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Abstract: Background/Objectives: Patients with endometriosis still respond poorly to progestins
due to progesterone resistance associated with microRNAs (miRNAs). The aim of this study was to
investigate the expression of selected miRNAs, estrogen receptor (ER)α, ERβ, progesterone receptor
(PR)-A and PR-B and to determine the target genes of upregulated miRNAs in endometriosis.
Methods: In this study, 18 controls, 18 eutopic and 18 ectopic samples were analysed. Profiling
and validation of miRNAs associated with functions of endometriosis were performed using next-
generation sequencing (NGS) and qRT-PCR. At the same time, the expression of ERα, ERβ, PR-A and
PR-B was also determined using qRT-PCR. Target prediction was also performed for miR-199a-3p,
miR-1-3p and miR-125b-5p using StarBase. Results: In this study, NGS identified seven significantly
differentially expressed miRNAs, of which six miRNAs related to the role of endometriosis were
selected for validation by qRT-PCR. The expression of miR-199a-3p, miR-1-3p, miR-146a-5p and
miR-125b-5p was upregulated in the ectopic group compared to the eutopic group. Meanwhile,
ERα and ERβ were significantly differentially expressed in endometriosis compared to the control
group. However, the expressions of PR-A and PR-B showed no significant differences between the
groups. The predicted target genes for miR-199a-3p, miR-1-3p and miR-125b-5p are SCD, TAOK1,
DDIT4, LASP1, CDK6, TAGLN2, G6PD and ELOVL6. Conclusions: Our findings demonstrated
that the expressions of ERα and ERβ might be regulated by miRNAs contributing to progesterone
resistance, whereas the binding of miRNAs to target genes could also contribute to the pathogenesis
of endometriosis. Therefore, miRNAs could be used as potential biomarkers and for targeted therapy
in patients with endometriosis.

Keywords: endometriosis; microRNAs; estrogen receptor; progesterone receptor; progesterone
resistance; target genes

1. Introduction

Endometriosis is a common gynaecological disease that affects 6–10% of women in
their reproductive age. It is an oestrogen-dependent disease characterised by the growth
of endometrial glands and stroma outside the uterine cavity [1]. The prevalence of en-
dometriosis is highest in the ovaries, followed by uterosacral ligaments, ovarian fossa,
pouch of Douglas and bladder [2]. Patients with endometriosis experience pelvic pain,
dysmenorrhoea, dyspareunia and infertility and have a poor quality of life [3]. Although
the pathogenesis of endometriosis is not fully understood, the most widely accepted theory
is retrograde menstruation, proposed by Sampson in 1927, in which endometrial tissue
migrates through the fallopian tubes into the pelvic cavity [4–6]. Other mechanisms could
include coelomic metaplasia, Mullerian remnants, bone marrow-derived stem cells, ge-
netics and epigenetics [6,7]. Although progesterone therapy provides temporary relief
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of pelvic pain, patients still respond poorly to progestin treatments due to progesterone
resistance in endometriosis [8–10].

High estrogen and low progesterone levels are important features of endometriosis. It
has been shown that aberrant expression of the estrogen receptor (ER) and the progesterone
receptor (PR) plays an important role in the pathogenesis of endometriosis [11]. The
expression of ERβ is increased in endometriotic tissue compared to normal endometrium,
which suppresses ERα and leads to a high ERβ/ERα ratio. In addition, a lower ERα/ERβ
ratio may inhibit PR expression, particularly PR-B in endometriotic stromal cells, which
could lead to progesterone resistance in patients with endometriosis [12,13]. Although
ectopic tissue shows reduced PR expression, the differences in PR expression in eutopic
endometriums between patients with and without endometriosis show contradictory
results [14]. Therefore, the mechanisms behind progesterone resistance in ectopic and
eutopic endometrial tissue are still unclear [14,15].

MicroRNAs (miRNAs) have been associated with the regulation of progesterone
resistance, inflammation, proliferation, angiogenesis, and tissue remodelling in endometrio-
sis [16,17]. They are short, non-coding RNA molecules of 21 to 25 nucleotides in length that
regulate gene expression by binding to 3’UTR mRNA and causing either degradation of the
mRNA or suppression of translation [18,19]. MiRNAs have been shown to play a negative
feedback role in cellular differentiation, proliferation, and migration. Their dysregulation
has been linked to various diseases, including cancer, heart failure, and haematopoietic
disorders [20]. To date, the miRNA database (miRBase) includes 2812 mature human
miRNAs [21]. Previous studies have shown that miRNAs can bind to mRNAs that cause
progesterone resistance in endometriosis [22–25]. In a study in rats with endometriosis, the
relationship between miRNAs, ER and PR expression was found to show infertility during
the window of implantation [26]. Studies on miRNAs have been conducted to understand
the mechanisms of progesterone resistance in endometriosis [27]. Specific miRNAs that
could be used as potential biomarkers and for targeted therapy have also been identified in
endometriosis such as miR-9, miR-34 and miR-297 [28–30].

We hypothesise that miRNA expressions differ between ectopic endometriosis tissue
and eutopic endometriums in patients with and without endometriosis. Moreover, miRNAs
may regulate the expression of ER and PR in endometriotic tissue. Therefore, the aim of the
present study was to investigate the regulation of ERα, ERβ, PR-A and PR-B by miRNAs in
patients with endometriosis. Next-generation sequencing (NGS) was performed to profile
the expression of miRNAs, and the selected miRNAs associated with endometriosis were
validated with qRT-PCR. In addition, ER and PR expression measured by qRT-PCR were
correlated with the upregulated miRNAs. Target prediction was also performed using
cross-linking and immunoprecipitation (CLIP-Seq) and Degradome-Seq data from the
StarBase and TargetScan databases. These findings may improve our understanding of the
role of miRNAs in endometriosis and thus enable targeted therapy to improve women’s
quality of life.

2. Materials and Methods
2.1. Clinical Samples

All samples were collected with informed consent from 54 women aged 18 to 45 years
who underwent surgery for endometriosis or other benign gynaecological conditions be-
tween October 2016 and March 2022. Exclusion criteria included patients with malignancies,
peritoneal cavity infections, pregnancy, hormonal therapy, use of antibiotics within the last
7 days, and use of GnRH analogues in the last 3 previous menstrual cycles. The sample
size of the groups was calculated using the Fleiss method without and with a correction
factor [31]. A total of 18 normal endometrial biopsies without endometriosis (control
group) and 18 eutopic endometrial biopsies from laparoscopically confirmed endometrio-
sis (eutopic group) were obtained using a pipelle (MedGyn, Lombard, IL, USA), while
18 women with endometriosis underwent laparoscopic surgical removal of ectopic tissue
in the ovaries (ectopic group). The control group was laparoscopically confirmed to be free
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of disease and without evidence of endometriosis and histologically confirmed to have
a normal endometrium. Samples were collected in RNAlater (Invitrogen, Waltham, MA,
USA) and stored in the −80 ◦C freezer. Six controls, seven eutopic and two ectopic samples
were sent for small RNA sequencing, while an independent set of samples (10 controls,
10 eutopic, and 12 ectopic samples) were validated by qRT-PCR. All control, eutopic and
ectopic samples were used for qRT-PCR analysis of ER and PR expressions. This study was
approved by the Research Ethics Committee of the National University of Malaysia (UKM
PPI/111/8/JEP-2022-709).

2.2. Hematoxylin and Eosin (H&E) Staining

A small piece of endometrium or endometriotic tissue was fixed in 10% formalin and
embedded in paraffin. The tissue was cut into sections of 5 µm and placed on a microscopic
slide. It was deparaffinised in xylene, 100% alcohol, 80% alcohol, 70% alcohol and washed
with water. The tissue was then stained with haematoxylin and eosin and washed with
water. The slide was then dehydrated with 80% alcohol, 90% alcohol, 100% alcohol and
xylene. Finally, the slide was dried and the stained tissue section was examined under an
inverted microscope by a pathologist to confirm the presence of endometrial glands and
stroma in the control and endometriosis samples.

2.3. RNA Extraction

Total RNA was extracted from endometrial and endometriotic biopsy tissues using the
miRNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol
and stored at −80 ◦C until further analysis. RNA concentration and purity were determined
using a Nanodrop spectrophotometer (Denovix, Wilmington, DE, USA) with an acceptable
A260/280 ratio of 1.9-2.1. RNA integrity was assessed using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) with an acceptable RNA integrity number
(RIN) of 7 and above.

2.4. MiRNA Expression Profiling Using Next-Generation Sequencing (NGS)

The cDNA libraries were generated and sequenced using the DNBseq platform (BGI,
Tai Po, Hong Kong, China) with a single-end read length of 50 bp and sequencing depth
of 28.8 million reads per sample. The raw data with low-quality reads, reads with adaptor
sequences, a high number of N bases and read lengths of less than 18 bp were filtered off.
The total number of reads is listed in Supplementary Table S1. After filtering, the remaining
tags were stored in FASTQ format. The clean reads were aligned to the Homo sapiens
reference genome (GRCh38.p13) using Bowtie2 as shown in Supplementary Table S2. The
miRBase was used to identify known miRNAs, while miRDeep2 was used to predict novel
miRNAs. The classification of small RNAs with the number of reads aligned to miRNAs is
shown in Supplementary Table S3. DESeq2 was then used to identify differentially expressed
miRNAs based on the normalised read counts, and principal component analysis (PCA)
was performed to determine sample quality control. The miRNA gene expression levels
are shown in Supplementary Table S4. Differentially expressed miRNAs were classified
as significant if they had a log2 fold change (FC) ≤ −1 or ≥1 and an adjusted p-value of
<0.05 using a volcano plot. The p-value was subjected to multiple hypothesis testing using
the Benjamini–Hochberg method to reduce the false discovery rate. Finally, heatmaps and
hierarchical clustering analyses were performed using pheatmap in R package (version 1.0.12).
To identify miRNAs associated with endometriosis, the differentially expressed miRNAs
were selected from the volcano plot and the heatmap. Subsequently, the literature on miRNAs
in endometriosis was searched in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/,
accessed on 3 June 2022), and the selected miRNAs were validated by qRT-PCR.

2.5. Validation of Selected miRNAs and mRNAs by Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)

The differentially expressed miRNAs related to endometriosis were selected from
the volcano plot and heatmap of NGS data for validation by qRT-PCR. For miRNAs,

https://pubmed.ncbi.nlm.nih.gov/
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total RNA was reverse transcribed into cDNA using the All-in-One miRNA First-Stand
cDNA Synthesis Kit (GeneCopoeia, Rockville, MD, USA). For mRNAs, total RNA was
reverse transcribed into cDNA using the qPCRBIO cDNA Synthesis Kit (PCR Biosystems,
London, UK). The expression of miRNAs were determined using All-in-One miRNA assays
(GeneCopoeia, Rockville, MD, USA): hsa-miR-199a-3p (HmiRQP0289), hsa-miR-196a-5p
(HmiRQP0284), hsa-miR-144-3p (HmiRQP0190), hsa-miR-1-3p (HmiRQP0044), hsa-miR-
146a-5p (HmiRQP0196), hsa-miR-125b-5p (HmiRQP0096), the internal control, RNU6-2
(HmiRQP9001) and the universal miRNA adaptor PCR primer (QP029). The QuantiTect
Primer Assay and QuantiNova LNA PCR Assay (Qiagen, Hilden, Germany) were used for
ERα (QT00044492), ERβ (QT01149953) and the internal control and GAPDH (SBH1220545-
200) mRNA primers. The following PR-A and PR-B mRNA primers were purchased from
Macrogen, Seoul, South Korea: PR-A, 5′-GACGACGCG TACCCTCTCTA-3′ (forward) and
5′-GTA CAGGATGCACTCCAGGG-3′ (reverse); PR-B, 5′-TGCTGGACAGTGTCTTGGAC-
3′ (forward) and 5′-CGGAGCTGTCTCCAACCTT-3′ (reverse).

qRT-PCR was performed with the CFX96 Real-Time PCR System (Bio-Rad, Hercules,
CA, USA) using a qPCRBIO SyGreen Blue Mix (PCR Biosystems, London, UK). The reaction
mixture consists of 5 µL of 2× qPCRBIO SyGreen Blue Mix, 0.2 µM of forward and reverse
primers, 2 µL of distilled water and 1 µL of cDNA to obtain a reaction volume of 10 µL.
The thermal cycling conditions are polymerase activation at 95 ◦C for 2 min, then 40 cycles
of denaturation at 95 ◦C for 5 s and annealing/extension at 60 ◦C for 30 s. Melting profile
analysis was performed to identify single melting peaks for further analysis. Each sample
was performed in triplicate. The miRNA levels were normalised to RNU6-2, while the
mRNA levels were normalised to GAPDH. The relative expressions were calculated using
the 2−∆∆Ct method.

2.6. Statistical Analysis

Statistical analysis of qRT-PCR results was performed using GraphPad Prism 9.5.1
(GraphPad Software, La Jolla, CA, USA). The Shapiro–Wilk normality test was used to
check the normality of the data. For normally distributed data, the differences between the
control, eutopic and ectopic endometriosis groups were compared using one-way ANOVA
and Tukey’s multiple comparison test. For non-normally distributed data, differences
between the three groups were compared using Kruskal–Wallis and Dunn’s multiple
comparison tests. Data in triplicate are presented as mean ± standard deviation (S.D.), and
a p-value of less than 0.05 was considered statistically significant.

2.7. Target Predictions Using CLIP-Seq and Degradome-Seq Data

The target genes of three upregulated miRNAs (hsa-miR-199a-3p, hsa-miR-1-3p, and
hsa-miR-125b-5p) were predicted by StarBase (https://rnasysu.com/encori/, accessed
on 13 July 2024). StarBase is a database consisting of miRNA–mRNA interaction maps
generated from CLIP-Seq and Degradome-Seq data that identify the binding site of Arg-
onaute protein on mRNAs and the cleavage sites on miRNAs. The expression levels of
miRNAs and target genes were then supported by the literature in the PubMed database
(https://pubmed.ncbi.nlm.nih.gov/, accessed on 14 July 2024). In addition, the probability
of preferentially conserved targeting (PCT) between miRNA and target gene was deter-
mined using TargetScan v8.0 (https://www.targetscan.org/vert_80/, accessed on 13 July
2024). The PCT of 0.7 and above will be selected as target genes for the miRNAs.

3. Results
3.1. Patient Demographic Data

The data on the patients of the collected samples are listed in Table 1. Only the clinical
characteristic of dysmenorrhoea showed a significant difference between the ectopic and
control groups (p = 0.024), while age, race, parity, body mass index (BMI), infertility,
dyspareunia and pelvic pain showed no significant differences between the three groups.

https://rnasysu.com/encori/
https://pubmed.ncbi.nlm.nih.gov/
https://www.targetscan.org/vert_80/
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Table 1. Patient demographic data of samples used in the study.

Characteristics Control Samples N
(%)

Eutopic Samples N
(%)

Ectopic Samples N
(%)

Mean age ± S.D. (years) 36.94 ± 7.04 35.28 ± 6.52 37.50 ± 7.29
Race

Malay 12 (66.67%) 16 (88.89%) 16 (88.89%)
Non-Malay 6 (33.33%) 2 (11.11%) 2 (11.11%)

Parity
Nulliparous 10 (55.56%) 13 (72.22%) 12 (66.67%)
Multiparous 8 (44.44%) 5 (27.78%) 6 (33.33%)

Mean BMI ± S.D. (kg/m2) 25.65 ± 3.38 24.74 ± 3.39 26.28 ± 5.55
Clinical Features

Infertility 7 (38.89%) 11 (61.11%) 9 (50%)
Dysmenorrhoea * 10 (55.56%) 14 (77.78%) 17 (94.44%)

Dyspareunia 3 (16.67%) 6 (33.33%) 6 (33.33%)
Pelvic Pain 5 (27.78%) 8 (44.44%) 11 (61.11%)

* There is a significant difference in dysmenorrhoea between ectopic and control samples (p = 0.024).

3.2. Histopathological Examination

Microscopic examination of the normal endometrium, the eutopic endometrium and
the ectopic endometriotic tissue from ovarian cysts revealed structures of both endometrial
glands and stroma (Supplementary Figure S1) and confirmed the diagnosis of the control
and endometriosis groups.

3.3. Differentially Expressed miRNAs in Ectopic versus Control and Ectopic versus
Eutopic Groups

NGS was performed on six control, seven eutopic and two ectopic samples, and a
total of 2168 miRNAs were detected. When comparing the ectopic and control groups,
hsa-miR-1247-3p was significantly upregulated, while hsa-miR-1973, hsa-miR-199a-3p and
hsa-miR-181a-2-3p were significantly downregulated (Table 2). In addition, hsa-miR-1246
and the novel hsa-miR-243-5p were significantly upregulated, while hsa-miR-7-5p was
significantly downregulated in ectopic versus eutopic samples (Table 3). However, no
significant differences in miRNAs were detected between eutopic and control groups. The
PCA plot showed a clear separation of the control and eutopic groups, but not in ectopic
samples (Figure 1a). The volcano plots showed the relationship between the −log10 p-value
and the log2 fold change in the eutopic versus control (Figure 1b), ectopic versus control
(Figure 1c) and ectopic versus eutopic (Figure 1d) groups. Hierarchical clustering with a
heatmap revealed different expression profiles between ectopic, eutopic and control groups
(Figure 1e).

Table 2. MiRNAs significantly upregulated and downregulated in ectopic endometriosis compared
to control group.

miRNAs Adjusted p-Value Log2 Fold Change

Upregulated
hsa-miR-1247-3p 0.0091 2.59
Downregulated
hsa-miR-1973 8.63 × 10−6 −22.99
hsa-miR-199a-3p 7.93 × 10−6 −7.16
hsa-miR-181a-2-3p 0.048 −1.55
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Table 3. MiRNAs significantly upregulated and downregulated in ectopic versus eutopic group in
endometriosis patients.

miRNAs Adjusted p-Value Log2 Fold Change

Upregulated
hsa-miR-1246 0.0052 5.45
novel-hsa-miR-243-5p 0.041 3.49
Downregulated
hsa-miR-7-5p 0.0052 −7.57
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Figure 1. MiRNA expression profiling of endometriosis and control samples. (a) The PCA plot
showed the grouping of samples into ectopic (green), eutopic (blue) and control (red). Volcano plots
of differentially expressed miRNAs showing the relationship between log2 (fold change) and −log10

(p-value) for (b) eutopic versus control, (c) ectopic versus control and (d) ectopic versus eutopic
groups. The significantly upregulated miRNAs are shown in red, and significantly downregulated
miRNAs are shown in green. (e) Heatmap of 34 differentially expressed miRNAs. Samples along the
vertical axis are clustered by colour bars. Red indicates the control group, green indicates the eutopic
group, and blue indicates the ectopic group. The colour key represents expressions of miRNAs
across all samples. Red illustrates upregulation, blue illustrates downregulation, and white shows no
changes in miRNA expressions.

3.4. Validation of Selected miRNAs by qRT-PCR

An independent set of samples (control n = 10, eutopic n = 10 and ectopic n = 12) was
subjected to validation by qRT-PCR. Six miRNAs (miR-199a-3p, miR-196a-5p, miR-144-
3p, miR-1-3p, miR-146a-5p and miR-125b-5p) related to the roles of endometriosis were
selected from volcano plot and heatmap of NGS data for validation. The expression of miR-
199a-3p was significantly upregulated in the ectopic group compared to the eutopic group
in endometriosis (p = 0.0095) (Figure 2a). In addition, there were no significant differences
in miR-196a-5p expression between the three groups (Figure 2b), while the expression of
miR-144-3p was significantly decreased in eutopic tissues compared to the control group
(p = 0.0442) (Figure 2c). The expression of miR-1-3p was significantly upregulated in the
ectopic group compared to the eutopic and control groups (p < 0.0001 and p = 0.0098,
respectively) (Figure 2d). In addition, the expression of miR-146a-5p was significantly
upregulated in the ectopic group compared to the eutopic group in endometriosis patients
(p = 0.0047), whereas it was significantly downregulated in the eutopic group compared
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to the controls (p = 0.0398) (Figure 2e). The expression of miR-125b-5p was significantly
upregulated in the ectopic compared with the eutopic group (p = 0.0149) (Figure 2f). The
raw data for validated miRNAs is shown in Supplementary Table S5. When comparing the
eutopic and control groups, only the validation of miR-199a-3p showed good agreement
with the result of miRNA profiling (Figure 3a). In addition, the validations of miR-1-3p
and miR-146a-5p agreed with the screening results in the ectopic versus control groups
(Figure 3b). In the ectopic versus eutopic samples, the validations of miR-144-3p and
miR-1-3p were consistent with the NGS results (Figure 3c).
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are shown in screening and validation data.

3.5. Expression of ERα Was Decreased with Overexpression of ERβ in Endometriosis, but PR-A
and PR-B Showed No Significant Differences between the Groups

To determine the presence of progesterone resistance in women with endometriosis,
qRT-PCR was performed to determine the mRNA levels of ERα, ERβ, PR-A and PR-B
in the samples. The expression of ERα was significantly downregulated in the ectopic
group compared to the eutopic and control groups (p = 0.0215 and p = 0.0186 respectively)
(Figure 4a). However, the expression of ERβ was significantly upregulated in the eutopic
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and ectopic groups compared to the control group (p = 0.0257 and p = 0.0039, respectively)
(Figure 4b). PR-A and PR-B expression showed no significant differences between the
groups (Figure 4c,d). The raw data for ER and PR expression is shown in Supplementary
Table S6.
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Figure 4. qRT-PCR analysis of ER and PR expressions in controls, eutopic and ectopic groups. (a) ERα
expression was significantly decreased, (b) ERβ expression was significantly increased, whereas
(c,d) PR-A and PR-B expression did not show significant differences between the groups. Data are
presented as mean ± SD and analysed using Kruskal–Wallis with Dunn’s multiple comparisons test.
* p < 0.05 and ** p < 0.01.

3.6. Target Prediction of Hsa-miR-199a-3p, Hsa-miR-1-3p and Hsa-miR-125b-5p

The target genes of hsa-miR-199a-3p, hsa-miR-1-3p and hsa-miR-125b-5p were pre-
dicted by StarBase, which consists of an interaction map between miRNA and mRNA. It
was found that hsa-miR-199a-3p was upregulated with reduced expression of the target
genes SCD, TAOK1 and DDIT4. The probability that hsa-miR-199a-3p preferentially con-
served the SCD, TAOK1 and DDIT4 genes was 0.86, 0.96 and 0.78, respectively. In addition,
hsa-miR-1-3p was upregulated upon reduced expression of LASP1, CDK6, TAGLN2 and
G6PD target genes. The PCT of LASP1, CDK6, TAGLN2 and G6PD by hsa-miR-1-3p was
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0.7, 0.85, 0.89 and >0.99, respectively. Finally, hsa-miR-125b-5p was upregulated, and the
ELOVL6 target gene was downregulated with a PCT of 0.92 (Table 4).

Table 4. Expression levels of miRNAs and target genes identified in StarBase with probability of
preferentially conserved targeting (PCT).

Expression Level of miRNA Expression Level of
Target Gene Tissue or Cell Type PCT References

Upregulated: hsa-miR-199a-3p
Reduced SCD Adipocyte, ovine mammary

epithelial cells 0.86 Tan et al. (2017) [32],
Wang et al. (2022) [33]

Reduced TAOK1 Cardiomyocyte 0.96 Torrini et al. (2019) [34]
Reduced DDIT4 Cardiomyocyte 0.78 Park et al. (2016) [35]

Upregulated: hsa-miR-1-3p

Reduced LASP1 Prostate cancer 0.7 Guo et al. (2023) [36]
Reduced CDK6 Human colon carcinoma cells 0.85 Fragoso et al. (2022) [37]

Reduced TAGLN2 Esophagus carcinoma cells 0.89 Wang et al. (2022) [38]
Reduced G6PD Gastric cancer cell >0.99 Deng et al. (2021) [39]

Upregulated: hsa-miR-125b-5p Reduced ELOVL6 HEK-293 cells 0.92 Istiqamah et al. (2023) [40]

4. Discussion

Patients with endometriosis are presented with infertility, dysmenorrhoea, dyspareu-
nia and pelvic pain [3]. Although progestin therapy provides temporary relief of pelvic
pain, patients still respond poorly to treatment due to progesterone resistance [8–10]. One
of the causes of progesterone resistance could be the epigenetic regulation of gene expres-
sion by miRNAs [9,17]. Previous studies have shown that the aberrant expression of ER,
PR, miR-29c, miR-135a, miR-135b, miR-194-3p, miR-196a and miR-92a may contribute to
progesterone resistance and impaired decidualisation in endometriosis [22–25,41–51].

Our NGS study detected three significantly upregulated miRNAs (miR-1247-3p, miR-
1246 and novel-miR-243-5p) and four significantly downregulated miRNAs (miR-1973,
miR-199a-3p, miR-181a-2-3p and miR-7-5p) in ectopic endometriosis samples. To the best
of our knowledge, this is the first study to discover significant results for miR-1247-3p,
miR-1246, novel-miR-243-5p, miR-1973 and miR-181a-2-3p in endometriosis patients. These
miRNAs were also found to be dysregulated in other diseases. Previous studies reported
an increase in miR-1247-3p in tumour-derived exosomes, promoting lung metastasis in
hepatocellular carcinoma and angiogenesis in bladder carcinoma [52,53], which is consis-
tent with our result on the upregulation of miR-1247-3p. Moreover, the overexpression
of miR-1246 is consistent with studies that demonstrate the oncogenic role of miR-1246
in the progression of various cancers, such as colorectal, breast, renal and ovarian can-
cers [54]. MiR-243-5p is the first novel gene we have found in humans that is also present
in Caenorhabditis elegans, namely cel-miR-243-5p. The sequence of cel-miR-243-5p is 20-
UAUCUCGGUGCGAUCGUAC–38 [55]. The downregulation of miR-1973 is consistent
with previous studies showing reduced miR-1973 expression in patients with sperm abnor-
malities and renal cell carcinoma [56,57]. The reduced expression of miR-181a-2-3p in our
NGS data is consistent with Liang et al. (2022) [58] who also demonstrated downregulation
of miR-181a-2-3p in myelodysplastic syndrome, but not with Li et al. (2021), who showed
upregulation of miR-181a-2-3p and downregulation of the MYLK target gene in gastric
cancer [59]. The downregulation in miR-7-5p in our study is in line with Antonio et al.
(2023), who showed a significant reduction of miR-7-5p expression in superficial peritoneal
endometriosis compared to deep infiltrating endometriosis and ovarian endometrioma [60].
The NGS investigation in our study detected a downregulation of miR-199a-3p in ectopic
endometriosis samples, which is consistent with previous studies showing a reduction of
miR-199a-3p in human endometriotic cyst stromal cells (ECSCs) [61] and in the plasma
of endometriosis patients [62]. However, it is inconsistent with our qRT-PCR validation
result, which showed an upregulation of miR-199a-3p in the ectopic group compared to
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the eutopic group, and Walasik et al. (2023) who did not detect significant differences in
miR-199a-3p expression between endometriosis and control groups in plasma samples [63].

However, only miRNAs that are associated with the role of endometriosis, such as
miR-199a-3p [61], miR-196a-5p [25], miR-144-3p [64], miR-1-3p [65], miR-146a-5p [66] and
miR-125b-5p [67] were selected from volcano plots and heatmaps for validation by qRT-PCR
(Figure 1e). MiR-199a-3p plays an important role in cell invasion, motility and contractility
and as a diagnostic biomarker in endometriosis [61,62]. MiR-196a may contribute to
progesterone resistance in endometriosis [25] and miR-144-3p has been shown to correlate
with cell survival status in human endometriotic lesions and is involved in the regulation
of inflammatory mediators such as IL-6, IL-1β, TNFα, PTGS2 and COX2 [64]. Furthermore,
miR-1-3p could be a tumour suppressor gene to differentiate between endometriosis and
ovarian cancer while monitoring the risk of malignant transformation from endometriosis
to ovarian cancer [65,68]. MiR-146a-5p may play a significant role in angiogenesis and
infertility due to decreased endometrial receptivity in endometriosis [66,69,70], whereas
miR-125b-5p could be a good diagnostic biomarker in endometriosis [67,71,72].

In our qRT-PCR validation data, there were no significant differences in miR-196a-5p
expression between the three groups, which contrasts with a previous study showing an
upregulation of miR-196a in the eutopic endometrium of patients with endometriosis [25].
There was a significant downregulation of miR-144-3p expression between eutopic and
control groups, but no significant differences were observed between ectopic and eutopic
samples in endometriosis patients. The result is not consistent with a previous study
showing a significant overexpression of miR-144-3p in ectopic versus eutopic tissue in
endometriosis [64]. Furthermore, the expression of miR-1-3p was significantly upregulated
in ectopic compared with eutopic and control samples, which is consistent with previous
studies showing upregulation of miR-1-3p in endometriotic lesions compared to ovar-
ian cancer and control groups [65,68]. The expression of miR-146a-5p was significantly
upregulated in ectopic compared to eutopic samples but significantly downregulated in
eutopic versus control groups in patients with endometriosis. This result is consistent
with Ji et al. (2024) [73] who demonstrated a significant upregulation of miR-146a-5p in
ectopic endometrial stromal cells compared with eutopic tissues and exosomes but is not
consistent with previous studies showing significant downregulation of miR-146a-5p in
endometriotic tissues compared to the control group [66] and significant upregulation of
miR-146a-5p in eutopic endometrium of patients with endometriosis compared with the
control group [69,70]. Finally, the expression of miR-125b-5p was significantly upregulated
in ectopic endometriotic tissues compared to the eutopic group. This result is in line with
Moustafa et al. (2020) [67] and Cosar et al. (2016) [71], who found a significant upregula-
tion of miR-125-5p in the serum of patients with endometriosis. However, Walasik et al.
(2023) were unable to detect any significant differences in miR-125b-5p expression between
endometriosis and control groups in plasma samples [63].

There were discrepancies between the results of NGS and qRT-PCR validation data, in
which miR-199a-3p was significantly downregulated when ectopic and control groups were
compared in NGS but significantly upregulated in the ectopic versus the eutopic group in
qRT-PCR. In addition, no significant differences in the expression of miR-196a-5p, miR-144-
3p, miR-1-3p, miR-146a-5p and miR-125b-5p were detected between the groups by NGS.
However, qRT-PCR validation revealed a significant upregulation of miR-1-3p, miR-146a-
5p and miR-125b-5p in the ectopic compared to the eutopic group, while the expression
of miR-144-3p was significantly downregulated in the eutopic samples compared to the
control group. The differences in the results could be due to the possible higher sensitivity
of the qRT-PCR technique compared to high throughput technologies such as NGS and
microarray [74,75]. Moreover, miRNAs with different functions and molecular pathways
are differentially expressed between ectopic and eutopic groups in endometriosis [20,76]. In
our study, qRT-PCR validations of miR-199a-3p, miR-1-3p, miR-146a-5p and miR-125b-5p
showed reduced expression in the eutopic group compared to the ectopic group. This could
be due to the small amount of tissue collection during pipelle sampling [77] and possible
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retrograde menstruation, in which endometrial tissue from the uterine lining enters the
ectopic lesions [4,5]. The variations in miRNA expression in both NGS and qRT-PCR
could be due to the heterogeneity of endometriotic lesions that consist of a mixture of
endometrium and other types of tissues, masking the changes in miRNA expressions [78].
In addition, the inconsistency of the results could be due to exosomes secreted from the
endometrium and uterus into the bloodstream [79]. Studies have shown that exosomal
miR-6795-5-3p, miR-22-3p and miR-320a biomarkers were upregulated in the serum of
patients with endometriosis [80,81].

The imbalances between the expression of ER and PR could contribute to the patho-
physiology of endometriosis [13]. In our study, the expression of ERα was significantly
downregulated, and the expression of ERβ was significantly upregulated in endometriosis
compared to the control group. This result is consistent with previous studies showing
significantly decreased expression of ERα and increased expression of ERβ in endometrio-
sis [46–49]. However, Matsuzaki et al. (2001) showed increased expression of ERα and
reduced expression of ERβ in endometriotic tissue [50]. ERβ is known to be a key mediator
of inflammation induced by high estradiol levels and could suppress the expression of
ERα in endometriosis [13,46]. We also observed that PR-A and PR-B expression showed no
significant differences between the groups. Our results were not consistent with previous
studies that had shown downregulation of PR [24–26,82], increased PR-A and decreased
PR-B expression in endometriosis [41–44]. It is known that aberrant PR expression plays a
role in progesterone resistance and impaired decidualisation in endometriosis [24–26,82].
However, ER and PR are not direct targets of the upregulated miRNAs, such as miR-199a-
3p, miR-1-3p, miR-146a-5p and miR-125b-5p. The variations of ER and PR expressions in
endometriotic lesions might be due to the heterogeneity of hormone receptors in the same
section of endometriotic tissue [83,84].

Our data on the upregulation of miR-199a-3p, miR-1-3p, miR-146a-5p and miR-125b-
5p with significantly increased ERβ and reduced ERα but no significant differences in
PR-A and PR-B expression partially support our hypothesis. Three miRNAs (miR-199a-3p,
miR-1-3p and miR-125b-5p) may bind directly to the SCD, TAOK1, DDIT4, LASP1, CDK6,
TAGLN2, G6PD and ELOVL6 target genes, which may indirectly regulate ER and PR
expression, contributing to progesterone resistance in endometriosis (Table 4 and Figure 5).
The inhibitors of these three miRNAs that lead to upregulation of the target genes could
be potential therapeutic targets in endometriosis. However, the upregulation of these
miRNAs and the downregulation of the target genes could be used as targeted therapies
for specific diseases. Upregulation of miR-199a-3p could reduce adipocyte differentiation
by targeting SCD, which could alter the composition of fat in the body and reduce the risk
of obesity [32]. The overexpression of MiR-199a-3p could also stimulate cardiomyocyte
proliferation and cardiac regeneration after myocardial infarction by binding to TAOK1 and
activating YAP [34]. In addition, increased expression of miR-199a-3p downregulates the
apoptotic target gene DDIT4, which is cardioprotective and enhances the therapeutic effect
of carvedilol in ischaemia/reperfusion injury [35]. Prostate cancer cells transfected with
an miR-1-3p mimic downregulate the expression of the target gene LASP1, which reduces
cell viability, invasion, and migration in prostate cancer [36]. Transfection of human colon
carcinoma cells with an miR-1-3p mimic directly targeting CDK6 could increase apoptosis
and cell cycle arrest in colon carcinomas [37]. Quercetin therapy could reduce growth
and invasion but increase cell apoptosis while upregulating miR-1-3p expression and
downregulating TAGLN2 expression in oesophageal cancer [38]. Furthermore, an increase
in miR-1-3p expression leads to the downregulation of the G6PD target gene with a decrease
in cell proliferation and aerobic glycolysis but increases cell apoptosis in gastric cancer cells.
Aerobic glycolysis enhances tumour metastasis by increasing the uptake of glucose and
lactate and ATP production [39]. Finally, miR-125b-5p has been shown to bind directly with
the ELOVL6 target gene and reduce its expression. Patients with glioblastoma multiforme
and hepatocellular carcinoma have poor prognosis due to high ELOVL6 levels. Therefore,
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the downregulation of ELOVL6 by increasing miR-125b-5p expression could be used as a
targeted therapy to treat these diseases [40].
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One of the limitations of this study is the lower number and heterogeneity of samples
in each group, which may partly explain the contradiction between screening and vali-
dation data. In the qRT-PCR validation data, the heterogeneity of samples leads to high
variations in miRNA and gene expression, which could contribute to insignificant results
in miR-196a-5p, PR-A and PR-B expression. In addition, when comparing three groups
of patients (control, eutopic and ectopic groups), it is more difficult to obtain significant
results between the groups after statistical analysis [74]. The diagnosis between the control
and endometriosis groups may be challenging as the histological diagnosis is the same in
the three groups. Moreover, the clinical features of the control group may be similar to
those of the endometriosis group. Therefore, invasive surgery by laparoscopy is required
to confirm the diagnosis by visualising all signs of an endometriotic lesion.

In future studies, we would increase the sample size to improve statistical power and
obtain more accurate estimates and more meaningful differences to answer the research
questions. This can be performed by calculating the sample size and performing power
analysis using the G*Power software (version 3.1.9.7) [85,86]. The expression of the miR-
NAs could be determined by different phases of the menstrual cycle, such as proliferative,
early secretory, mid secretory and late secretory, or according to the stages of endometriosis
(I-IV). In addition, analysing tissue samples of surgically induced mouse models with
endometriosis at 3 days, 2 weeks, 4 weeks and 8 weeks post-surgery could provide a more
dynamic view of the temporal changes of miRNAs, ER and PR in endometriosis [83,87].
For functional validation experiments, transfection of endometriotic cell lines with miRNA
mimics or inhibitors could be performed to determine the effects of upregulation or down-
regulation of miRNA expression on target genes and cell behaviours. The expression of
predicted target genes could be measured by qRT-PCR, and the binding of miRNA to the
3’UTR of target genes can be confirmed by luciferase reporter assay. Cell behaviour can
also be studied by performing cell proliferation, invasion and apoptosis assays [28]. In vivo
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studies on mice can be carried out by autotransplanting the endometrium from one side of
the uterine horn into the peritoneal cavity. Then, the mice could be divided into two groups
and injected intraperitoneally with a miRNA inhibitor or an inhibitor control for miR-199a-
3p, miR-1-3p, miR-146a-5p or miR-125b-5p. One month later, the mice could be sacrificed,
and the lesion harvested to measure the expression levels of miRNA and target genes for
therapeutic efficacy. To assess therapeutic efficacy, a randomised controlled trial could also
be performed, in which subjects are randomly assigned to two groups, with one group of
patients receiving miRNA inhibitor treatment and the other group receiving a placebo as a
control. Blood samples could be taken before and after 2 months of treatment to measure the
miRNA and target gene expression. Furthermore, detailed analyses of signalling pathways
can be performed using Reactome, Gene Ontology, Kyoto Encyclopaedia of Genes and
Genomes (KEGG) and STRING databases [88]. The identified pathways could be validated
by Western blot using primary antibodies. After incubation with secondary antibodies,
the protein expressions could be viewed as bands with enhanced chemiluminescence and
measured using Image J software (version 1.54k). Due to the high variability of ER and PR
gene expression, ER and PR protein expressions could be measured by western blot for
validation in the future. Other hormone receptors or signalling molecules that could be
investigated are chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII),
heart and neural crest derivatives expressed 2 (HAND2) and steroid receptor coactivator-1
(SRC-1), which are related to progesterone and estrogen signalling in endometriosis [89].

5. Conclusions

In conclusion, we found that the expression of miR-199a-3p, hsa-miR-1-3p, hsa-miR-
146a-5p, hsa-miR-125b-5p and ERβ was significantly upregulated, while the expression
of ERα was significantly downregulated in ectopic endometriotic tissues. However, PR-
A and PR-B expression showed no significant differences between the groups. To our
knowledge, this is the first study to determine the roles of miR-199a-3p, hsa-miR-1-3p and
hsa-miR-125b-5p in progesterone resistance in endometriosis via targeting SCD, TAOK1,
DDIT4, LASP1, CDK6, TAGLN2, G6PD and ELOVL. Therefore, this research contributes
to a better understanding of the miRNA expression profile, steroid hormone receptor
expression and the target genes involved in endometriosis. This offers exciting oppor-
tunities for the development of biomarkers and personalised, targeted therapies for this
debilitating disease.
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