS-treated animals, showing a significant increase in the LPS-treated
group. PET, positron emission tomography; LPS, lipopolysaccharide. %ID/cm3, percent injected
dose per cubic centimeter. Reproduced from [45], copyright © 2018, ACS Chemical Neuroscience.

Hydrocyanine

Hydrocyanine, a probe that detects ROS at nanomolar concentrations [55,56], is a
reduced cyanine dye structure activated by ROS. Initially, its structure is disrupted, leading
to weak fluorescence due to broken π conjugation. Upon oxidation by superoxide and
hydroxyl radicals, π conjugation is regenerated, significantly enhancing the fluorescence
intensity by approximately 100-fold (λex = 675 nm, λem = 693 nm). Compared with DHE,
hydrocyanine exhibits excellent stability against autoxidation, even in a dissolved state,
providing more reliable results.

Al-Karmi et al. [46] synthesized an 18F-labeled fluorinated hydrocyanine dye, [18F]1a
(Figure 7), which is a probe capable of both PET and fluorescence detection. [18F]1a
correlated with ROS detection via fluorescence in human prostate cancer (PC-3 cell line).
The stability of [18F]1a against autoxidation has been confirmed in dynamic PET imaging.
[18F]1a PET/CT imaging showed high blood pool radioactivity, visualizing blood-rich
organs such as the heart, lungs, and spleen. Non-oxidized [18F]1a maintained stability,
whereas the oxidized form showed reduced blood and spleen concentrations. [18F]1a is
a notable radiopharmaceutical as it maintains the advantages of a fluorescent probe, is
capable of PET imaging, and exhibits enhanced stability, demonstrating promise in terms of
efficacy and safety. However, additional preclinical studies in disease models are necessary
to further characterize the compound and confirm its potential for clinical applications.

Luminol

Luminol oxidizes and emits chemiluminescence at wavelengths of up to 425 nm and
is among the most widely used chemiluminescent compounds due to its availability and
low cost [57,58]. H2O2 significantly contributes to the oxidation and chemiluminescence
of luminol. Due to these characteristics, luminol is used as a probe to detect neutrophil
oxidation and is gaining attention in oxidative stress studies [47,58].
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In 2020, an analog of luminol labeled with 68Ga (gallium-68: β+ decay, half-life = 67.8 min),
[68Ga]Galuminox, was reported to detect superoxide and H2O2 production (Figure 8).
[68Ga]Galuminox can be detected using both fluorescence and PET imaging methods. In
in vitro studies, [68Ga]Galuminox demonstrated the ability to detect and monitor super-
oxide in LPS-induced A549 cells. The region marked by [68Ga]Galuminox fluorescence
corresponded to the same position marked by MitoSOX. Dynamic PET/CT scans showed
that [68Ga]Galuminox had 4-fold higher uptake and stable retention in the lungs of LPS-
treated mice than in normal mice. Isolated lungs from these mice were tested for ROS using
CellROX, a ROS probe, and the results showed a consistent pattern [47]. These data suggest
that [68Ga]Galuminox uptake can be used as a measure of ROS activity in severely impaired
lungs. Moreover, [68Ga]Galuminox is radiolabeled non-covalently, which simplifies its
preparation compared to fluorine-18 derivatives. This feature indeed enhances its potential
for easy in-house radiolabeling, making it more accessible for nuclear medicine practice.
Further studies are needed to determine its applicability in other diseases.
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Figure 8. [68Ga]Galuminox PET/CT imaging. (A) PET images were acquired as 0–60-min dynamic
scans; the displayed images are the 45–60-min summation frame. C57BL/6 mice in each group were
intraperitoneally administered LPS (5 µg/g, 24 h after treatment, left) or saline (right). (B) SUV in the
lungs of mice administered LPS or saline (mean ± SEM, **** p < 0.0001). The group administered LPS
maintained a higher uptake value. PET, positron emission tomography; CT, computed tomography;
SUV, standardized uptake value; LPS, lipopolysaccharide. Reproduced from [47], copyright © 2020,
Redox Biology.
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HKSOX-1

The fluorescence principle of the HKSOX-1 probe involves superoxide cleavage of an
aryl trifluoromethane sulfonate group to yield a free phenol [59]. Through this strategy,
HKSOX-1 exhibited specific data even in the presence of intracellular reducing agents such
as glutathione and was stable under various pH conditions (λex = 509 nm, λem = 534 nm).

[125/131I]PISO, an analog of HKSOX-1, has been designed and reported (Figure 9) [48].
It has shown high sensitivity and selectivity for superoxide, similar to those of HKSOX-1.
Additionally, its 125I (iodine-125: γ decay, half-life = 59.39 days) or 131I (iodine-131: β− and
γ decay, half-life = 8.06 days) labeling lends it to SPECT imaging. The efficacy of [131I]PISO
and [125I]PISO has been confirmed in endogenous O2

•− mice and a hind paw inflammation
model. The results showed a pattern proportional to the degree of endogenous O2

•− and
inflammation induction. Notably, the SPECT images and fluorescence data of the hind paw
inflammation model showed the same pattern. [125/131I]PISO can be imaged using SPECT,
and unlike most existing ROS probes, it reacts to superoxide through a non-oxidizing mech-
anism. This allows it to react efficiently and stably with superoxide without interference
from other ROS molecules or antioxidants. In addition, [125/131I]PISO is anticipated to be
applied to various diseases, providing a versatile tool for biomedical research.
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Figure 9. [125/131I]PISO SPECT/CT imaging. (A) [131I]PISO SPECT/CT images of an endogenous
O2

•− model. Increased [131I]PISO uptake in the endogenous O2
•− model was reduced by Tiron

(0.4 µg/g). (B) SPECT/CT images of an inflammation model following the intravenous injection
of [125I]PISO (upper); fluorescence image of an inflammation mouse model 1 h after intravenous
injection of 100 µL of PISO (1 mg/mL, middle); an image of the inflammation mouse model (lower).
SPECT, single photon emission computed tomography; CT, computed tomography. Reproduced
from [48], copyright © 2018, Analytical Chemistry.

2.1.2. Antioxidant Analogs—Vitamin C

In living organisms, several antioxidants that scavenge ROS to prevent the nega-
tive effects exist [48]. Ascorbic acid, widely known as vitamin C, is one of the essential
antioxidants. It participates in regulating ROS levels and enhances the effects of other
antioxidants, such as vitamin E [60,61]. Vitamin C is slowly absorbed into cells through the
sodium-dependent vitamin C transporters 1 and 2, but when oxidized to dehydroascorbic
acid (DHA), it is rapidly absorbed through glucose transporters 1, 3, and 4 [21].

Carroll et al. [21] reported [11C]ascorbic acid ([11C]VitC), an ascorbic acid derivative, as
a radiopharmaceutical targeting ROS in the brain (Figure 10). In their study, [11C]VitC and
its oxidized form, [11C]DHA ([11C]Dehydroascorbic acid), were administered to normal
mice. The oxidized form showed significantly higher brain uptake than that of the non-
oxidized [11C]VitC. These results indicated that [11C]VitC behaves similarly to ascorbic acid,
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allowing ROS expression levels in the brain to be confirmed through selective absorption
depending on the presence or absence of [11C]VitC oxidation.
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Figure 10. Representative PET images of [11C]DHA and [11C]VitC. (A) Oxidized form of [11C]VitC
([11C]DHA) and (B) [11C]VitC in a normal rat brain; (C) time-activity curve of the brain region of
interest (ROI) data for dynamic scans. PET, positron emission tomography; DHA, dehydroascorbic
acid Reproduced from [21], copyright © 2016, Chemical Communications.

Additionally, [18F]KS1 ([18F](E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-
4-hydroxyfuran-2(5H)-one), a fluoroethoxy furanose ring-containing ascorbate derivative,
a radiopharmaceutical targeting tumor ROS, has been reported (Figure 11) [30,62]. [18F]KS1
has the advantage of a longer half-life compared with existing 11C-labeled radiopharma-
ceuticals. [18F]KS1 showed specific uptake at ROS expression sites in tumor-bearing and
DOX-induced mice and tumor-bearing rhesus monkeys. When evaluating the pharma-
cokinetics and imaging efficiency of [18F]KS1 in healthy mice and rhesus monkeys, high
accumulation in ROS-rich cells and clearance from major organs were observed. Both
[11C]VitC and [18F]KS1 demonstrate specific ROS absorption. [11C]VitC is effective for
imaging ROS within the brain, while [18F]KS1 is effective for imaging ROS expression
in tumors. These radiopharmaceuticals provide valuable tools for studying ROS-related
processes in different biological contexts.
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Figure 11. Representative PET/CT images of [18F]KS1. (A) A healthy rhesus monkey. (B) A monkey
with an irradiated hepatic tumor. (C) Washout profile from 30 to 180 min in healthy rhesus monkeys.
PET, positron emission tomography; CT, computed tomography. Reproduced from [30], copyright ©
2022, Biomedicine & Pharmacotherapy.

2.2. Radiopharmaceuticals Targeting ROS-Associated Biomarkers
2.2.1. Mitochondrial Complex I

Mitochondria are the primary source of ROS, with mitochondrial complex I (MC-I)
serving as a major site for ROS generation [49]. ROS are produced during ATP synthesis
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via oxidative phosphorylation, and MC-I, the initial complex of the electron transport chain,
is recognized as a significant contributor to this process. Consequently, MC-I has become a
prominent target for radiopharmaceuticals aimed at ROS imaging [32,49,50].

Pyridazinone Derivatives

Pyridazinone is a heterocyclic compound characterized by a six-membered ring known
for its diverse pharmacological activities, including anti-inflammatory, analgesic, and
antibacterial properties [63]. Hosoi et al. [49] investigated [18F]BCPP-EF (2-tert-butyl-4-
chloro-5-{6-[2-(2[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one), a
pyridazinone derivative, to understand ROS production and MC-I activity using PET
imaging. In their study, quinolinic acid (QA) was injected into the striatum of rats, followed
by DHE imaging and PET scans at 3 and 24 h post-injection. A strong DHE-induced
fluorescence signal was observed in the striatum 3 h after QA injection. By 24 h, this signal
had spread to other parts of the striatum and cerebral cortex. [18F]BCPP-EF uptake at 3 h
after QA injection did not significantly change; however, a marked reduction was observed
in the striatum and cerebral hemisphere after 24 h. Immunohistochemistry confirmed that
fluorescent signals co-localized with microglial markers in the striatum after 24 h. The
sensitivity of [18F]BCPP-EF PET was sufficient to detect the processes of QA-induced brain
damage (Figure 12) [49]. Thus, [18F]BCPP-EF effectively demonstrated ROS production
through MC-I activity and proved to be a valuable tool for imaging ROS within the brain.
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Figure 12. Detection of ROS production using DHE fluorescence and [18F]BCPP-EF PET imaging in
QA-treated rat brain (A) Fluorescence accumulation in the quinolinic acid (QA)-injected striatum was
observed 60 min after the intravenous injection of dihydroethidium (DHE). Regions of interest (ROIs)
were identified as follows: prefrontal cortex (a), frontal cortex (b), parietal cortex (c), hippocampus (d),
thalamus (e), and cerebellum (f). (B) [18F]BCPP-EF PET images were taken and summed 45–60 min
post-injection. (C) Semiquantitative analysis of the fluorescent images (left) and radioactivity con-
centration measured as standardized uptake value (SUV, right) in QA and saline-treated rat brains.
Data are presented as mean ± standard deviation. * p < 0.05, ** p < 0.01. PET, positron emission
tomography. Reproduced from [49], copyright © 2021, EJNMMI Research.

Curcumin/Melatonin Hybrid

ZCM-I-1, a hybrid compound combining curcumin and melatonin, has demonstrated
significant neuroprotective effects and is considered a potential therapeutic candidate for
Alzheimer’s disease (AD). This hybrid compound substantially increases the expression
levels of mitochondrial complexes I, II, and IV of the electron transport chain. Long-
term treatment with ZCM-I-1 significantly reduced the levels of 8-hydroxyguanine, an
indicator of oxidative damage to neuronal nucleic acids, and 4-hydroxy-2-nonenal, a lipid
peroxidation marker. Moreover, ZCM-I-1 significantly decreased Aβ plaque accumulation
in cortical and hippocampal regions in an APP/PS1 transgenic mouse model, thereby
improving the pathological characteristics associated with AD [14,50,64,65]. Xu et al. [50]
developed [18F]2, a radiopharmaceutical designed for MC-I imaging, based on the structural
framework of ZCM-I-1. This novel PET radiotracer has shown neuroprotective effects by
selectively binding to MC-I. In studies utilizing 5× FAD transgenic mice, an AD model, the
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brain radioactivity concentration was slightly reduced compared with that in wild-type
mice. The PET tracer [18F]2 has demonstrated potential in assessing MC-I dysfunction in the
mouse model of AD (Figure 13) [50]. Therefore, [18F]2, through the PET imaging of MC-I
activity, has exhibited its capability to evaluate MC-I dysfunction in AD mouse models,
representing a promising tool for studying the progression and potential therapeutic
interventions for AD.
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2.2.2. Cystine/Glutamate Transporter

The cystine/glutamate transporter, commonly referred to as system xc
−, is a critical

component of cell membranes responsible for the exchange of cystine and glutamate. This
transporter facilitates cysteine uptake into cells, which is essential for the biosynthesis of
glutathione, a potent antioxidant. Glutathione is vital in protecting cells from oxidative
stress and safeguarding neuronal health in the brain. However, an excessive accumulation of
glutamate can lead to excitotoxicity, which is detrimental to cell function and survival [51,66].

Glutamate

McCormick et al. [51] identified [18F]FSPG ((S)-4-(3-[18F]fluoropropyl)-L-glutamic
acid) as a radiopharmaceutical designed to evaluate the redox status of tumors. [18F]FSPG
is internalized into the cell via system xc

−, thereby delivering cystine, a crucial precursor
for glutathione biosynthesis, which helps maintain the cellular redox balance. A study
involving a mouse ovarian cancer model treated with the anticancer drug DOX showed a
decrease in tumor [18F]FSPG uptake (Figure 14). This decrease corresponded to oxidative
stress markers that appeared before observable changes in tumor volume. These findings
suggest that [18F]FSPG PET imaging holds significant promise as an early predictor of tumor
response to treatment. Additionally, it can potentially assess individual patient responses
to therapy by monitoring antioxidant levels. This highlights the utility of [18F]FSPG PET
in personalized medicine, where it could be employed to tailor treatments based on the
antioxidant response of tumors, ultimately improving therapeutic outcomes.

L-Aminosuberic Acid

L-Aminosuberic acid (L-ASu) is structurally more similar to L-cystine than to L-
glutamate and is reportedly a more potent substrate for the system xc

− transporter. Webster
et al. [52] developed L-ASu, incorporating the properties of both L-cystine and L-glutamate,
and reported on [18F]FASu as a radiopharmaceutical for PET imaging. To evaluate the
tumor uptake of [18F]FASu, SKOV-3 and EL4 tumors were implanted in mice for biodistribu-
tion and PET imaging studies. [18F]FASu acts as a substrate for system xc

−, demonstrating
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high tumor uptake and prolonged retention in the mouse tumor model (Figure 15). Re-
markably, [18F]FASu showed an absorption rate approximately 5-fold higher than that
of [18F]FDG [52]. [18F]FASu emerged as a valuable metabolic radiopharmaceutical for
PET imaging, enabling the visualization of cellular responses to oxidative stress. It may
provide more sensitive detection than that by [18F]FDG in specific tumor types, such as
ovarian adenocarcinoma (e.g., SKOV-3). Consequently, [18F]FASu also holds the potential
for monitoring the response to anticancer treatment.
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Figure 14. [18F]FSPG PET/CT imaging of A2780 ovarian cancer tumors in mice. (A) [18F]FSPG
PET/CT images with tumors indicated by white arrows in three groups: untreated (D0), DOX-24 h
(D1), or 6-day treatment (D6). (B) Quantified [18F]FSPG retention in the tumors of the three groups of
mice. ** p < 0.01. PET, positron emission tomography; CT, computed tomography; DOX, doxorubicin.
Reproduced from [51], copyright © 2019, Cancer Research.
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Figure 15. [18F]FASu PET imaging in mice bearing SKOV-3 and EL4 xenograft tumors. (A) The image
shows the maximum-intensity projection of SKOV-3 tumor-bearing nude mice. (B) PET/CT image
summed over 110–120 min after injection in Rag2 M mice bearing EL4 xenograft tumor. The tumor is
indicated by a white arrow. PET/CT, positron emission tomography/computed tomography; Pa,
pancreas; Sp, Spleen; Ki, Kidney; Bl, Bladder. Reproduced from [52], copyright © 2014, Journal of
Nuclear Medicine.

3. Discussion

ROS play a crucial role in various human diseases, including neurodegenerative,
inflammatory, and cardiovascular diseases and tumors, underscoring the necessity of
developing technology for in vivo ROS imaging [6–11]. This review aimed to summarize
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previous studies on nuclear medicine imaging for ROS detection and discuss available
radiopharmaceuticals [21,39–49,51,56,62,66,67].

Radiopharmaceuticals targeting cardiotoxicity have been particularly noteworthy,
especially as a side effect of anticancer drugs such as DOX [39–47,55–59]. Conventional
diagnostic methods for cardiotoxicity include echocardiography and multigated acquisition
scanning, which measure a decrease in LVEF [68,69]. However, these methods often detect
cardiotoxicity only after significant myocardial damage has occurred, highlighting the
urgent need for early diagnosis technologies [40,67,69]. Targeting ROS for early diagnosis,
as demonstrated with [18F]DHMT, is promising since it can detect cardiotoxicity earlier than
LVEF reduction [40]. Despite its higher cost relative to that of existing screening methods,
the automatic synthesis of [18F]DHMT enhances its attractiveness for optimization and
commercialization [42].

Brain PET imaging faces the significant challenge of the BBB, which restricts the deliv-
ery of radiopharmaceuticals to the brain [70]. However, derivatives such as [18F]ROStrace,
[18F]FDHM, [11C]HM, and [11C]VitC have demonstrated the capability to cross the BBB
and effectively image ROS in the brain [21,43–45]. Additionally, inflammation imaging in
various body parts, including the lungs and ankles, has been successfully conducted with
specific radiopharmaceuticals [56,58,59]. Furthermore, some research cases have identi-
fied tumors by exploiting the characteristic of ROS frequently occurring in tumors or by
imaging the function of system xc

− [30,51,66]. Radiopharmaceuticals, e.g., [18F]BCPP-EF
and [18F]2, have shown significant potential for imaging ROS and evaluating associated
dysfunctions in diseases such as AD [49,50,63–65]. Advancements in these imaging tech-
nologies not only enhance our understanding of disease mechanisms but also improve early
diagnosis and monitoring of therapeutic responses, ultimately contributing to personalized
medicine approaches.

Despite these advances, several challenges to the widespread adoption of ROS-targeted
radiopharmaceuticals remain. A significant limitation is the translation of preclinical results
into clinical practice. Although several radiopharmaceuticals have shown promise in
animal models, comprehensive validation of their efficacy and safety in humans is still
lacking. Additionally, in vivo ROS imaging is inherently complex due to the transient and
highly reactive nature of ROS [68]. Developing radiopharmaceuticals that can selectively
and sensitively detect specific ROS species without significant off-target effects remains a
critical area of research.

Furthermore, in the clinical translation of ROS-targeting radiopharmaceuticals, there
are several key challenges that could be considered. First, as highlighted in this review,
optimizing automated production systems is essential to supporting both nonclinical
and clinical efficacy studies. Ensuring the stability of these radiopharmaceuticals also
remains a critical concern, as most ROS-targeting compounds are sensitive to moisture
and light. Developing stabilization strategies will be necessary to improve their robust-
ness for clinical use. Furthermore, while it may be difficult to fully distinguish between
radiopharmaceutical-generated and disease-generated ROS, the diagnostic doses typically
used (in the mGy range) are expected to generate minimal ROS compared to levels asso-
ciated with disease pathology. Another limitation is the relatively narrow target patient
population for ROS imaging, which is currently focused on diseases with significant ox-
idative stress components (e.g., cancer, cardiovascular, or neurodegenerative disorders),
which could limit the broader application of these radiopharmaceuticals. However, as
the role of ROS in a wider range of pathologies becomes clearer, these limitations may
diminish. Consequently, while these challenges are significant, ongoing advancements in
radiopharmaceutical development and imaging technology hold the potential to overcome
them and expand the clinical applicability of ROS imaging in the future.

4. Perspectives and Conclusions

ROS have emerged as an attractive biomarker for various diseases, and studies utiliz-
ing them are actively underway. Developing non-invasive imaging techniques to detect
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ROS in vivo is essential for advancing diagnostic and therapeutic strategies. In this re-
view, we explored the potential of nuclear medicine imaging techniques for detecting
ROS, highlighting various promising radiopharmaceuticals that have demonstrated sig-
nificant potential in preclinical studies for imaging ROS-related processes across various
diseases. Despite various existing challenges, continued research and innovation are es-
sential to overcome these barriers and fully realize the clinical potential of ROS-targeted
imaging ligands, ultimately enhancing disease diagnosis, monitoring, and personalized
treatment approaches.

In conclusion, advances in radiopharmaceuticals for imaging ROS represent a signifi-
cant leap forward in our ability to non-invasively diagnose and monitor a range of diseases.
Despite the promising developments, there remain critical challenges to be addressed to
effectively translate these innovations from the bench to bedside. Future research should
focus on optimizing the selectivity and sensitivity of these radiopharmaceuticals to specific
ROS types, ensuring minimal off-target effects, and improving safety profiles for clinical
use. Furthermore, the integration of these imaging ligands into routine clinical practice
will require extensive validation through large-scale clinical trials. The potential of these
technologies to enhance personalized medicine by enabling earlier diagnosis and more
accurate monitoring of therapeutic responses is enormous. As we continue to innovate
and refine these tools, the collaboration between chemists, biologists, and clinicians will be
pivotal in overcoming the existing hurdles. The ultimate goal is to develop robust, reliable,
and widely accessible imaging technologies that can provide deeper insights into the role
of ROS in disease pathophysiology, thereby improving patient outcomes across a variety of
healthcare disciplines.
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