Skip to main content
. 2024 Oct 14;13(10):971. doi: 10.3390/antibiotics13100971

Table 3.

Detailed performance metrics for the Multi-Layer Perceptron (MLP) model trained with the SMOTE dataset.

Measurement Value Derivation
Sensitivity 0.9182 TPR = TP/(TP + FN)
Specificity 0.7436 SPC = TN/(FP + TN)
Precision 0.7710 PPV = TP/(TP + FP)
Negative Predictive Value 0.9063 NPV = TN/(TN + FN)
False Positive Rate 0.2564 FPR = FP/(FP + TN)
False Discovery Rate 0.2290 FDR = FP/(FP + TP)
False Negative Rate 0.0818 FNR = FN/(FN + TP)
Accuracy 0.8382 ACC = (TP + TN)/(P + N)
F1-Score 0.8382 F1 = 2TP/(2TP + FP + FN)
Matthews Correlation Coefficient 0.6695 TP × TN − FP×FN/sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))

This table comprehensively evaluates the MLP model’s performance across multiple metrics, including sensitivity, specificity, precision, and accuracy. TP = true positive, TN = true negative, FP = false positive, FN = false negative.