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Abstract: Background and Objectives: Neurological disorders like stroke, spinal cord injury (SCI),
and Parkinson’s disease (PD) significantly affect global health, requiring accurate diagnosis and long-
term neurorehabilitation. Artificial intelligence (AI), such as machine learning (ML), may enhance
early diagnosis, personalize treatment, and optimize rehabilitation through predictive analytics,
robotic systems, and brain-computer interfaces, improving outcomes for patients. This systematic
review examines how AI and ML systems influence diagnosis and treatment in neurorehabilitation
among neurological disorders. Materials and Methods: Studies were identified from an online
search of PubMed, Web of Science, and Scopus databases with a search time range from 2014 to 2024.
This review has been registered on Open OSF (n) EH9PT. Results: Recent advancements in AI and ML
are revolutionizing motor rehabilitation and diagnosis for conditions like stroke, SCI, and PD, offering
new opportunities for personalized care and improved outcomes. These technologies enhance clinical
assessments, therapy personalization, and remote monitoring, providing more precise interventions
and better long-term management. Conclusions: AI is revolutionizing neurorehabilitation, offering
personalized, data-driven treatments that enhance recovery in neurological disorders. Future efforts
should focus on large-scale validation, ethical considerations, and expanding access to advanced,
home-based care.

Keywords: artificial intelligence; prognosis; diagnosis; neurorehabilitation

1. Introduction

Neurological disorders represent a heterogeneous group of disorders in structure,
biochemistry, and function within the nervous system, disrupting normal activity and
giving rise to various symptoms and signs [1,2]. This is known to include traditional
classifications such as neurodegenerative diseases, including Alzheimer’s and Parkinson’s
disease (PD) [3,4], stroke [5], and traumatic injuries, such as spinal cord injury (SCI) [6].
Symptoms and signs often appear, but not always, with relation to the site of damage within
the nervous system and may include mental deterioration, motor impairment, anesthesia,
pain, and personality changes [7]. Most diseases are chronic and progressive; hence, the
diagnosis, treatment, and patient care often result in overwhelming burdens [8]. Neuro-
logical disorders continue to stand as significant contributors to disability and mortality
worldwide [9]. The World Health Organization estimates that almost a billion people
have neurological disorders, thus placing a high burden on the disease [10]. Specifically,
about 6 million people die annually due to stroke since it is among the major causes of
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death [11,12]. With high incidence, conditions such as stroke deserve care due to the acute-
ness and sometimes life-threatening nature of the conditions. Furthermore, stroke, SCI, and
PD can affect both patients and caregivers. Therefore, proper management is needed to
reduce disability and improve quality of life. Specifically, strokes and SCI require immedi-
ate medical attention and treatment to reduce damage to brain tissue [13–16], and proper
rehabilitation may improve functional outcomes and quality of life. The progressive loss
of neurons in PD leads to movement disorders, such as bradykinesia and tremors [17,18].
These issues experienced by patients become major challenges for doctors that should
be addressed through good diagnosis and rehabilitation to slow the progression of the
disease. For these neurological conditions, accurate diagnosis involving neuroimaging
and neurophysiological tools is the most important step in guiding the mode of treatment
and rehabilitation [19,20]. Neurorehabilitation itself subsequently becomes the major de-
terminant in bringing about optimal recovery. Artificial Intelligence (AI) in the medical
field has opened a new gateway to newer ways that concern the importance of diagnosis
and timely neurorehabilitation in neurological disorders. These newer technologies can
offer better rehabilitation outcomes and patient care through more personalized treatments
based on data [21,22]. They play a critical role in the paradigm shift for neurorehabilitation
due to the new avenues they avail for the understanding, diagnosis, and treatment of
complex conditions such as stroke, SCI, and PD. AI, in general, is the performance of
non-biological machinery on tasks that otherwise would have required cognition and, thus,
intelligence from biological organisms [23]. Neurorehabilitation has increasingly used AI
in its processes. By processing large volumes of data on patients, AI can detect patterns
and predict rehabilitation outcomes that may not be evident to clinicians [24]. For example,
AI-driven systems analyze either neuroimaging data or patient responses during rehabilita-
tion and then make real-time adjustments to therapies to tailor interventions to meet the
specific needs of individuals [25]. AI also provides the means for the creation of robotic ex-
oskeletons and assistive devices that enable patients suffering from various forms of motor
impairment to regain movement. AI could further enable virtual reality environments in
which a patient can engage with immersive rehabilitative experiences that foster cognition
and physical recovery [26]. This adaptability of AI is very important in rehabilitation situa-
tions, especially in conditions like stroke that depend on timely and precise intervention
to minimize the continuity of a disabling condition [27]. It can be observed that where AI
lays the broad overall framework, machine learning (ML) adds a more specialized layer to
adaptability and prediction [28]. Focusing on ML indicates a preference for data-driven
learning systems that can evolve constantly with the patient’s needs. ML is a part of AI and
focuses on algorithms that, from themselves, learn from data through the identification of
patterns in that given data to make predictions or decisions [29]. Therefore, neurorehabili-
tation takes priority in the provision of best outcomes through optimum recovery trajectory
prediction using ML and finding the perfect rehabilitation strategies [30]. This means that
ML models can, therefore, analyze such complex datasets of brain scans and motor function
data to identify persons who are likely to respond to certain treatments [31]. For instance,
ML algorithms can be used to predict which stroke patients are most likely to recover
motor function from a specific therapy [32]. This is besides the fact that, in recent times,
ML has increasingly been integrated into wearables and brain–computer interfaces, hence
allowing for the real-time monitoring and modification of rehabilitation programs [33].
The latter functionality enables clinicians to tailor therapy as an integral part of a dynamic
data-driven patient care process that changes with each session of therapy [34]. While
understanding how these are being applied, it is essential to consider the combined power
of AI and ML in real-world clinical settings. Especially in treating neurological disorders,
the synergy between AI with broad analytical capabilities and ML with its predictive power
is evident [35]. In the diagnostic field, AI helps to enhance the precision of diagnostic tools
and develop more personalized treatment approaches, shaping a new era of care for people
with these conditions [36]. These technologies enable early detection and quite accurate
disease progression monitoring, with adaptive rehabilitation protocols that grow with the
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patient’s recovery for optimal short- and long-term outcomes [37]. AI is used in PD for
early diagnosis and continual monitoring of motor symptoms with wearable devices, as
well as to analyze data to predict symptom fluctuations and provide personalized treat-
ment suggestions [38]. In stroke management, AI systems process neuroimaging data to
rapidly identify stroke type and location, facilitating timely intervention to prevent further
brain damage. AI can also help clinicians differentiate between ischemic and hemorrhagic
strokes with high accuracy, aiding in selecting the most appropriate urgent treatment
pathway [39,40]. In the field of rehabilitation, robotic systems, guided by AI, engage in
physical therapy by guiding the stroke survivor through repetitive, task-oriented exercises
promoting motor recovery through neuroplastic mechanisms [41]. Such systems imme-
diately adjust to the patient’s performance to optimize movement patterns and enhance
recovery of motor function [42]. AI-enhanced virtual reality environments allow for im-
mersive simulations that cognitively and physically challenge patients in the restoration of
complex motor and cognitive skills [43]. Additionally, ML methods are also being applied
for functional recovery prediction and prognosis in post-stroke rehabilitation [44], further
enhancing the personalized and adaptive nature of stroke recovery [45]. Applications of AI
are fundamentally changing diagnosis and rehabilitation processes, even in cases of SCI.
Concerning diagnosis, for example, AI algorithms can analyze MRI data to determine the
extent of damage to the spinal cord and predict the potential recovery [46]. Further, AI can
also provide an assessment of the function of nerves by incorporating electrophysiological
data [47]. This kind of varied assessment enables a holistic understanding of the injury
and, hence, can suggest treatment options [48]. In rehabilitation, AI-driven brain–computer
interfaces and robotic exoskeletons allow the recovery of motor capabilities in SCI patients.
These systems decode neural signals into movements, and correspondingly, these ML algo-
rithms refine this process by learning from the patient’s interactions, thus increasing the
accuracy and responsiveness of the technology over time [49,50]. Furthermore, AI-based
neurofeedback tools allow patients to track their neural activity independently [51]. This
instills active involvement in one’s recovery through brain response self-regulation for
optimal outcomes in rehabilitation [52,53]. A summary of the benefits of AI and ML in the
diagnosis and neurorehabilitation of neurological disorders is visualized in Figure 1.

Biomedicines 2024, 12, x FOR PEER REVIEW 3 of 19 
 

conditions [36]. These technologies enable early detection and quite accurate disease 
progression monitoring, with adaptive rehabilitation protocols that grow with the 
patient’s recovery for optimal short- and long-term outcomes [37]. AI is used in PD for 
early diagnosis and continual monitoring of motor symptoms with wearable devices, as 
well as to analyze data to predict symptom fluctuations and provide personalized 
treatment suggestions [38]. In stroke management, AI systems process neuroimaging data 
to rapidly identify stroke type and location, facilitating timely intervention to prevent 
further brain damage. AI can also help clinicians differentiate between ischemic and 
hemorrhagic strokes with high accuracy, aiding in selecting the most appropriate urgent 
treatment pathway [39,40]. In the field of rehabilitation, robotic systems, guided by AI, 
engage in physical therapy by guiding the stroke survivor through repetitive, task-
oriented exercises promoting motor recovery through neuroplastic mechanisms [41]. 
Such systems immediately adjust to the patient’s performance to optimize movement 
patterns and enhance recovery of motor function [42]. AI-enhanced virtual reality 
environments allow for immersive simulations that cognitively and physically challenge 
patients in the restoration of complex motor and cognitive skills [43]. Additionally, ML 
methods are also being applied for functional recovery prediction and prognosis in post-
stroke rehabilitation [44], further enhancing the personalized and adaptive nature of 
stroke recovery [45]. Applications of AI are fundamentally changing diagnosis and 
rehabilitation processes, even in cases of SCI. Concerning diagnosis, for example, AI 
algorithms can analyze MRI data to determine the extent of damage to the spinal cord and 
predict the potential recovery [46]. Further, AI can also provide an assessment of the 
function of nerves by incorporating electrophysiological data [47]. This kind of varied 
assessment enables a holistic understanding of the injury and, hence, can suggest 
treatment options [48]. In rehabilitation, AI-driven brain–computer interfaces and robotic 
exoskeletons allow the recovery of motor capabilities in SCI patients. These systems 
decode neural signals into movements, and correspondingly, these ML algorithms refine 
this process by learning from the patient’s interactions, thus increasing the accuracy and 
responsiveness of the technology over time [49,50]. Furthermore, AI-based neurofeedback 
tools allow patients to track their neural activity independently [51]. This instills active 
involvement in one’s recovery through brain response self-regulation for optimal 
outcomes in rehabilitation [52,53]. A summary of the benefits of AI and ML in the 
diagnosis and neurorehabilitation of neurological disorders is visualized in Figure 1. 

 
Figure 1. The benefits of AI in the diagnosis and neurorehabilitation of neurological disorders. Figure 1. The benefits of AI in the diagnosis and neurorehabilitation of neurological disorders.

This systematic review aims to investigate how AI tools are revolutionizing the diag-
nosis and treatment of neurological disorders, highlighting their transformative impact
on neurorehabilitation strategies. The rationale behind this systematic review is that AI
is increasingly affecting the medical domain, particularly in the diagnosis and treatment
of neurological disorders. This is because of various AI tools, such as ML algorithms
and neural networks, which guarantee rapid processing of voluminous data with high
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accuracy, thereby enabling more accurate diagnoses, predicting disease progression, and
creating rehabilitation plans tailored to each patient’s needs. These technologies make
neurological disorders increasingly detectable while revolutionizing neurorehabilitation
with personalized treatments, optimized therapy schedules, and sometimes predictions of
outcomes based on real-time data. Finally, AI has the capability for continuous learning
from new data, thus enabling refinement in treatment approaches and offering unparalleled
adaptability in patient care. A broad, supportive theoretical framework of this review is the
concept of personalized medicine. When AI is adjunct to innovative technologies, including
robotic devices, virtual reality, and metaverse, it can optimize motor recovery thanks to its
adaptability to each patient. AI systems, through the analysis of vast amounts of patient
data (e.g., medical history, injury type, progress metrics, and lifestyle factors), can facilitate
the creation of customized rehabilitation programs that are tailored to each patient.

Furthermore, AI is in line with the working principles of personalized medicine, where
treatment is designed according to the unique biological and psychological attributes of
each person along with environmental factors. That further justifies its relevance in the
field. The current review tries to systematically address the role of AI in transforming
diagnosis and therapy in neurological disorders, hence trying to provide a clear insight
into how these innovations are revising neurorehabilitation strategies. Secondly, it attempts
to outline the clinical utility of AI tools in the delivery of more effective, efficient, and
patient-centered care. Therefore, in these times of increasing neurological disorders and
limitations with the current methods, there is an emerging and urgent requirement to
utilize all the features of AI in this crucial healthcare area.

2. Materials and Methods
2.1. Search Strategy

A comprehensive literature search was performed using PubMed, Web of Science, and
Scopus databases, employing the keywords: (All Fields: “Artificial Intelligence”) AND (All
Fields: “AI diagnosis”) AND (All Fields: “AI neurorehabilitation”) with a search time range
from 2014 to 2024. The PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) flow diagram was utilized to outline the process (identification, screening,
eligibility, and inclusion) for selecting relevant studies, as illustrated in Figure 2. Titles
and abstracts from the database searches were independently reviewed. Articles were
evaluated for their relevance based on predefined inclusion criteria. All titles and abstracts
that met these criteria were fully reviewed. Multiple expert teams independently selected
articles and analyzed data to minimize bias, discussing discrepancies until consensus was
achieved. This review has been registered on Open OSF (n) EH9PT.
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2.2. PICO Evaluation

We applied the PICO model (Population, Intervention, Comparison, Outcome) to
create our search terms. The population involved has a wide range of neurological con-
ditions that are being treated with neurorehabilitation treatments. The intervention here
is the incorporation of AI and ML in the diagnosis and treatment of the patient, showing
how advanced systems are used to enhance clinical practice. The comparison is made
with the traditional diagnostic and therapeutic approaches without AI or ML technologies.
The primary outcome of such studies will be measuring the effectiveness of such AI and
ML systems in improving diagnosis accuracy and treatment efficacy.

2.3. Inclusion Criteria

A study was included if it described or examined how AI and ML systems influence
diagnosis and treatment in neurorehabilitation among neurological disorders. Only articles
written in English were considered. Additionally, studies that described or investigated the
functional assessment of these patients were included. We only included studies conducted
in human populations and published in English that met the following criteria: (i) original
or protocol studies of any kind and (ii) articles that examine how AI and ML systems
influence diagnosis and treatment in neurorehabilitation among neurological disorders.

2.4. Exclusion Criteria

A study was excluded if it lacked data or information regarding how AI and ML
systems influence diagnosis and treatment in neurorehabilitation among neurological
disorders. Systematic, integrated, or narrative reviews were also excluded; however, their
reference lists were reviewed and included when relevant. Additionally, any articles written
in languages other than English were excluded.

3. Results

A total of 522 articles were found: 14 articles were removed due to duplication after
screening; 1 article was excluded because it was not published in English; 368 articles were
excluded based on title and abstract screening. Finally, 131 articles were removed based on
screening for inadequate and untraceable study designs (Figure 2).

Therefore, eight research articles met the inclusion criteria and were included in the
review. These studies are summarized in Table 1.

The studies discussed in this review examine how AI and ML systems influence diagnosis
and treatment in neurorehabilitation among neurological disorders. Eight articles analyzed
the use of AI and ML in rehabilitating and diagnosing neurological disorders [54–61].

Murakami et al. conducted a study on how effective an AI-powered electromyography
(EMG)-driven robot hand was in the rehabilitation process of the upper limbs in chronic
stroke patients. The authors randomly assigned 20 participants to either an active or a control
group; an active group underwent active finger training with the robot twice a week for
four weeks. This significantly improved their motor performance and reduced the spasticity
of the affected hemiplegic upper limb. The active group immediately showed and contin-
ued to demonstrate superior motor performance following intervention: the active group
showed increased limb use and decreased wrist spasticity. Overall, the AI-driven robot hand
effectively improved motor function and spasticity in chronic stroke patients for at least four
weeks [54]. Another paper presented a novel computer vision system, which was developed
to analyze the gait impairment of PD patients in a more sensitive and accessible way than
traditional clinical measures. Deep learning extracted from videos captured by patients during
regular assessments enabled detailed processing of motion data and estimation of gait severity
after processing. Automatically created pre-assessments helped in error detection, allowing
assessments without a physician. The results are in good agreement with severity assessments
by expert physicians, and thus, it is a valuable tool for remote monitoring and assessment
in PD patients [55]. Yang et al. created an AI model for diagnosing and tracking PD by
analyzing night-time breathing patterns. Due to the lack of biomarkers for PD, the model was
trained on a diverse dataset and performed efficiently in detecting PD with high accuracy. It
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estimated the severity and progression of PD accurately, simplifying the relationships between
predictions and clinical assessments. The non-invasive measurement provided by the model
enabled PD monitoring in a home environment, facilitating early risk assessments and clinical
diagnosis. The interpretability of the AI model sheds light on how respiratory signals can
reveal the symptoms of PD, making it a valuable tool for healthcare [56]. A retrospective
study, however, aimed to improve the use of ML and explainable artificial intelligence (XAI)
in predicting upper limb functional recovery after stroke rehabilitation. Random Forest algo-
rithms and XAI methods were used to evaluate the prediction performance in subacute stroke
patients. ML models outperformed classical statistical methods, providing better outcome
predictions. XAI methods showed that baseline motor impairment quantified by clinical
scales was critical to predicting recovery. Therefore, these results highlighted the dual benefit
of ML and XAI, providing accurate predictions and transparent outputs for clinicians to make
informed decisions on treatment strategies and monitor progress [57]. Mobbs et al. studied a
novel ML model to assess arm movement abnormalities in patients with acquired brain injury
during walking. They found that post-injury gait deficits were related to arm movement
problems that affected psychological aspects. The International Classification of Functioning,
Disability, and Health scale could assess these abnormalities but had moderate reliability. The
researchers used gait videos to train ML networks to identify landmarks and joint angles
to accurately predict clinical scores. The ML model performed similarly to human raters
in predicting scores, with no significant differences between the different networks used.
However, it slightly underestimated scores, suggesting further research on larger samples
and objective assessments using smartphones or edge-based ML for better feasibility in local
and remote rehabilitation [58]. A cross-sectional study examined the diagnostic potential
of smartphones and smartwatches for detecting movement disorders, focusing on PD. Re-
searchers collected data from 504 participants over three years, including PD patients, those
with similar disorders, and healthy individuals. Participants used a smartphone app for
interactive assessments, providing detailed movement data through questionnaires and smart-
watch sensors. The study utilized ML to analyze the movement data, achieving high accuracy
in distinguishing PD patients from healthy controls but lower accuracy in differentiating
between PD and similar conditions. The dataset could be valuable for future ML research,
potentially leading to a home-monitoring app for movement disorders and improving early
diagnostics and treatment tracking [59]. Another paper used ML to predict gait recovery in
SCI patients at discharge from a rehabilitation facility, which was the first in the field. More
than a decade of patient data were analyzed using random forest and decision tree algorithms
to predict walking ability, which proved to be accurate models. Initial walking ability, neu-
rological classification, and somatosensory evoked potentials were key factors in recovery.
These results may represent a decision support system to help clinicians predict gait recovery,
enabling personalized rehabilitation strategies. ML shows potential to provide early prognosis
and guide interventions tailored to individual patient needs, improving healthcare decision-
making [60]. In a final study, ML techniques were utilized to classify stroke disabilities based
on kinematic data from a Robotic Arm position-matching task. Proprioception impairment in
stroke survivors was evaluated using a robotic system that measured 12 kinematic parameters.
ML models were tested to see if they could classify stroke survivors more accurately than
traditional clinical scoring methods. The study included stroke patients and healthy controls,
with Random Forest and Deep Neural Networks algorithms used for classification. Results
showed that ML models, particularly Random Forest, outperformed traditional scoring meth-
ods and achieved higher accuracy, sensitivity, and specificity in classifying stroke disabilities.
Variability in movement was identified as a critical feature for accurate classification. This
study highlights the potential of ML in processing complex kinematic data for better diagnosis
and rehabilitation strategies for stroke survivors [61]. In essence, AI and ML have been strong
tools in various emerging technologies for rehabilitation and diagnosis, improving diagnostic
possibilities, personalization of therapies, and remote monitoring, thus opening routes for
more precise interventions and optimized clinical management.
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Table 1. Summary of studies included in the research.

Author Aim Study
Design/Intervention Treatment Period Sample Size Outcomes Measures Main Findings

Murakami et al. 2023 [54]

To evaluate how using a robot hand
integrated with AI and EMG

technology affects upper extremity
rehabilitation in chronic

stroke patients.

Randomized Controlled Trial. 4 weeks. 20 patients. FMA, MAL-14 AOU, MAS; H reflex
and reciprocal inhibition.

The group that actively participated
in the intervention demonstrated
notable enhancements in FMA,
MAL-14 AOU, and wrist MAS

immediately after the intervention
and also four weeks after. There were
no notable enhancements observed in

FMA for the control group.

Rupprechter et al. 2021 [55]

To assess a new computer vision
technique using deep learning to
measure the degree of walking

problems in PD.

Methodological development study.

The study did not apply to treatment
intervention, as it concentrated on

creating and evaluating a gait
assessment method.

The study utilized footage from
729 gait evaluations in which trained

clinicians gave ratings.

The model’s ability to predict gait
severity ratings were compared to
clinician ratings, and the model’s

predictions were also correlated with
manual ratings.

The computer vision model achieved
an accuracy of 50%, accurately

estimating UPDRS ratings within one
point of clinician ratings in 95% of

cases. The model’s predictions
showed a strong correlation with

clinician diagnoses.

Yang et al. 2022 [56]

To create and assess an AI model to
identify PD and monitor how it

advances through analyzing
night-time breathing patterns.

Development and evaluation study.

The study does not involve any
treatment; rather, it focuses on the

development and evaluation of
AI models.

Data from 7671 individuals,
encompassing information from

various hospitals and multiple public
datasets, was used to assess

the model.

The AI model was evaluated based
on its capacity to identify PD and to
gauge the severity and advancement

of PD.

The AI model can reliably identify
PD and forecast its severity and

progression. An attention layer is
used for explainability and is capable
of conducting remote PD assessments

in homes without physical contact
utilizing radio waves.

Gandolfi et al. 2023 [57]

To assess if ML can effectively
forecast the recovery of UL function

in patients recovering from sub-acute
strokes and to pinpoint the key

factors influencing these forecasts
utilizing XAI techniques.

Retrospective study.

Patients received intensive,
multidisciplinary upper limb

rehabilitation for 2 h every day,
6 days a week, throughout their

hospitalization. The mean period
from stroke onset to release was

around 37.71 days.

The ultimate dataset included
95 entries from a starting group of

192 individuals.
FMA-UE, TCT, MI, BI.

ML models outperformed standard
statistical approaches in predicting

UL recovery and the development of
the illness. Baseline motor

impairment was the most important
characteristic. XAI techniques

delivered reliable and clear findings,
improving the comprehension of

predictive variables.

Moobs et al. 2024 [58]

To determine the effectiveness of a
novel two-tier ML model in detecting
aberrant arm motions during walking

in people with ABI.

Observational study. Not specified. 42 ABI participants and 34
healthy controls.

Concordance between ML model
predictions and clinician evaluations.

The ML model predictions were in
close concordance with those of

experienced human assessors, with
no statistically significant variances
between the networks. The models
did not accurately forecast scores

with minor impacts.

Varghese et al. 2024 [59]

To create reliable ML models for
detecting and monitoring movement
disorders using smart devices due to
the lack of comprehensive datasets

containing both movement data and
clinical annotations for

such disorders.

Cross-sectional study. 3 years. 504 participants, including
individuals with PD, DD, and HC.

The outcome measure included the
balanced accuracy of ML models in
distinguishing between PD vs. HC

and PD vs. DD, along with the
detailed collection of clinical

annotations and movement data.

The ML models obtained a mean
balanced accuracy of 91.16% for

distinguishing between PD and HC
and 72.42% for distinguishing PD

from DD. The research emphasizes
the efficiency of the models but also

acknowledges difficulties in
differentiating between

similar disorders.
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Table 1. Cont.

Author Aim Study
Design/Intervention Treatment Period Sample Size Outcomes Measures Main Findings

Yoo et al. 2024 [60]

To forecast the restoration of walking
ability post-SCI upon leaving a rehab

center, utilizing ML methods to
analyze crucial predictive factors and
propose an ML-driven tool to aid in

predicting gait recovery.

Retrospective Study. Information was gathered between
June 2008 and December 2021.

353 patients with traumatic or
non-traumatic SCI.

The primary outcome was the
FAC_DC.

The prediction of FAC_DC was
accurate using random forest and
decision tree algorithms, yielding

RMSE values of 1.09 and 1.24 for all
participants, 1.20 and 1.06 for

traumatic SCI, and 1.12 and 1.03 for
non-traumatic SCI. The primary

factor for predicting gait recovery
was found to be the initial FAC.

Hossain et al. 2023 [61]

To assess how stroke survivors
perceive their body position using a

robotic arm matching task and to
evaluate the effectiveness of various

ML methods and a task score in
distinguishing between stroke

survivors and non-stroke individuals
based on movement data.

Cross-sectional study. Not specified.

429 individuals who have had a
stroke confirmed by neuroimaging
(less than 35 days after the stroke)

and 465 healthy individuals.

Parameters like trial-to-trial
variability, spatial

contraction/expansion ratio,
systematic spatial shifts, and absolute

error were used to measure
performance in the arm position
matching task. Task scores were

additionally computed to evaluate
overall effectiveness.

For the ML and deep learning
models, the classification

performance metrics were as follows:
accuracy 82.4%, precision 85.6%,
recall 76.5%, and F1 score 80.6%.

Random Forest surpassed all other
models in terms of numerical
accuracy, scoring 83%. Both

sensitivity and specificity were higher
for ML models compared to the

overall task score. Variability was the
most dominant feature in classifying

performance in the arm position
matching task.

Legend: artificial intelligence (AI), electromyography (EMG), upper extremity (UE), Fugl–Meyer assessment (FMA), motor activity log-14 amount of use score (MAL-14 AOU), modified
Ashworth scale (MAS), Parkinson’s disease (PD), Unified Parkinson’s Disease Rating Scale (UPDRS), machine learning (ML), upper limb (UL), explainable artificial intelligence (XAI),
upper-extremity score on the Fugl–Meyer Assessment (FMA-UE), Trunk Control Test (TCT), Motricity Index (MI), Barthel Index (BI), acquired brain injury (ABI), differential diagnoses
(DD), healthy controls (HC), spinal cord injury (SCI), decision support system (DSS), functional ambulation category at discharge (FAC_DC), root mean squared error (RMSE).
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4. Discussion

This systematic review explored how AI, with regard to ML, influences diagnosis
and treatment in neurorehabilitation. Indeed, evidence from the literature has increasingly
emphasized the role that AI/ML could play in transforming motor rehabilitation and
diagnosing neurological diseases. AI-based devices, including those with EMG-based
robotic hands, have demonstrated significant improvements in upper limb motor function
with a reduction of spasticity in stroke patients, reporting long-lasting results. Gait analysis
in PD is improved by the application of ML models for greater accuracy, while functional
recovery in stroke and SCI is driven forward more effectively with prediction. The analysis
of complex kinematic data allows for a more precise classification of the degree of disabil-
ity in stroke cases. Moreover, all these technologies improved diagnostic accuracy and
personalized rehabilitation strategies and enabled remote monitoring [54–61]. Integrated
into clinical care, AI offers the possibility of more frequent and specific interventions,
effectively changing both the management and monitoring of neurological conditions
from non-traditional healthcare settings. These results are confirmed by literature from
different studies. Hashim et al. [62] introduced a stacking ensemble-based ML approach,
further improving diagnostic accuracy by clustering multiple ML models. The improved
performance of this approach over competing conditions of PD demonstrates that ensemble
techniques can be applied in an advanced manner to the clinical setting [62]. Complemen-
tary to these insights, Wu et al. investigated wearable sensor devices that automatically
detect the ON-OFF state of PD patients using interpretable ML models. This real-time
capability supports dynamic adjustments in treatment and reflects the practical application
of ML in PD monitoring and management [63]. Transitioning to stroke rehabilitation,
Park et al. used clinical ML to find out who among stroke patients is the best responder to
exoskeletal robotic gait rehabilitation. Their current study has shown that ML models can
identify patients who will most likely benefit from this advanced therapy and enhance the
personalization of rehabilitation protocols [64]. Carino-Escobar et al. went further to intro-
duce strategies for session-to-session transfer learning in brain–computer interfaces during
stroke rehabilitation. Their work highlights how adaptive learning techniques can further
improve the performance of neurorehabilitation systems, staging the interventions accord-
ing to the progress of individual patients [65]. Shifting focus to SCI, Håkansson et al. [66]
studied data-driven approaches in predicting recovery outcomes for patients with SCI.
Their study indicated the current capability and limitation of prediction models based
on large datasets. More specifically, they underlined the capability of ML to improve the
forecast of recovery by incorporating various clinical and physiological data [66]. Maki et al.
proposed a web application based on ML algorithms for functional outcome prediction in
traumatic SCI patients who are inpatients of rehabilitation centers. Their app is designed to
process real-time patient data and provide personalized predictions about the success of
rehabilitation. The study gives an example of how ML might work in practice to support
clinical decision-making and personalized rehabilitation planning [67]. According to the
studies presented in this review, we can also infer that AI and ML can achieve so much
more than rehabilitation and diagnosis alone: they can predict recovery trajectories and
inform clinical decisions [68,69]. These technologies can analyze a host of data that include
patient history, demographic information, and the extent of neurological damage, offering
predictive insight into how a patient might respond to specific treatments [70]. For instance,
ML models predict the probability of a stroke patient achieving functional independence
based on their performance during early rehabilitation [71,72]. Such outputs help clinicians
set realistic goals and design appropriate therapy plans. In SCI, AI can predict if sensory
or motor function will be regained in cases of injury [73–75]. This aids long-term insight
into rehabilitation strategies. Furthermore, AI and ML are making neurorehabilitation
even more accessible by becoming part of telerehabilitation platforms [76,77]. This advance
enables constant monitoring and personalized treatment, even for patients residing in
remote locations [78]. AI-powered systems may provide instant feedback during therapy
sessions, that is, by changing exercises and guidance that do not require a therapist to
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be on-site [79]. Setting neurorehabilitation in this manner opens it towards more flexible,
scalable, and patient-centered continuous support and adaptation concerning the patient’s
progress [80]. Because of this, the field of neurorehabilitation and diagnosis of neurological
disorders, including PD, stroke, and SCI, will experience a huge impact with the use of AI
and ML. These technologies are improving not only the accuracy of early diagnosis but also
the potential to create very personalized rehabilitation programs that adjust for the needs
of every single patient [81–85]. With AI and ML, both diagnostic precision and treatment
effectiveness stand to gain significantly [86–89]. In so doing, they are paving ways toward
better patient outcomes, independence, and overall enhancement of the quality of life.
As these technologies continue to evolve, their place within neurological care will likely
grow and offer new hope for those afflicted by debilitating conditions [90,91].

Another important field of neurorehabilitation where AI and ML make their contri-
bution is the treatment of non-motor symptoms. Non-motor symptoms from cognitive
impairment and mood disorders to fatigue and chronic pain are often underestimated,
though they seriously affect the quality of life in patients and complicate the process of re-
habilitation. AI and ML can analyze big datasets emanating from electronic health records,
wearable devices, and patient-reported outcomes to identify patterns that indicate the
emergence or exacerbation of non-motor symptoms. For instance, predictive analytics can
foresee impending cognitive decline among stroke survivors, thereby enabling clinicians
to institute timely interventions that target improvements in cognition [92]. The early
identification of cognitive impairment enables clinicians to allocate resources judiciously,
targeting specific cognitive training exercises for those individuals while letting others
pay attention to physical rehabilitation. Such an individual approach not only serves to
further optimize treatment plans but also contributes to overall patient outcomes through
the promotion of resilience. This kind of real-time monitoring by AI in PD could track
the fluctuations in mood and cognition, and even medication adherence, for valuable
insights to be gained by healthcare providers [93]. Advanced AI systems utilizing Natural
Language Processing analyze conversations with patients in depth for subtle changes in
the pattern of speech that may reflect mood disturbances [94]. This real-time feedback
allows healthcare providers to make immediate adjustments to therapeutic interventions,
improving both the effectiveness of the treatment and the overall patient experience. For ex-
ample, clinicians can easily modify their therapeutic approach when anxiety or depression
is observed in a patient by introducing supportive therapies or adjusting the medication
regimen accordingly. Multiple sclerosis, among neurological disorders, highly predisposes
patients to problems of fatigue, which also highly devastates day-to-day functioning and
rehabilitation processes. AI-operated systems analyze the activity and behavioral patterns
a patient demonstrates and make recommendations toward a carefully optimized schedule
that balances active periods with rest as needed [95]. A patient may, through individual
data, learn to cope better with energy-management habits for an improved quality of life.
In addition, AI can provide cognitively impaired patients with natural language process-
ing assistance so that communication with the patient can be facilitated during a clinical
consultation. The patient is thus empowered to state his/her needs and concerns and can,
therefore, adopt a collaborative approach to care [96–98].

Concerning the studies reported in this review, the results have a great many clinical
implications. The findings of Murakami et al. [54] presented an AI-driven EMG-powered
robot hand for chronic stroke patients and indicate that precise, targeted interventions
may result in significant improvements in motor function and reduction of spasticity. This
AI-driven intervention provides more individualization and adaptability of therapy, which
is not so easily achievable with conventional rehabilitation therapy [99]. Importantly,
sustained improvements in motor performance suggest that AI may make the therapeutic
effects longer-lasting and may be linked to neuroplasticity within stroke rehabilitation [100].
The other critical finding pertains to gait analysis through deep learning and computer
vision among patients with PD. Traditional clinical measures rarely have the sensitivity
needed for such fine-grained assessment. The capability of AI in processing complex
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motion data opens new avenues for remote monitoring, enabling higher frequency and
lower-cost assessments without any direct physician involvement, something that has
been a gap in available care for patients with impaired mobility [101]. However, the full
reliability of these systems compared to marker-based systems for motion analysis has yet
to be determined.

The AI model by Yang et al., performing diagnosis of PD by analyzing night-time
breathing, is another example of how AI can identify subtle, non-invasive biomarkers
that current diagnostic tools may miss [102]. A very critical development that these
studies have given prominent importance to involves the role of XAI and ML in predicting
rehabilitation outcomes and recovery trajectories. The transparency in decision-making,
whereby clinicians are not just using a “black box” algorithm but can understand and
validate the rationale behind the predictions, is given by XAI in the prediction of upper
limb functional recovery post-stroke [103]. This becomes an important factor in establishing
trust in AI-driven healthcare tools. As the second example, ML applications for predicting
gait recovery in SCI patients showed how AI could help in refining rehabilitation protocols
by factoring in individual characteristics such as initial motor impairment and neurological
classification, hence offering tailor-made, highly personalized care [104]. However, their
clinical translation still needs further validation [105]. Although ML prediction models
generally outperform traditional statistical methods, several studies have highlighted
issues, including the underestimation of clinical scores and lower accuracy in distinguishing
between PD and similar disorders. [106]. Larger datasets, more robust validation, and
integration into everyday clinical practice are prerequisites for those technologies [107].
Similarly, while remote monitoring and home-based diagnostics are highly promising,
there are still concerns regarding accuracy, patient compliance, and data security in that
setting [108].

The management of neurological disorders also presents several issues regarding the
ethics of informed consent concerning the use of AI and ML and the role of Institutional
Review Boards (IRBs). Informed consent is a cardinal principle in medical studies and
clinical practices wherein a patient is properly informed about participation in AI-driven
studies or treatments. This means that patients should understand in what way their data
will be used, what the possible risks and benefits are, and how AI technologies will be
involved in their treatment. Only this level of transparency will contribute to gaining trust
among the patients and service providers and may lead the patients to be more active
in their treatment decisions [109]. Besides that, most AI technologies necessitate massive
amounts of data, including sensitive personal health information. This further emphasizes
the need for strict data protection. Not only is it essential to inform people about how
their data will be collected, stored, and used, but also to address the risk of a data security
breach. This helps to remove several privacy-related apprehensions and encourages more
participation [110]. The IRBs, therefore, play a critical role in the oversight of research
with AI and ML, giving due emphasis to patient rights and welfare. They ensure that
studies are ethically conducted, data privacy and security are assessed, and the potential for
algorithmic bias is reviewed [111]. Algorithmic bias in AI can lead to disparities in care that
will significantly affect vulnerable populations of neurological disorders, making such IRB
oversight quintessential in identifying issues and measures that may be required. IRBs are
also charged with the duty of ensuring that processes of informed consent are meaningful
and accessible in cases when research participants suffer from impairments in cognition or
barriers to communication, something quite common in neurological disorders [112]. This
should include the use of simple language and support to explain some of the complex
issues regarding AI and ML. Through rigorous study designs and AI methodologies, IRBs
also help minimize risks associated with untested algorithms and improve patient safety.
They also stand at the forefront in demanding ethical standards matching this unparalleled
technological advance.

This systematic review has important strengths: a thorough search across multiple
databases to capture as many relevant studies as possible and utilizing the PRISMA frame-
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work to improve transparency and rigor; the PICO model underpins structuring the review
around specific clinical questions related to AI and ML in neurorehabilitation. The focus on
a range of neurological disorders, such as stroke, SCI, and PD, adds clinical relevance to
the review. Emphasizing real-world applications in AI and ML, like robotic systems and
brain–computer interfaces, serves to bring forth the transformational potential of these
technologies in making treatments personalized and rehabilitation outcomes better.

The limitations of this review are that because there were only eight included studies,
the findings might not be generalized easily. Additionally, the majority of studies are
temporary, so the effectiveness over a long period is unknown. While the exclusion of
preclinical studies may be an effort to ensure clinical relevance, it may not be considered
important foundational work. Heterogeneity in both methodologies and patient popu-
lations complicates the drawing of uniform conclusions. Lastly, the limited number of
standardized outcome measures, combined with the absence of any cost-effectiveness
analysis, limits wider applicability.

5. Conclusions

In conclusion, AI and ML, in particular, are greatly changing the outlook on diagnosis
and rehabilitation in neurological disorders, especially in stroke, SCI, and PD. These can offer
earlier and more accurate diagnoses, allowing personalized treatment strategies that might
considerably improve outcomes for the patients. AI processes big volumes of data, while
ML foretells the outcomes and provides valuable insights for clinicians to tailor rehabilita-
tion. Robotic systems, interfaces of brain–computer, and virtual reality build a commonly
integrated environment that enhances neuroplasticity and promotes effective rehabilitation
with precision. In addition, AI-driven and ML-based telerehabilitation extends the outreach
of services at real-time adaptive interventions, even at very remote distances. The future
direction entails more studies that could help ensure the full-scale integration of AI and ML
into routine clinical practice. Clinical trials on a large scale should be carried out to validate
the efficacy and safety of AI-driven rehabilitation tools in diverse patient populations. Devel-
opmental efforts must focus on the creation of scalable and user-friendly systems that could
easily fit into health settings. Among the ethical issues to be considered are data privacy,
algorithm transparency, and the possibility of bias in the AI models. Taking these measures
will ensure that all patients receive fair and equal care. To date, the integration of AI and ML
in home-based rehabilitation systems may democratize access to advanced care by offering
real-time feedback and personalized interventions to those patients with limited access to
specialized rehabilitation centers. In this view, the future of neurorehabilitation will be molded
by an ever-enhancing capability of AI and ML to improve neurological recovery and improve
long-term outcomes in patients.
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