Table 3.
Measurement | Value | Derivation |
---|---|---|
Sensitivity | 0.9182 | TPR = TP/(TP + FN) |
Specificity | 0.7436 | SPC = TN/(FP + TN) |
Precision | 0.7710 | PPV = TP/(TP + FP) |
Negative Predictive Value | 0.9063 | NPV = TN/(TN + FN) |
False Positive Rate | 0.2564 | FPR = FP/(FP + TN) |
False Discovery Rate | 0.2290 | FDR = FP/(FP + TP) |
False Negative Rate | 0.0818 | FNR = FN/(FN + TP) |
Accuracy | 0.8382 | ACC = (TP + TN)/(P + N) |
F1-Score | 0.8382 | F1 = 2TP/(2TP + FP + FN) |
Matthews Correlation Coefficient | 0.6695 | TP × TN − FP×FN/sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)) |
This table comprehensively evaluates the MLP model’s performance across multiple metrics, including sensitivity, specificity, precision, and accuracy. TP = true positive, TN = true negative, FP = false positive, FN = false negative.