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Abstract: The Unani Tibb is a medical system of Greek descent that has undergone substantial
dissemination since the 11th century and is currently prevalent in modern South and Central Asia,
particularly in primary health care. The ingredients of Unani herbal medicines are primarily derived
from plants. Our research aimed to address the pressing issues of antibiotic resistance, multi-drug
resistance, and the emergence of superbugs by examining the molecular-level effects of Unani
ingredients as potential new natural antibiotic candidates. We utilized a machine learning approach
to tackle these challenges, employing decision trees, kernels, neural networks, and probability-based
methods. We used 12 machine learning algorithms and several techniques for preprocessing data,
such as Synthetic Minority Over-sampling Technique (SMOTE), Feature Selection, and Principal
Component Analysis (PCA). To ensure that our model was optimal, we conducted grid-search
tuning to tune all the hyperparameters of the machine learning models. The application of Multi-
Layer Perceptron (MLP) with SMOTE pre-processing techniques resulted in an impressive accuracy
precision and recall values. This analysis identified 20 important metabolites as essential components
of the formula, which we predicted as natural antibiotics. In the final stage of our investigation, we
verified our prediction by conducting a literature search for journal validation or by analyzing the
structural similarity with known antibiotics using asymmetric similarity.

Keywords: machine learning; metabolomic; natural antibiotics; prediction; Unani herbal medicine

1. Introduction

Antibiotic resistance presents a primary global health concern involving the spreading
of bacteria and genetic material among humans, animals, and the environment [1]. An-
tibiotic resistance can enhance bacteria’s ability to withstand antibiotics and medications.
Developing new antibiotics is challenging, time-consuming, and expensive, making this
issue particularly alarming. Failure to address this problem promptly and effectively could
result in an estimated 10 million deaths annually due to antibiotic resistance by 2050 [2].
According to the European Center for Disease Prevention and Control (ECDC), around
33,000 people die annually due to antibiotic-resistant issues. Epidemiologists emphasize the
substantial economic consequences of antibiotic resistance, stating that in the United States
and other countries, the additional hospitalizations and treatment costs due to superbugs
or antibiotic-resistant problems exceed USD 11 million and 20 billion, respectively [3].

Advances in artificial intelligence technology can now be used to accelerate the discov-
ery of new antibiotics, predict antimicrobial resistance, and conduct preliminary screenings
of novel antibiotic candidates. In 2020, in silico and in vivo approaches were combined
to find new antibiotics [4]. This study used a deep neural network to predict molecules
with antibacterial activity using various database sources such as a drug repurposing
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hub [5] and ZINC15 [6]. This study found eight antibiotic compounds with structures
that mainly differed from those of known ones. The eight antibiotics are ZINC000098210492,
ZINC000001735150, ZINC000225434673, ZINC000004481415, ZINC000019771150,
ZINC000004623615, ZINC000238901709, and ZINC000100032716. Using eight machine
learning methods, gram stain data, site of infection, and patient demographics were utilized
to build decision tools for determining antimicrobial resistance [7]. Other work utilized
Traditional Chinese Medicine to seek potential natural products as antibiotics; this paper
employed machine learning and graph/network theory techniques [8,9]. The use of ma-
chine learning for research related to antibiotics, specifically a random forest, was also
carried out by [10]. This study used a random forest to determine the essential plants from
Jamu herbal medicine that are promising as natural antibiotics.

Herbal medicines are plant-based medicines made from different combinations of
medicinal plant parts such as leaves, flowers, and roots. Each part has different medicinal
uses, and many chemical constituents require different extraction methods. Both fresh
and dried plants are used, depending on the herb (https://www.nimh.org.uk/whats-
herbal-medicine, accessed on 12 December 2023). Herbal medicine has become a popular
drug in the last three decades, and close to 80% of people worldwide depend on herbal
medicines [11]. The main reasons why people tend to choose herbal medicines are that they
provide better efficacy and relatively lower side effects compared to conventional drugs [11].
The use of herbal medicines worldwide reached US 60 billion in 2010 and US 71.19 billion
in 2016, and it is expected to reach US 5 trillion by 2050 [12–14]. This information shows
that the use of herbal medicines is prevalent worldwide. Some examples of herbal medicine
systems worldwide are Traditional Chinese Medicine (TCM) from China, Kampo from
Japan, Jamu from Indonesia, and Ayurvedic, Siddha, and Unani from Southern Asia.

The Unani Tibb, known as Unani medicine, is widely practiced in South and Central
Asia. The Arabic term “Tibb” means “medicine”, while the name “Unani” is assumed to
have its roots in the Greek word “Ionan” [15]. Traditional Indian and Chinese systems
also influenced Unani medicine. The Unani herbal medicines primarily utilize medicinal
plants as their ingredients, and this system follows ancient concepts and principles of drug
management. Researchers have yet to conduct much research on building Unani’s scientific
foundation. This scientific research is needed to provide a foundation and knowledge of
why an Unani formula is helpful for a particular disease. Unani medicines are made by
extracting medicinal plants used as drugs against various diseases [16]. Based on [17], the
Unani System of Medicine was invented in Greece and refined by Arabs into a sophisticated
medical discipline using the ‘Hippocrates and Jalinoos’ teachings (Galen). Unani medicine
has since been referred to as Greco–Arab Medicine. The Hippocratic notion of the four
humors was blood, phlegm, yellow bile, and black bile. According to this approach, these
principles govern the health and composition of the body and its pathological states. The
Unani System of Medicine (USM) has been acknowledged by the World Health Organi-
zation (WHO) as an alternative system to meet the demands of the human population in
terms of health care. The practice of alternative medicine has become widespread. The
use of natural antibiotics is anticipated to alleviate the issue of antibiotic resistance. These
antibiotics, with their reduced side effects and the capacity to treat multiple diseases simul-
taneously, are practical and environmentally friendly. Their minimal industrial processing
and increased plant cultivation inspire a sustainable approach to health care.

Unani medicines are utilized to treat versatile types of diseases. An overview of the
use of Unani plants in the prevention and management of urolithiasis is discussed in [18].
A comprehensive discussion on the Unani medicine system can be found in [19]. In our
previous work, we identified many plants used in Unani formulas as antibacterial [9]. For
example, Piper longum (Pippali) has been traditionally used for various diseases such as
asthma, insomnia, and diabetes and has been found to possess antibacterial activity against
both Gram-positive and Gram-negative bacteria [20,21]. Similarly, the Trachyspermum
ammi (Ajwain) essential oil has demonstrated potent antibacterial effects against pathogens
such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, highlighting its
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potential as a natural antibiotic [22]. Santalum album (Indian sandalwood), long recognized
for its broad medicinal use, exhibits antimicrobial activity [23]. The Cyperus rotundus
essential oil has shown potent activity against Staphylococcus aureus [24]. Additionally,
Vitis vinifera (grape) seed extracts have demonstrated significant antibacterial activity,
particularly against Staphylococcus aureus, positioning it as a promising natural antibacterial
agent [25,26]. Matricaria chamomilla (chamomile) is well known for its pharmacological
properties, with its essential oil exhibiting notable antibacterial effects against various
bacterial strains [27]. Lastly, Zingiber officinale (ginger) has been traditionally used for its
antimicrobial properties, with both aqueous and alcoholic extracts showing efficacy against
several bacterial strains [28]. These plants underscore the valuable role of natural products
in Unani medicine for addressing bacterial infections.

Unani formulas consist of plants as ingredients, and we extended those data to a
Plant Vs. Metabolite matrix by collecting metabolite content data of respective plants from
KNApSAcK, IJAH Analytics databases, and other online sources. This study explores
potential natural antibiotics (metabolite level) based on the Unani formula by empowering
machine learning algorithms.

2. Results
2.1. Pre-Processing of Unani Data

Our initial data are a matrix of dimension 382 × 4688, where rows correspond to
Unani formulas and columns correspond to metabolites. Initially, Unani formulas are
divided into two classes: antibiotic and non-antibiotic. To improve the classification results
by machine learning algorithms, we applied different data pre-processing techniques.
The SMOTE method was utilized to augment the dataset with the default parameters
by keeping the same ratio for the two classes. This approach is intended to address the
problem of insufficient data.

Additionally, an attempt was made to reduce the feature dimension of the dataset,
from 4688 to 20 using a PCA and from 4688 to 500 using feature selection, with the top
500 most essential features using the scikit-learn package in Python. The data dimensions
after different pre-processing types are shown in Table 1. Figure 1 indicates the number of
formulas belonging to each class in different pre-processed data.
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Table 1. Dataset summary before and after various pre-processing steps, including SMOTE, PCA,
and feature selection.

Dataset Number of Unani Formula Number of Metabolite
Features

Original data 381 4688
SMOTE 905 4688

PCA 381 21
Filtering columns 381 501

2.2. Machine Learning Model

Selecting an appropriate method is important in machine learning analysis, which
has a big impact on the quality of final results. Some methods perform well on specific
data, and other methods do not. Therefore, we explored the performance of 12 different
types of machine learning methods on Unani-metabolite data. We considered the following
12 machine learning classifiers: (i) AdaBoost, (ii) Bagging, (iii) BernoulliNB, (iv) Decision
Tree, (v) Extra Trees, (vi) Gradient Boosting, (vii) K-nearest neighbors, (viii) Linear Dis-
criminant Analysis, (ix) Logistic Regression, (x) Multilayer Perceptron, (xi) Random Forest,
and (xii) Support Vector Machine. We utilized the (i) Adaboost in our analysis, employing
a grid search approach to optimize the model’s performance. The grid search explored
various combinations of hyperparameters, specifically n_estimators and learning_rate.
For n_estimators, we considered values of 10, 50, 100, and 500, while for learning_rate,
we explored 0.0001, 0.001, 0.01, 0.1, and 1.0. To assess the model’s performance, we em-
ployed RepeatedStratifiedKFold cross-validation, setting n_splits to 5, n_repeats to 3, and
random_state to 1.

For the (ii) Bagging, we utilized grid search, explicitly focusing on the ‘n_estimators’
parameter and experimenting with values of 10, 50, 100, and 500. We considered two base
estimators, SVC() and DecisionTreeClassifier (), while maintaining consistent validation
methods. For (iii) BernoulliNB, we employed grid search along with consistent validation
methods. The only parameter we tuned in this process was the ‘alpha’ parameter, exploring
a range of values [1, 0.1, 0.01]. For the (iv) Decision Trees, we employed a range of
possible values for max_depth and min_samples_split, which varied from 1 to 10 and
2 to 11, respectively.

We employed a grid search for criterion, max_features, and n_estimators for the (v)
Extra Trees. The value used in criterion = [‘gini’, ‘entropy’], max_features = [‘auto’, ‘sqrt’,
‘log2’, None], n_estimators = [10, 20, 50, 100, 200]. We employed a grid search for lose,
n_estimators, criterion, and max_features for the (vi) Gradient Boosting. The value used in
lose = [‘deviance’, ‘exponential’], criterion = [‘friedman_mse’, ‘mse’], n_estimators = [10, 20,
50, 100, 200], max_features = [‘auto’, ‘sqrt’, ‘log2’]. For (vii) K-Nearest neighbors, we tuned
two type parameters in grid search: n_neighbors = [2, 5, 7, . . ., 39] and metric = [euclidean,
manhattan, cityblock, minkowski].

For (viii) Linear Discriminant Analysis, we employed a grid search for solver and
shrinkage parameters. The solver value is [svd, lsqr, eigen], and shrinkage = [None, ‘auto’,
0.1, 0.5, 0.9]. For (ix) Logistic Regression, we employed grid search along with consistent
validation methods. The only parameter we tuned in this process was the ‘C’ parameter,
exploring a range of values [0.1, 0.5, 1, 5, 10, 50, 100]. We employed a grid search for the
solver, activation, alpha, learning rate, and momentum for the (x) Multi-Layer Perceptron.
The value used in solver = [‘lbfgs’, ‘sgd’, ‘adam’], activation = [‘identity’, ‘logistic’, ‘tanh’,
‘relu’], alpha = [0.00001, 0.0001, 0.001, 0.01, 0.5, 1], learning rate = [‘constant’, ‘invscaling’,
‘adaptive’], and momentum = [0.5, 0.9, 0.95, 0.99].

For the (xi) Random Forest, we employed a grid search for max_depth, min_samples_split,
n_estimators, criterion, and max_features. The value used in max_depth = [5,10,20,25,30,40,51],
min_samples_split = [2,3,4,5,6,7,8,9,10,11], n_estimators = [10, 50, 100, 150, 200, 500], criterion
= [‘gini’, ‘entropy’], and max_features = [‘auto’, ‘sqrt’, ‘log2’]. For (xii) SVM, we tuned two
type parameters in grid search. ‘C’ = [0.1, 0.5, 1, 5] and kernel = [‘linear’, ‘rbf’, ‘poly’]. Hence,
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this research combined the dataset and machine learning techniques, resulting in 48 scenarios.
Table 2 summarizes the accuracy of each scenario. We identified that multi-layer perceptron
and SMOTE data yield the highest accuracy compared to all scenarios. For more detailed
information on the results, please refer to Table 3.

Table 2. Accuracy results of various machine learning models across different preprocessing techniques.

Machine Learning Original Data SMOTE Feature Selection PCA

AdaBoost 0.674596 0.742910 0.677193 0.681545
Bagging 0.697323 0.818048 0.698200 0.687685
BernouliNB 0.626361 0.614733 0.658715 0.615117
Decision Tree 0.666712 0.659669 0.680656 0.67979
Extra Trees 0.630793 0.828361 0.648348 0.632604
Gradient Boosting 0.685042 0.806262 0.685919 0.681556
K-Nearest Neighbors 0.688540 0.706446 0.688551 0.689417
Linier Discriminant Analysis 0.601003 0.750645 0.640351 0.664912
Logistic Regression 0.648257 0.764273 0.688551 0.662303
Multi-Layer Perceptron 0.694691 0.838200 0.694680 0.690305
Random Forest 0.687697 0.825046 0.691194 0.688596
Support Vector Machine 0.697323 0.776427 0.698200 0.691171

This table presents the accuracy scores of 12 machine learning algorithms, including AdaBoost, Bagging, Decision
Tree, and Support Vector Machine, evaluated using original data and three preprocessed datasets: SMOTE, feature
selection, and PCA. SMOTE generally improves accuracy across most models, particularly in Bagging (0.818048)
and Multi-Layer Perceptron (0.838200), while feature selection and PCA have more mixed impacts depending on
the model.

Table 3. Detailed performance metrics for the Multi-Layer Perceptron (MLP) model trained with the
SMOTE dataset.

Measurement Value Derivation

Sensitivity 0.9182 TPR = TP/(TP + FN)
Specificity 0.7436 SPC = TN/(FP + TN)
Precision 0.7710 PPV = TP/(TP + FP)
Negative Predictive Value 0.9063 NPV = TN/(TN + FN)
False Positive Rate 0.2564 FPR = FP/(FP + TN)
False Discovery Rate 0.2290 FDR = FP/(FP + TP)
False Negative Rate 0.0818 FNR = FN/(FN + TP)
Accuracy 0.8382 ACC = (TP + TN)/(P + N)
F1-Score 0.8382 F1 = 2TP/(2TP + FP + FN)

Matthews Correlation Coefficient 0.6695 TP × TN − FP×FN/sqrt((TP + FP) ×
(TP + FN) × (TN + FP) × (TN + FN))

This table comprehensively evaluates the MLP model’s performance across multiple metrics, including sensitivity,
specificity, precision, and accuracy. TP = true positive, TN = true negative, FP = false positive, FN = false negative.

2.3. Ranking and Selecting Features

After obtaining the optimal prediction model, we focused on identifying important
features, particularly those associated with class 1 (antibiotics). To facilitate this process,
we utilized variable importance metrics derived from the synthetic minority oversampling
technique (SMOTE) in combination with a Multilayer Perceptron (MLP) model imple-
mented using the KerasRegressor and PermutationImportance packages. We first ranked
metabolites based on their weighted significance to systematically pinpoint distinguish-
ing features relevant to class 1 (antibiotics). Subsequently, a rigorous selection process is
employed to select the most prominent features unique to Class 1. Our comprehensive
analysis identified 20 metabolites meticulously detailed in Table 4. Additionally, to provide
a comprehensive visualization of the distribution of all metabolites with their respective
weight values, we have presented a detailed depiction in Figure 2.
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Table 4. List of important metabolites predicted as natural antibiotics from the results of the best
machine learning model.

Id Metabolite Formula Molecular Mass (g/mol)

(I) 2-hydroxyethyl hexadecanoate C18H36O3 300.48
(II) N-[(+)-12-hydroxy-7 isojasmonyl]isoleucine C18H29NO5 323.43
(III) gluconapin C11H19NO9S2 373.40
(IV) 3-phenylpropionitrile C9H9N 131.18
(V) flamenol C7H8O3 140.14
(VI) glucobrassicanapin(1−) C16H19N2O9S2 446.46
(VII) 2-chlorobenzoic acid C7H5ClO2 156.57
(VIII) 8-nitroguanosine 3′,5′-cyclic monophosphate C10H11N6O9P 390.21
(IX) 1,3-dioctanoylglycerol C19H36O5 344.49
(X) PG(18:2(9Z,12Z)/16:0) C40H75O10P 758.99
(XI) 3-methoxybenzaldehyde C8H8O2 138.15
(XII) Methyl stearate C19H38O2 298.50
(XIII) 1-naphthyl β-D-glucoside C16H18O6 306.32
(XIV) sinapine C16H24NO5+ 310.36
(XV) 3-butenyldesulfoglucosinolate C12H23NO7S 341.39

(XVI) 1-oleoyl-2-hexadecanoyl-sn-glycero-3-phospho-(1′-sn-glycerol-
3′-phosphate) C18H34O2 282.46

(XVII) glucobrassicanapin C12H21NO9S2 399.43
(XVIII) gluconapin(1−) C11H18NO9S2 373.40
(XIX) 5-methoxyindole-3-acetic acid C11H11NO3 205.21
(XX) α-allenylagmatine C8H16N4 168.24
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2.4. Validation of Predicted Results

Two approaches were employed to validate the predicted metabolites as natural
antibiotics. Initially, we conducted a thorough search of journals and articles to find
evidence in favor of our predicted compounds. Subsequently, we assessed their structural
similarity to some very well-known antibiotics. Three similarity techniques were employed
for the experimental comparison: Tanimoto, Asymmetric, and Dice similarity. Compounds
derived from the Unani formula using our method are very likely to be effective antibiotics
in the first position, and second, we compared their structure with known antibiotics for
further support.
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2.4.1. Literature Validation

We found supporting evidence for 12 of 20 of our predicted antibiotics in the published
literature. Below, we discuss this evidence in detail (IDs are based on Table 4).

(I) The compound 2-hydroxyethyl hexadecanoate (2-HEP) is antibacterial and effective
against various bacteria, including Staphylococcus aureus, Escherichia coli, and Pseudomonas
aeruginosa. 2-HEP damages bacterial cell membranes and disrupts bacterial growth [29].

(III) Gluconapin possesses antibacterial properties. For instance, gluconapin can be
converted to allyl isothiocyanate (AITC) by myrosinase, and AITC has been demonstrated
to be effective against various bacteria, including Escherichia coli, Salmonella Typhimurium,
and Staphylococcus aureus [30,31]. Gluconapin metabolites are also found in several plants,
such as broccoli, cabbage, and radishes, and have been used for centuries to treat bacterial
infections [32].

(IV) 3-Phenylpropionitrile, a naturally occurring metabolite found in horseradish and
other plants, has antibacterial properties. In a study published in 2013, 3-phenylpropionitrile
was found to be effective against various Gram-positive and Gram-negative bacteria, includ-
ing Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa [33]. The antibacterial
activity of 3-phenylpropionitrile was attributed to its ability to disrupt bacterial membranes.
When it comes into contact with a bacterial cell, 3-phenylpropionitrile inserts into the cell
membrane and forms pores. These pores allow water and other ions to enter the cell,
eventually leading to cell death.

(V) Flamenol is a natural metabolite found in the plant Flaveria trinervia. It has been
shown to have antibacterial properties against various bacteria, including Staphylococcus
aureus, Escherichia coli, and Pseudomonas aeruginosa [31].

(VI) Glucobrassicanapin (1−) is a sulfur-containing secondary metabolite classified as
a glucosinolate found in plants. These compounds are broken down into isothiocyanates
by the enzyme myrosinase when plant tissue is damaged. Isothiocyanates possess many
biological activities, including antibacterial properties [34]. Glucobrassicanapin (1−) is a
glucosinolate with potential as a natural antibiotic due to its ability to be broken down
into isothiocyanates, which have a broad range of antibacterial activities. However, further
research is necessary to fully assess the antibacterial efficacy of glucobrassicanapin (1−)
and to develop effective delivery methods for this compound.

(VII) 2-Chlorobenzoic acid (2-CBA) is a metabolite of several plant species, including
Melia azedarach. This compound has been demonstrated to possess antibacterial properties
against Gram-positive and Gram-negative bacteria, including Escherichia coli, Staphylococcus
aureus, and Bacillus subtilis [35]. One study found that 2-CBA was more effective than the
standard antibiotic norfloxacin in inhibiting the growth of Escherichia coli [24]. Another
study showed that 2-CBA effectively killed planktonic and biofilm-associated cells of
Staphylococcus aureus [25]. The mechanism of the antibacterial action of 2-CBA is not fully
understood, but it is thought to involve disruption of the bacterial cell membrane and
inhibition of bacterial DNA synthesis [35,36]. Based on the available data, 2-CBA could be
utilized as a natural antibiotic.

(XI) 3-methoxybenzaldehyde, or hydroxy-4-methoxybenzoic acid, is a phenolic com-
pound in various plants, such as vanilla beans, nutmeg, and cinnamon. This compound has
been effective against many bacteria, including Gram-positive and Gram-negative bacteria.
It disrupts bacterial cell membranes and inhibits bacterial growth. 3-methoxybenzaldehyde
is a safe and natural compound used in traditional medicine for centuries and is now avail-
able as a dietary supplement [37]. Methyl stearate, a fatty acid methyl ester, is associated
with antibacterial properties. Fatty acids, including methyl stearate, are known for their
antimicrobial effects and are produced by plants and algae as a defense mechanism [38].
Additionally, bioactive compounds from natural sources, such as melon leaves, contain
methyl stearate and exhibit antibacterial activities [39]. While specific studies on the an-
tibacterial properties of methyl stearate are limited, the broader context of fatty acids as
antimicrobial agents suggests its potential efficacy. Further research is needed to explore
methyl stearate’s specific antibacterial mechanisms and applications.
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(XIII) The glycosylated natural product 1-naphthyl β-D-glucoside displays antibac-
terial activity against Gram-positive and Gram-negative bacteria, including multidrug-
resistant and nonresistant strains [40]. This compound is thought to function by inhibiting
bacterial glycosyltransferases, which are enzymes necessary for bacterial cell wall synthesis.
A recent study published in Frontiers in Microbiology in 2021 confirmed the potent antibac-
terial activity of 1-naphthyl β-D-glucoside against bacteria such as Staphylococcus aureus,
Pseudomonas aeruginosa, and Escherichia coli as well as multidrug-resistant strains [41].

(XIV) Sinapine possesses antibacterial properties and is a naturally occurring choline
ester found in various plants, including mustard, horseradish, and cruciferous vegetables.
It has been demonstrated to be effective against many bacteria, including Gram-positive
and Gram-negative bacteria. Sinapine disrupts bacterial cell membranes specifically by
interacting with phospholipids in the bacterial cell membrane, which can lead to membrane
rupture. Additionally, it has been found to be effective against antibiotic-resistant bacteria
such as methicillin-resistant Staphylococcus aureus (MRSA), making it a promising candidate
for the development of new antibiotics to treat antibiotic-resistant infections [42,43].

(XV) 3-Butenyldesulfoglucosinolate is a garlic metabolite that was found to possess
antibacterial properties. Studies showed that garlic and its derivatives, including crude or
fresh garlic extract, have in vitro antibacterial activity against bacteria like Staphylococcus
aureus [44]. Plant extracts, including those from garlic, are known for their antimicrobial
activity, with phytochemicals present in these extracts exhibiting antibacterial effects against
antibiotic-susceptible and resistant microorganisms [45]. Although specific studies on the
antibacterial properties of 3-butenyldesulfoglucosinolate are limited, the broader evidence
supports the antibacterial potential of garlic and its compounds.

(XVIII) Gluconapin(1-) is a naturally occurring compound found in cruciferous veg-
etables, such as broccoli, cabbage, and cauliflower. When these vegetables are crushed
or chewed, gluconapin(1-) is converted into isothiocyanates, which have been found to
exhibit antibacterial activity by disrupting the bacterial cell membrane and inhibiting bac-
terial enzymes. This makes it difficult for the bacteria to survive and reproduce. Studies
showed that gluconapin(1-) has broad-spectrum antibacterial activity against Escherichia
coli, Staphylococcus aureus, and Pseudomonas aeruginosa, among other bacteria [32]. It has
also been effective against many bacteria, including foodborne pathogens and multidrug-
resistant and antibiotic-resistant bacteria [31]. Gluconapin(1-) has promising potential as a
natural antibiotic.

(XIX) Compound 5-methoxyindole-3-acetic acid is an indole derivative with antibacte-
rial properties and has been studied for its potential as an antioxidant and in the synthesis
of various agents. It has been used to create Gli1 antitumor agents, inhibitors of nitric
oxide production, and selective COX-2 inhibitors. The compound itself also possesses
antibacterial properties and can enhance lipid peroxidation while serving as an antioxidant.
5-Methoxyindole-3-acetic acid may have potential applications in the development of an-
tibiotics or antimicrobial agents, but it is important to note that the information available
on its antibacterial capabilities is limited and obtained from a product description by the
GoldBio website, and additional scientific research is needed to validate and explore its
antibacterial potential as an antibiotic drug. Hence, we have identified twelve metabo-
lites among our predictions, which according to different references, have antibacterial
properties through either the direct or indirect inhibition of bacterial growth. For further
convenience, we summarize our Journal validation results in Table 5.

Table 5. Summary of the predicted metabolites.

Metabolite Name Properties/Pharmacological Activities Drug Target Protein References

2-hydroxyethyl
hexadecanoate (2-HEP)

Antibacterial; damages bacterial cell
membranes and disrupts bacterial growth.
Effective against Staphylococcus aureus,
Escherichia coli, Pseudomonas aeruginosa.

Membrane phospholipids [29]
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Table 5. Cont.

Metabolite Name Properties/Pharmacological Activities Drug Target Protein References

Gluconapin

By myrosinase, and AITC has been
demonstrated to be effective against various
bacteria, including Escherichia coli, Salmonella
Typhimurium, and Staphylococcus aureus

Membrane phospholipids [30,31]

3-phenylpropionitrile
Antibacterial; disrupts bacterial membranes by
forming pores. Effective against Escherichia coli,
Staphylococcus aureus, Pseudomonas aeruginosa.

Bacterial cell membrane
proteins (pore-forming) [33]

Flamenol
Antibacterial properties against various
bacteria, including Staphylococcus aureus,
Escherichia coli, and Pseudomonas aeruginosa

- [31]

Glucobrassicanapin(1−)
Antibacterial; a glucosinolate broken down
into isothiocyanates, which have a broad range
of antibacterial activities.

Enzyme involved in sulfur
metabolism and
membrane protein

[34]

2-chlorobenzoic acid (2-CBA)

Antibacterial; disrupts bacterial cell
membranes and inhibits DNA synthesis.
Effective against Escherichia coli, Staphylococcus
aureus, Bacillus subtilis.

DNA replication proteins,
membrane proteins [35,36]

3-methoxybenzaldehyde
Antibacterial; disrupts bacterial cell
membranes. Effective against Gram-positive
and Gram-negative bacteria.

Membrane lipids and proteins [37–39]

1-naphthyl β-D-glucoside

Antibacterial; inhibits bacterial
glycosyltransferases, necessary for cell wall
synthesis. Effective against
multi-drug-resistant and non-resistant strains.

Cell wall synthesis [40,41]

Sinapine

Antibacterial; disrupts bacterial cell
membranes by interacting with phospholipids.
Effective against antibiotic-resistant bacteria
(e.g., MRSA).

Membrane phospholipids [42,43]

3-butenyldesulfoglucosinolate
Antibacterial; derived from garlic, known for
antimicrobial activity against bacteria such as
Staphylococcus aureus.

Membrane proteins [44,45]

Gluconapin(1−)

Antibacterial; converts into isothiocyanates,
which disrupt bacterial cell membranes and
inhibit enzymes. Effective against a broad
spectrum of bacteria.

Membrane proteins [31,32]

5-methoxyindole-3-acetic acid
Antibacterial; potential as an antioxidant and
in the synthesis of agents. Limited information
on antibacterial capabilities.

- -

2.4.2. Structural Similarity

We successfully predicted 20 natural antibiotic compounds. We used 11 well-known
antibiotics (Table 6) to validate our results based on structural similarity. Three types of
similarity measures, Tanimoto, Dice, and Asymmetric, were employed to calculate the
structural similarity between each pair of predicted and known antibiotics. A total of
20 × 11 = 220 similarity values were obtained for each type of measure.

The selection of the 11 antibiotics for comparison was based on their representation of
diverse classes of antibiotics, such as β-lactams, fluoroquinolones, sulfonamides, rifamycins,
and cephalosporins, each with distinct mechanisms of action, including the inhibition of cell
wall synthesis, DNA replication, and folic acid synthesis. These antibiotics were extensively
studied in clinical and experimental settings, resulting in a wealth of pharmacokinetic and
pharmacodynamic data. Furthermore, comprehensive information on these antibiotics
in DrugBank makes them suitable for similarity validation. By comparing predicted
metabolites to these well-established antibiotics, this study aims to ensure that the novel
compounds are benchmarked against clinically relevant and effective antibiotics, thereby
enhancing the reliability of the results.
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Similarity values greater than a threshold with known antibiotics were utilized to
validate our predictions regarding ‘8-nitroguanosine 3′,5′-cyclic monophosphate’. Based on
the Tanimoto similarity score, this metabolite exhibited high similarity to Rifaximin, with
a value of 0.646. Utilizing Dice similarity, we found that our predicted metabolite shares
similarities with several known antibiotics, including Daptomycin, Moxifloxacin, Rifaximin,
Ciprofloxacin, Sulfamethoxazole, Trimethoprim, Amoxicillin, Cefdinir, Metronidazole,
Cephalexin, and Levofloxacin. The highest similarity value achieved was 0.78. Additionally,
we employed Asymmetric similarity to demonstrate that all our predicted metabolites
share similarities with many known antibiotics, as shown in the heatmap of Figure 3. This
heatmap indicates that all our predicted metabolites are structurally similar to at least one
antibiotic with a similarity greater than 0.8.

Table 6. Detailed information on antibiotics.

Id Antibiotics Formula Molecular Mass (g/mol) Rank

1 Daptomycin C72H101N17O26 1620.69 3
2 Moxifloxacin C21H24FN3O4 401.43 2
3 Rifaximin C43H51N3O11 785.89 1
4 Ciprofloxacin C17H18FN3O3 331.35 8
5 Sulfamethoxazole C10H11N3O3S 253.28 11
6 Trimethoprim C14H18N4O3 290.32 9
7 Amoxicillin C16H19N3O5S 365.40 6
8 Cefdinir C14H13N5O5S2 395.41 5
9 Metronidazole C6H9N3O3 171.15 10

10 Cephalexin C16H17N3O4S 347.39 7
11 Levofloxacin C18H20FN3O4 361.37 4

The rank was determined based on the sum of the similarity scores between each known antibiotic and all the
predicted antibiotics. The lowest rank corresponds to the highest sum of the scores.
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3. Materials and Methods

The methods used in the current study are depicted in Figure 4. The primary steps in-
volve (1) collecting data, (2) pre-processing the data, (3) creating a machine learning model,
(4) ranking and selecting features, (5) validating the model, and (6) predicting metabolites.
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Figure 4. Asymmetric similarity results between predicted metabolites and known antibiotics. This
heatmap presents the similarity scores between predicted metabolites (rows, the ID based on Table 4)
and known antibiotics (columns, the ID based on Table 6). The color intensity represents the degree
of similarity, with darker shades indicating higher similarity—variations in similarity scores across
different antibiotic–metabolite pairs. For example, some antibiotics (e.g., column 3) show strong
similarity with multiple metabolites, while others (e.g., column 6) exhibit lower similarity. The highest
observed similarity is 1.00, while the lowest is 0.19.

3.1. Collecting Data

The original dataset obtained from [9] comprises 609 Unani formulas involving
369 herbal plants, categorized into 18 efficacy groups. The efficacy groups represent the
types of diseases that Unani formulas can treat, including (1) Blood and Lymph Diseases,
(2) Cancers, (3) Diseases of the Digestive System, (4) Ear, Nose, and Throat, (5) Diseases of
the Eye, (6) Female-Specific Diseases, (7) Glands and Hormones, (8) The Heart and Blood
Vessels, (9) Diseases of the Immune System, (10) Male-Specific Diseases, (11) Muscle and
Bone, (12) Neonatal Diseases, (13) The Nervous System, (14) Nutritional and Metabolic
Diseases, (15) Respiratory Diseases, (16) Skin and Connective Tissue, (17) The Urinary
System, and (18) Mental and behavioral disorders. These data were obtained from the
book “BANGLADESH: National Formulary of Unani Medicine” (ISBN 978-984-33-3253-0).
We utilized the same initial dataset as in our prior publication on Unani Medicine [9,15].
However, for our current research, we considered further detailed actions and applications
of the formulas to divide them into two groups, antibiotic and non-antibiotic. In this case,
diseases within each efficacy group may belong to either antibiotic or non-antibiotic group.

3.2. Data Pre-Processing

The initial Unani formulas consist of plant-based ingredients, and the Unani metabo-
lites were obtained from various databases, including KNApSAcK Family Databases
(http://www.knapsackfamily.com/KNApSAcK_Family, accessed on 12 December 2023),
IJAH Analytics (http://ijah.apps.cs.ipb.ac.id, accessed on 12 December 2023), KEGG
(https://www.genome.jp/kegg/, accessed on 12 December 2023), and ChEBI (https:
//www.ebi.ac.uk/chebi/, accessed on 12 December 2023). The number of metabolites in
each herbal plant varies greatly, with some plants having only a few metabolites while oth-
ers have many. The KNApSAcK database contains information on the species–metabolite
relationship, including accurate mass, molecular formula, metabolite name, and mass

http://www.knapsackfamily.com/KNApSAcK_Family
http://ijah.apps.cs.ipb.ac.id
https://www.genome.jp/kegg/
https://www.ebi.ac.uk/chebi/
https://www.ebi.ac.uk/chebi/
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spectra in several ionization modes. It may contain common metabolites between Jamu
and Unani, as both are classified as traditional medicine. IJAH Analytics is an open-access
database specifically for Jamu data, providing plant–metabolite relations. KEGG is another
open-access database containing cell, organism, and molecular information and large-scale
molecular datasets. ChEBI is a database containing molecular entities, primarily focusing
on small chemical compounds.

The next step in the process is to assign the formulas into two categories: antibiotics
and non-antibiotics. The (class 1) “antibiotics” indicate that the corresponding Unani
formula can cure diseases caused by bacteria. In contrast, the (class 0) “non-antibiotics”
signifies that the corresponding Unani formula can cure diseases except those caused by
bacteria 2. Our colleague, who has a medical background, assisted in this process. For
example, the formula called “ArqSoya” that can cure Acidity of stomach and dysentery
was assigned to antibiotic class. Contrary to that one, the formula called “Dawaul Misk
Mutadlil” that can cure Weakness of brain, Heart and liver, Melancholia, and Insanity was
assigned to non-antibiotics class. As a result, the final dataset is a tabular dataset consisting
of Unani formulas as objects, metabolites as feature data, class labels, and the shape of our
dataset is [381 × 4689]. The ratio of two classes in our data can be seen in Figure 5. A dataset
in which the blue class (class 0) accounts for 68.8% of the samples and the orange class (class
1) represents 31.2% of the samples is considered imbalanced. This dataset’s class imbalance
ratio (CIR) is 2.21, greater than 1. This ratio indicates more than twice as many samples in
the pink class as in the blue class. Generally, a dataset is considered imbalanced when the
CIR is greater than 10. However, even a CIR of 2.21 can pose problems for machine learning
algorithms not explicitly designed to handle imbalanced datasets. It is essential to address
the imbalance status of a dataset before training a machine learning model. This action
can be achieved by oversampling the minority class, under-sampling the majority class, or
using a machine learning algorithm that is designed to handle imbalanced datasets.

CIR =
Number o f samples in Class 0
Number o f samples in Class 1

(1)

Antibiotics 2024, 13, x FOR PEER REVIEW 13 of 18 
 

metabolite relationship, including accurate mass, molecular formula, metabolite name, 
and mass spectra in several ionization modes. It may contain common metabolites be-
tween Jamu and Unani, as both are classified as traditional medicine. IJAH Analytics is an 
open-access database specifically for Jamu data, providing plant–metabolite relations. 
KEGG is another open-access database containing cell, organism, and molecular infor-
mation and large-scale molecular datasets. ChEBI is a database containing molecular en-
tities, primarily focusing on small chemical compounds. 

The next step in the process is to assign the formulas into two categories: antibiotics 
and non-antibiotics. The (class 1) “antibiotics” indicate that the corresponding Unani for-
mula can cure diseases caused by bacteria. In contrast, the (class 0) “non-antibiotics” sig-
nifies that the corresponding Unani formula can cure diseases except those caused by bac-
teria 2. Our colleague, who has a medical background, assisted in this process. For exam-
ple, the formula called “ArqSoya” that can cure Acidity of stomach and dysentery was 
assigned to antibiotic class. Contrary to that one, the formula called “Dawaul Misk Mu-
tadlil” that can cure Weakness of brain, Heart and liver, Melancholia, and Insanity was 
assigned to non-antibiotics class. As a result, the final dataset is a tabular dataset consist-
ing of Unani formulas as objects, metabolites as feature data, class labels, and the shape 
of our dataset is [381 × 4689]. The ratio of two classes in our data can be seen in Figure 5. 
A dataset in which the blue class (class 0) accounts for 68.8% of the samples and the orange 
class (class 1) represents 31.2% of the samples is considered imbalanced. This dataset’s 
class imbalance ratio (CIR) is 2.21, greater than 1. This ratio indicates more than twice as 
many samples in the pink class as in the blue class. Generally, a dataset is considered 
imbalanced when the CIR is greater than 10. However, even a CIR of 2.21 can pose prob-
lems for machine learning algorithms not explicitly designed to handle imbalanced da-
tasets. It is essential to address the imbalance status of a dataset before training a machine 
learning model. This action can be achieved by oversampling the minority class, under-
sampling the majority class, or using a machine learning algorithm that is designed to 
handle imbalanced datasets. 

CIR =   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 0𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 1 (1)

 
Figure 5. The ratio of two classes in the original dataset. Figure 5. The ratio of two classes in the original dataset.

Addressing the imbalanced data issue and fat data problems (where the number
of features exceeds the number of instances), we have explored various pre-processing
techniques, including adding synthetic data instances and feature selection methods. This
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research used SMOTE, PCA, and feature selection techniques to enhance the machine
learning model’s performance.

3.3. Machine Learning Modeling

To determine the most appropriate machine learning method for our task, we thor-
oughly analyzed 12 approaches by applying them to the original data and optimizing the
necessary parameters using grid search to ensure we attained the optimal results. The
following list of classifiers was considered: AdaBoost, Bagging, BernoulliNB, Decision
Tree, Extra Trees, Gradient Boosting, K-nearest neighbors, Linear Discriminant Analysis,
Logistic Regression, Multilayer Perceptron, Random Forest, and Support Vector Machine.
We summarize the machine learning modeling (Table 7).

Table 7. Summary of machine learning methods utilized in this work.

Machine Learning Explanation Advantage

AdaBoost
An ensemble learning algorithm that combines the
predictions of multiple weak learners to produce a single,
strong learner

Can handle imbalanced data

Bagging
Ensemble learning algorithm that works by creating
multiple bootstrap samples of the training data and
training a separate model on each sample

Can improve model with imbalanced data

BernoulliNB Naive Bayes classifier that is specifically designed for
binary classification problems

A simple but effective algorithm that is often
used for imbalanced classification tasks

Decision Tree
Decision trees are a type of machine learning model that
learns to classify data by constructing a tree of
decision rules

Decision trees are relatively robust to
imbalanced data, but they can be prone
to overfitting

Extra Trees
Ensemble learning algorithm that is similar to random
forests, but it uses a different approach to
bootstrap sampling

Often used for imbalanced classification tasks
because they are less likely to overfit than
random forests

Gradient Boosting
An ensemble learning algorithm that combines the
predictions of multiple weak learners in a
sequential manner

A powerful algorithm that can be used for a
variety of machine learning tasks, including
imbalanced classification

K-nearest neighbors

K-nearest neighbors (KNN) is a simple but effective
machine learning algorithm that classifies data by finding
the K most similar training examples to a new data point
and predicting the class of the new data point based on
the classes of the K most similar training examples

Easy to implement and small dataset can use
for imbalanced classification task

Linear Discriminant Analysis
Machine learning algorithm that projects the data onto a
lower-dimensional space in a way that maximizes the
discrimination between the different classes

Good choice for imbalanced data because it is
able to find the most important features for
discriminating between the classes

Logistic Regression A machine learning algorithm that is used for binary
classification problems Often used for imbalanced classification task

Multilayer Perceptron Multilayer perceptrons (MLPs) are a type of artificial
neural network

Can use for classification task and able to
learn complex data, even imbalanced
classification task

Random Forest
Random forests are an ensemble learning algorithm that
combines the predictions of multiple decision trees to
produce a single prediction

Ability to handle imbalanced data and their
resistance to overfitting

Support Vector Machine: Machine learning that can use as classification
and regression

Can handle high-dimensional data and
imbalanced data

3.4. Ranking and Selecting Feature

After finding the optimal pair of a machine learning model and pre-processing method
for Unani-metabolite data, we utilized the variable importance attribute of the best model,
which was implemented using the KerasRegressor and PermutationImportance package.
We then attempted to rank the list of metabolites based on their weight (distribution of
weight values can be seen in Figure 2), representing each feature’s importance for the
network’s computations. These weights are adjusted during training to minimize the error
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between the network’s predictions and the target weight, meaning that the corresponding
feature substantially impacts the network’s output.

KerasRegressor, which allows for the use of Keras models with the scikit-learn API,
can be effectively combined with the PermutationImportance method for feature selection.
After training a KerasRegressor model, the PermutationImportance method can be applied
to assess the importance of each feature by evaluating the drop in model performance when
the values of a feature are randomly shuffled. This approach is ideal for understanding
the influence of individual input features on model predictions, particularly in complex
neural networks. It is essential for enhancing interpretability and gaining insights into the
importance of features for model accuracy and performance.

3.5. Validation

We used two methods to validate the predicted metabolites as natural antibiotics.
First, we traced them directly to scientific journals or articles that reported their effec-
tiveness in inhibiting bacterial growth; the summary of literature validation can be seen
in Table 5. Second, we measured the structural similarity of the predicted metabolites
with antibiotic compounds in the DrugBank database (https://go.drugbank.com/, ac-
cessed on 12 December 2023). We performed three similarity experiments: Tanimoto, Dice,
and Asymmetric.

Journal validation entailed a comprehensive review of scientific journals and peer-
reviewed articles that specifically documented the efficacy of natural compounds and
metabolites in inhibiting bacterial growth, demonstrating antibacterial activity. This val-
idation process was employed to ensure that our methodology aligns with established
approaches in the field.

Structural similarity validation is a process in which we calculate the structural
similarity of our metabolite prediction to 11 known antibiotics (The information about
11 antibiotics can be seen in Table 6). Metabolites with structures like antibiotics can en-
hance antibiotics’ bactericidal properties through various mechanisms, including increased
antibiotic uptake, metabolic reprogramming, and induction of oxidative stress. e.g., metabo-
lites such as glutamate, alanine, and glucose can potentiate the efficacy of antibiotics by
enhancing their uptake and action within bacterial cells [46–48].

Tanimoto Similarity is a statistical parameter that quantifies the similarity between
two sets of fingerprint bits typically represented in a binary form. It is widely used in
cheminformatics to compute molecular similarities [49]. It was calculated as a ratio of the
intersection of the two sets to the union of the two sets. The formula for the Tanimoto
coefficient is defined as c/(a + b + c), where c represents the number of features standard
to both compounds, a represents the number of features unique to one compound, and b
represents the number of features unique to another compound. The Tanimoto coefficient
ranges from 0 to 1, with higher values indicating more significant similarity between the
two sets of fingerprint bits and lower values indicating lower similarity.

Dice similarity, or the Sørensen-Dice coefficient, is a statistical tool used to gauge the
similarity between two sets. It benefits various fields, such as pattern recognition, medical
diagnosis, and decision-making. The measure is defined as twice the size of the intersection
of the sets divided by the sum of the sizes of the two sets.

Dice Similarity (a, b) =
2 × (Number of bits set in both fingerprint)

Number of bits set in Fingerprint a + Number of bits set in Finger print b
(2)

Asymmetric similarity is a metric utilized to evaluate the similarity between two
molecules, accounting for distinctions in their structural features. The RDKit Python
package offers a variety of similarity metrics, including asymmetric Tversky similarity,
which is an extension of the Tanimoto similarity that permits unequal weighting of the
features [50]. The formula for asymmetric Tversky similarity is as follows:

https://go.drugbank.com/
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Asymmetric Tversky Similarity (a, b) =
Σ(min(A[i], B[i])) + α × sum(min(A[i], B[i])) + β × sum(max(A[i], B[i]))
Σ(min(A[i], B[i])) + α × sum(min(B[i], A[i])) + β × sum(max(A[i], B[i]))

(3)

where:

A and B are the two vectors being compared, and alpha and beta are the weights assigned
to the false positives and false negatives, respectively.
i is the index of the feature being compared.

4. Conclusions

We developed a computational method to predict potential natural antibiotics using in-
gredients derived from Unani formulas. We utilized the Synthetic Minority Over-sampling
Technique (SMOTE) and a Multi-Layer Perceptron (MLP) for classification, and our model
demonstrated impressive performance with sensitivity, accuracy, and an F1-score reaching
91%, 83%, and 83.8%, respectively, in classifying Unani formulas based on their metabolite
ingredients. Through our model, we identified 20 metabolites as potential antibiotics, and
further analysis revealed that most had been previously reported to possess antibacterial
properties in scientific journals. We compared the remaining metabolites to known an-
tibiotics in the Drug Bank database to validate our predictions using similarity measures
such as Tanimoto, Dice, and Asymmetric. Remarkably, these metabolites were structurally
like 11 known antibiotics. These findings suggest that our computational approach holds
promise for discovering new natural antibiotics, and the identified metabolites not only
demonstrate antibacterial properties supported by the existing literature but also exhibit
structural similarities to established antibiotics. Therefore, our findings provide a founda-
tion for developing novel natural antibiotics with potential therapeutic applications.
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