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ABSTRACT: The catalytic asymmetric diastereodivergent synthesis of axially chiral 2-alkenylindoles was established via chiral
phosphoric acid-catalyzed addition reactions of C3-unsubstituted 2-alkenylindoles with o-hydroxybenzyl alcohols under different
reaction conditions. Using this strategy, two series of 2-alkenylindoles bearing both axial and central chirality were synthesized in a
diastereodivergent fashion with moderate to high yields and good stereoselectivities (up to 99% yield, 95:5 er, >95:5 dr). Moreover,
theoretical calculations were performed on the key transition states leading to different stereoisomers, which provided an in-depth
understanding of the origin of the observed stereoselectivity and diastereodivergence of the products under different reaction
conditions. More importantly, these 2-alkenylindoles were utilized in asymmetric catalysis as chiral organocatalysts and in medicinal
chemistry for evaluation of their cytotoxicity, which demonstrated their potential applications. This study has not only established
the catalytic atroposelective synthesis of axially chiral 2-alkenylindoles, but also provided an efficient strategy for catalytic asymmetric
diastereodivergent construction of indole-based scaffolds bearing both axial and central chirality.
KEYWORDS: 2-Alkenylindole, Axial chirality, Central chirality, Diastereodivergent synthesis, Chiral phosphoric acid

■ INTRODUCTION
Chiral compounds bearing multiple stereogenic centers are
widely found in pharmaceuticals and materials.1,2 The absolute
and relative configurations of these compounds have an impact
on their physiological or pharmacological properties.3,4 There-
fore, developing efficient strategies to access all stereoisomers
of chiral compounds bearing multiple stereocenters is crucial.
Catalytic asymmetric diastereodivergent reactions have

recently been recognized as a class of powerful methods for
synthesizing each stereoisomer of chiral compounds using the
same set of starting materials by slightly modulating the
reaction conditions.5−10 Thus, developing catalytic asymmetric
diastereodivergent reactions has attracted intensive attention
from the scientific community.11−28 Among them, catalytic
asymmetric diastereodivergent reactions for the synthesis of
chiral compounds bearing multiple central chirality have been
well-developed (Scheme 1a).17−28 However, in stark contrast,
catalytic asymmetric diastereodivergent reactions for the
synthesis of chiral compounds bearing both axial and central
chirality remain largely unexplored (Scheme 1b)29,30 in spite of

the importance of atropisomers bearing multiple chiral
elements.31 The challenges in realizing such diastereodivergent
reactions mainly include: 1) simultaneously controlling the
axial chirality and central chirality to achieve excellent
diastereoselectivity and enantioselectivity; 2) finding suitable
reaction conditions for diastereodivergent generation of two
chiral elements. Therefore, it is highly desired to develop
efficient strategies toward settling these challenges and realize
catalytic asymmetric diastereodivergent reactions for the
synthesis of chiral compounds bearing both axial and central
chirality.
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Axially chiral indole-based scaffolds, a class of unique axially
chiral skeletons,31−45 are widely found in natural prod-
ucts,46−48 pharmaceutically relevant molecules,49−51 and chiral
catalysts.52−55 Therefore, catalytic asymmetric construction of
axially chiral indole-based scaffolds has become an emerging
field.56,57 As shown in Scheme 2a, various elegant strategies

have been developed for the enantioselective construction of
axially chiral (hetero)arylindoles, such as five-six-membered
axially chiral arylindoles49,58−103 and five-five-membered axially
chiral (hetero)arylindoles.51,52,104−116 However, in sharp
contrast, axially chiral alkenylindoles, more challenging axially
chiral indole-based scaffolds,50,117−123 remain rarely studied
except for a few examples on the synthesis of axially chiral 3-
alkenylindoles117 and N-alkenylindoles118−123 (Scheme 2b).
Despite this progress, catalytic atroposelective synthesis of
axially chiral 2-alkenylindoles is still unknown due to the much
lower rotational barrier of this class of molecules. Therefore,
how to overcome the very weak configurational stability of
axially chiral 2-alkenylindoles and to develop efficient strategies
for constructing such skeletons in a catalytic asymmetric
manner remain challenging.

To overcome the challenges in developing catalytic
asymmetric diastereodivergent reactions for the synthesis of
chiral compounds bearing both axial and central chirality, and
to construct axially chiral 2-alkenylindole skeletons, we
proposed the concept of our strategy as designing new
platform molecules for diastereodivergent synthesis of 2-
alkenylindoles bearing both axial and central chirality. As
shown in Scheme 3a, C3-unsubstituted 2-alkenylindoles were

designed as indole-based platform molecules. The structural
features of C3-unsubstituted 2-alkenylindoles mainly include:
(1) the unsubstituted C3-position of the indole ring could not
only act as a nucleophilic site, but also make the indole ring
and the alkenyl group be able to rotate freely around the axis
and result in rapid racemization; (2) the bulky cyclohexyl
group and the N-substituent could serve as steric groups to
generate rotational restriction for the products and increase the
configurational stability of the products; (3) this kind of C3-

Scheme 1. Profile of Catalytic Asymmetric Diastereodivergent Reactions

Scheme 2. Profile of Catalytic Atroposelective Construction
of Axially Chiral Indole-Based Scaffolds

Scheme 3. Our Strategy for Catalytic Asymmetric
Diastereodivergent Synthesis of 2-Alkenylindoles Bearing
Both Axial and Central Chirality
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unsubstituted 2-alkenylindoles could be easily synthesized
from the corresponding 2-indolylmethanols124−126 via dehy-
dration. These structural features enable C3-unsubstituted 2-
alkenylindoles to undergo catalytic asymmetric diastereodiver-
gent addition reactions with bulky electrophiles bearing a
prochiral center under different reaction conditions, thus
leading to the generation of two series of 2-alkenylindoles
bearing both axial and central chirality in a diastereodivergent
manner. Although this strategy seems feasible, there are still
some challenging issues to be solved, such as finding suitable
bulky electrophiles bearing a prochiral center and selecting
suitable chiral catalysts to control the reactivity and the
stereoselectivity.
To address these issues, based on our long-lasting efforts in

chiral indole chemistry,127−130 we designed a chiral phosphoric
acid (CPA)-catalyzed asymmetric diastereodivergent addition
reaction of C3-unsubstituted 2-alkenylindoles 1 with o-
hydroxybenzyl alcohols 2 (Scheme 3b). In this design, the
selection of o-hydroxybenzyl alcohols as suitable bulky
electrophiles bearing prochiral center is based on that o-
hydroxybenzyl alcohols can be converted into highly reactive o-
quinone methides (o-QMs) in the presence of Brønsted acids
and generate a new chiral center by the addition
reaction.131−133 CPA was selected as a suitable chiral catalyst
due to its ability to activate o-hydroxybenzyl alcohols, thus
simultaneously controlling both the axial chirality and central
chirality of products 3 and 4.134−141 Therefore, the significance
of this study lies in that it will not only establish the first
catalytic atroposelective synthesis of axially chiral 2-alkeny-
lindoles, but also provide a new strategy for diastereodivergent
construction of indole-based scaffolds bearing both axial and
central chirality. Moreover, the in-depth investigations on the
reaction pathways and potential applications of the products
will be carried out.

■ RESULTS AND DISCUSSION
To verify the feasibility of our design, the reaction of C3-
unsubstituted 2-alkenylindole 1a with o-hydroxybenzyl alcohol
2a was conducted (Scheme 4). As anticipated, this addition
reaction occurred under the catalysis of CPA (R)-5a in 1,2-

dichloroethane (DCE) at 20 °C and delivered axially chiral 2-
alkenylindoles 3aa and 4aa in high total yields albeit with low
enantioselectivity and moderate diastereoselectivity (80%
yield, 3aa: 53:47 er, 4aa: 64:36 er, 18:82 dr). To realize
asymmetric diastereodivergent addition reaction, various
reaction parameters such as catalysts, solvents, additives,
reagents ratio, reaction temperature, and catalyst loading
were screened (see the Supporting Information for details).
Finally, product 3aa was obtained as the major diastereomer in
a moderate yield of 52% with a high enantioselectivity of 92:8
er and an excellent diastereoselectivity of 95:5 dr under the
optimal conditions A (1a:2a = 3:1, 20 mol % (S)-7a, DCE, 36
h, 3 Å MS, 0 °C). On the other hand, product 4aa could be
obtained as the major diastereomer in an excellent yield of 99%
with a high enantioselectivity of 93:7 er and a good
diastereoselectivity of 92:8 dr under the optimal conditions
B (1a:2a = 2:1, 10 mol % (S)-7b, p-xylene, 12 h, 4 Å MS, 20
°C).
After establishing the optimal reaction conditions, we

investigated the substrate scope of this catalytic asymmetric
diastereodivergent addition reaction. First, the substrate scope
for atroposelective synthesis of 2-alkenylindoles 3 as the major
diastereomers bearing both axial and central chirality was
examined under optimal conditions A. As shown in Table 1, a
series of o-hydroxybenzyl alcohols 2a−2k bearing various R2/
R3 groups were successfully employed to generate chiral 2-
alkenylindoles 3ab−3ak in moderate to good yields (up to
88%) with high enantioselectivities (up to 93:7 er) and
diastereoselectivities (up to 95:5 dr). For C3-unsubstituted 2-
alkenylindoles 1, substrates 1b−1d with different R groups on
the C5-position of the indole ring were suitable reactants for
this addition reaction to produce chiral 2-alkenylindoles 3ba−
3da in moderate yields (up to 55%) with good enantiose-
lectivities (up to 92:8 er) and diastereoselectivities (up to 91:9
dr). Besides, N-benzyl substituted 2-alkenylindole 1e could
participate in the reaction to afford chiral 2-alkenylindole 3ei in
a moderate yield (44%) with a high enantioselectivity (91:9 er)
and a moderate diastereoselectivity (75:25 dr).
To investigate the generality of this strategy for atropose-

lective synthesis of chiral 2-alkenylindoles 4 as the major

Scheme 4. Catalysts and Model Reaction Employed for Condition Optimization
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diastereomers bearing both axial and central chirality, a wide
scope of C3-unsubstituted 2-alkenylindoles 1 with different R/
R1 groups and o-hydroxybenzyl alcohols 2 bearing various R2/
R3 groups were employed as substrates under optimal
conditions B. As shown in Table 2, a variety of 2-alkenylindoles
4 bearing axial and central chirality were synthesized in good
yields (up to 99%) with high enantioselectivities (up to 95:5
er) and moderate to excellent diastereoselectivities (up to
>95:5 dr).

Notably, cyclopentyl- and isopropyl-substituted 2-alkenylin-
doles 1f−1g successfully participated in this catalytic
asymmetric diastereodivergent addition reaction to deliver
axially chiral 2-alkenylindoles 3fa−3ga and 4fa−4ga, respec-
tively, in acceptable yields with good to excellent enantiose-
lectivities and diastereoselectivities.
Subsequently, we evaluated the stereodivergence of this

catalytic asymmetric addition reaction. As shown in Scheme
5a, the addition reactions of 1a and 2a under conditions A or B
in the presence of CPA 7a or 7b with different absolute

Table 1. Substrate Scope for Atroposelective Synthesis of Chiral 2-Alkenylindoles 3a

aReaction conditions: 1 (0.3 mmol), 2 (0.1 mmol), (S)-7a (20 mol %), 3 Å MS (100 mg), DCE (2 mL), 0 °C for 36 h. Isolated yields were
provided, the er value was determined by HPLC and the dr value (3:4) was determined by 1H NMR. The absolute configuration of 3aa was
determined as (Ra,S) via single-crystal X-ray diffraction analysis (see the Supporting Information for details).

142 b4 mL of DCE was used. c1 mL of
DCE was used. dCatalyzed by 30 mol % (S)-7a for 48 h. eUsing 5 Å MS (100 mg) as additives. fCatalyzed by 20 mol % (S)-5i.
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configurations were carried out, which delivered four stereo-
isomers of 2-alkenylindoles 3aa and 4aa bearing both axial and
central chirality in moderate to good yields with high
enantioselectivities and diastereoselectivities, respectively. In
addition, we investigated the configurational stability and
rotational barriers of axially chiral 2-alkenylindoles 3aa and 4aa
(Scheme 5b). Products 3aa and 4aa were stirred in i-PrOH at
100 °C for 5 h and recovered in high yields with retained
enantioselectivities and diastereoselectivities. These results
indicated that products 3aa and 4aa have high configurational
stability. The rotational barriers of products 3aa and 4aa were

theoretically calculated as 39.5 and 46.3 kcal mol−1,
respectively, which were in accordance with the experimentally
observed high configurational stability of these products.
To demonstrate the utility of the reaction, we performed the

synthesis of products 3aa and 4aa on 1 mmol scale (Scheme
6a). Compared with the small-scale reactions, these 1 mmol
scale reactions smoothly afforded products 3aa and 4aa in
similar yields with maintained high enantioselectivities and
diastereoselectivities. Moreover, we further investigated the
utility of this new class of 2-alkenylindoles bearing both axial
and central chirality (Scheme 6b). For instance, product 4aa

Table 2. Substrate Scope for Atroposelective Synthesis of Chiral 2-Alkenylindoles 4a

aReaction conditions: 1 (0.2 mmol), 2 (0.1 mmol), (S)-7b (10 mol %), 4 Å MS (100 mg), p-xylene (4 mL), 20 °C for 12 h. Isolated yields were
provided, the er value was determined by HPLC and the dr value (4:3) was determined by 1H NMR. The structure of rac-4ak was confirmed by
single-crystal X-ray diffraction analysis,142 and the absolute configuration of 4ak was determined to be (Ra, R) by comparison with a known chiral
compound (see the Supporting Information for details). bCatalyzed by 10 mol % (S)-7c. cCatalyzed by 10 mol % (S)-7c at −30 °C in mesitylene
for 24 h. dCatalyzed by 10 mol % (R)-6b. eCatalyzed by 20 mol % (R)-6b at 0 °C in mesitylene for 24 h, 1g:2a = 3:1.
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was transformed into the corresponding chiral phosphine
ligand 9 bearing multiple chiral elements via a two-step
reaction. The preliminary application of chiral ligand 9 was
verified in a palladium-catalyzed enantioselective allylic
alkylation reaction, which afforded chiral product 13 in a
high yield of 92% with a good enantioselectivity of 87:13 er.
Therefore, this result demonstrated the promising applications
of this kind of 2-alkenylindole skeletons bearing both axial and
central chirality in asymmetric catalysis.
To find the possible bioactivities of this class of chiral 2-

alkenylindoles, a preliminary evaluation on the cytotoxicity of
some selected products 3 and 4 was carried out (see the
Supporting Information for details). As shown in Figure 1a,
several products 3 and 4 exhibited some extent of cytotoxicity
against HepG2 cancer cells, and the IC50 values were ranging
from 20.0 to 50.4 μg/mL. Besides, the cytotoxicity of some
selected products 3 and 4 against PC-3 cancer cells was also
investigated (Figure 1b). Among them, product 3ac exhibited
potent cytotoxicity against PC-3 cancer cells with a very low
IC50 value of 16.7 μg/mL. These results indicated that this
class of chiral 2-alkenylindoles might find their potential
applications in medicinal chemistry.
To elucidate the possible activation mode, we conducted

some control experiments (Scheme 7a). When methyl-
protected o-hydroxybenzyl alcohol 2n was allowed to react
with C3-unsubstituted 2-alkenylindole 1a under standard
conditions A and B, no reaction occurred. This indicated
that the OH group in o-hydroxybenzyl alcohols played a crucial
role in controlling the reactivity, possibly by forming hydrogen-
bonding interactions with CPA. Based on the control
experiments, we proposed a possible reaction pathway for
this catalytic asymmetric diastereodivergent reaction. As shown
in Scheme 7b, (Ra)-1a and (Sa)-1a were two enantiomers of

racemic C3-unsubstituted 2-alkenylindole 1a, and the rota-
tional barrier of 1a was calculated as 21.4 kcal mol−1, which
verified our proposal that (Ra)-1a and (Sa)-1a could rapidly
transform to each other, resulting in rapid racemization for the
dynamic kinetic resolution (DKR) process. Under the
activation of (S)-7a via hydrogen-bonding interaction (con-
ditions A), a fast nucleophilic addition between (Ra)-1a and o-
quinone methide (o-QM) (generated via dehydration of o-
hydroxybenzyl alcohol 2a) occurred to give product (Ra,S)-
3aa. When using (S)-7b as the catalyst (conditions B),
diastereomer (Ra,R)-4aa was obtained, thus realizing the
diastereodivergence process and the generation of two types
of 2-alkenylindoles bearing both axial and central chirality. On
the other hand, in the presence of CPA (S)-7a or (S)-7b, the
nucleophilic addition of (Sa)-1a with o-QM was very slow and
(Sa)-1a continuously transformed into (Ra)-1a via rapid
racemization, resulting in the DKR process.
To explain the observed high enantioselectivity of products

3, 4 and the diastereodivergence of this addition reaction
under different reaction conditions, we performed density
functional theory (DFT) calculations on the key transition
states leading to four possible stereoisomers in the catalytic
asymmetric diastereodivergent reactions between 1a and 2a
under the catalysis of different CPAs (S)-7a and (S)-7b,
respectively (Figure 2). As shown in Figure 2a, the Gibbs free
energy barrier of transition state (Ra,S)-TS1, leading to the
formation of major product (Ra,S)-3aa, was calculated as 19.4
kcal·mol−1, which was the lowest energy barrier among the
transition states leading to four possible stereoisomers under
the catalysis of CPA (S)-7a (see Figure S4 in the Supporting
Information for details). Notably, the C�O group in o-QM
could form hydrogen-bonding interactions with CPA in (Ra,S)-
TS1, demonstrating that the OH group in o-hydroxybenzyl

Scheme 5. Demonstration of the Stereodivergence and Study on the Configurational Stability
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alcohol 2a played a crucial role in controlling the reactivity,
which was consistent with the control experiments.
To explain the observed absolute configuration and good

enantioselectivity of product (Ra,S)-3aa, we compared the key
transition states (Ra,S)-TS1 and (Sa,R)-TS1, which ultimately
led to the formation of two enantiomers of 3aa. The energy
difference between (Ra,S)-TS1 and (Sa,R)-TS1 was calculated
as 1.7 kcal mol−1, which was in accordance with the observed
er value (92:8). Moreover, the origin of the energy difference
leading to the observed enantioselectivity of 3aa was studied
by energy decomposition analysis and noncovalent interaction
(NCI) plots (see Figures S5 and S6 in the Supporting
Information for details). Energy decomposition analysis
indicated that the energy difference between (Ra,S)-TS1 and
(Sa,R)-TS1 could be mainly attributed to the difference of
distortion energies of the substrates and the catalyst. Structure
analysis in Figure 2a indicated that the planar carbon center of
C3-unsubstituted 2-alkenylindole 1a (∠C5C6C7H8 = 179.2°)
and o-QM (∠C1C2H4C3 = 180.0°) as well as the angle in o-
QM (∠C1C2C3 = 127.7°) were ready to distort to pyramidal
structures during the nucleophilic addition. The dihedral
angles of these two carbon centers in (Ra,S)-TS1
(∠C5C6C7H8 = 157.1° and ∠C1C2H4C3 = 156.2°) and
the angle of o-QM (∠C1C2C3 = 127.6°) were bigger than
those in (Sa,R)-TS1 (∠C5C6C7H8 = 152.9°, ∠C1C2H4C3 =
145.1°, ∠C1C2C3 = 122.2°), indicating more structural
distortions in (Sa,R)-TS1 than those in (Ra,S)-TS1. Besides,
the hydrogen bond between the oxygen atom and the

Scheme 6. Synthesis (1 mmol Scale) and Application of Axially Chiral 2-Alkenylindoles in Asymmetric Catalysis

Figure 1. Chiral 2-alkenylindoles 3 and 4 with promising anticancer
activity
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hydrogen atom of CPA (S)-7a in (Ra,S)-TS1 (b1 = 1.416 Å)
was considerably shorter than that in (Sa,R)-TS1 (b1 = 1.449
Å), further indicating the bigger structural distortion in (Sa,R)-
TS1. These results well explain the observed absolute
configuration and good enantioselectivity of the major
enantiomer of product 3aa. Moreover, the energy barrier of
(Ra,S)-TS1 was much lower than those of (Ra,R)-TS1 and

(Sa,S)-TS1, which corresponded to the formation of minor
diastereomers (Ra,R)-4aa and (Sa,S)-4aa. So, these calculation
results also explained the observed high diastereoselectivity of
3aa in the presence of CPA (S)-7a.
In addition, Figure 2b shows the calculated transition states

leading to four possible stereoisomers under the catalysis of
CPA (S)-7b. Obviously, the energy barrier of (Ra,R)-TS2
leading to the formation of major product (Ra,R)-4aa was
lower (19.3 kcal·mol−1) than those of other three transition
states (see Figure S7 in the Supporting Information for
details). The energy difference between the transition states
(Ra,R)-TS2 and (Sa,S)-TS2, leading to the generation of two
enantiomers of 4aa, was 2.2 kcal·mol−1, which well explained
the observed absolute configuration of major enantiomer
(Ra,R)-4aa and its good enantioselectivity of 93:7 er. Similarly,
the origin of the energy difference leading to the observed
enantioselectivity of 4aa was also investigated by energy
decomposition analysis (see Figure S8 in the Supporting
Information for details). Energy decomposition analysis
indicated that the energy difference between (Ra,R)-TS2 and
(Sa,S)-TS2 mainly comes from the difference of interaction
energies between the substrates and CPA (S)-7b. As shown in
Figure 2b, three C−H···O (b3 = 2.209 Å, b4 = 2.321 Å, b5 =
2.540 Å) and four C−H···π interactions (b6 = 2.920 Å, b7 =
2.853 Å, b8 = 2.755 Å, b9 = 3.128 Å) between the substrates
[(Ra)-1a and o-QM] and CPA (S)-7b were observed in (Ra,R)-
TS2. In contrast, only one C−H···O (b3 = 2.513 Å) and two
C−H···π interactions (b4 = 2.530 Å, b5 = 2.427 Å) were
observed in (Sa,S)-TS2, indicating that the interactions
between the substrates and CPA (S)-7b in (Sa,S)-TS2 were
weaker than those in (Ra,R)-TS2. These noncovalent
interactions could also be visualized from the NCI plots (see
Figure S9 in the Supporting Information for details). These
results well explained the observed absolute configuration and
good enantioselectivity of the major product (Ra,R)-4aa.
Evidently, under the catalysis of CPA (S)-7b, the energy
barrier of (Ra,R)-TS2 was much lower than those of (Ra,S)-

Scheme 7. Control Experiments and Proposed Reaction
Pathway

Figure 2. Key transition states to explain the enantioselectivity and diastereodivergence of the products.
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TS2 and (Sa,R)-TS2 corresponding to the generation of minor
diastereomers (Ra,S)-3aa and (Sa,R)-3aa, which explained the
observed high diastereoselectivity of 4aa in the presence of
CPA (S)-7b. Therefore, the theoretical calculations provided
an in-depth understanding of the origin of the observed
stereoselectivity and diastereodivergence of the products under
different reaction conditions.

■ CONCLUSIONS
In summary, we have established the first catalytic asymmetric
diastereodivergent synthesis of 2-alkenylindoles bearing both
axial chirality and central chirality via CPA-catalyzed addition
reactions of C3-unsubstituted 2-alkenylindoles with o-hydrox-
ybenzyl alcohols. Using this approach, two series of 2-
alkenylindoles bearing multiple chiral elements were synthe-
sized in a diastereodivergent fashion with moderate to high
yields and excellent stereoselectivities. Moreover, such 2-
alkenylindoles bearing both axial and central chirality could be
converted into new chiral ligand, and several 2-alkenylindole
products displayed potent anticancer activities, which demon-
strated their promising applications in asymmetric catalysis and
medicinal chemistry. Besides, theoretical calculations have
been performed on the key transition states leading to different
stereoisomers, which provided an in-depth understanding of
this catalytic asymmetric diastereodivergent reaction. There-
fore, this work has not only established the first catalytic
atroposelective synthesis of axially chiral 2-alkenylindoles with
potential applications, but also provided a new strategy for
diastereodivergent construction of indole-based scaffolds
bearing both axial and central chirality, thus offering an
efficient tactic toward settling the challenges in developing
catalytic asymmetric diastereodivergent reactions for the
synthesis of chiral compounds bearing both axial and central
chirality.
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