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Abstract: Background: Dermatoglyphic pattern deviances have been associated with schizophrenia-
spectrum disorders (SSD) and are considered neurodevelopment vulnerability markers based on the
shared ectodermal origin of the epidermis and the central nervous system. The endocannabinoid
system participates in epidermal differentiation, is sensitive to prenatal insults and is associated
with SSD. Objective: We aimed to investigate whether the Cannabinoid Receptor 1 gene (CNR1)
modulates the dermatoglyphics–SSD association. Methods: In a sample of 112 controls and 97 pa-
tients with SSD, three dermatoglyphic markers were assessed: the total palmar a-b ridge count
(TABRC), the a-b ridge count fluctuating asymmetry (ABRC-FA), and the pattern intensity index
(PII). Two CNR1 polymorphisms were genotyped: rs2023239-T/C and rs806379-A/T. We tested:
(i) the CNR1 association with SSD and dermatoglyphic variability within groups; and (ii) the CNR1
× dermatoglyphic measures interaction on SSD susceptibility. Results: Both polymorphisms were
associated with SSD. The polymorphism rs2023239 modulated the relationship between PII and SSD:
a high PII score was associated with a lower SSD risk within C-allele carriers and a higher SSD risk
within TT-homozygotes. This result indicates an inverse relationship between the PII and the SSD
predicted probability conditional to the rs2023239 genotype. Conclusions: These novel findings
suggest the endocannabinoid system’s role in the development and variability of dermatoglyphic
patterns. The identified interaction encourages combining genetic and dermatoglyphics to assess
neurodevelopmental alterations predisposing to SSD in future studies.

Keywords: schizophrenia-spectrum disorders; endocannabinoid system; CNR1; dermatoglyphics;
neurodevelopmental biomarkers

1. Introduction

Schizophrenia-spectrum disorders (SSD) encompass different severe mental disorders,
including schizophrenia, schizoaffective and schizophreniform disorders. The central
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etiological hypothesis sustains that SSD emerge as the consequence of multiple genetic
and environmental factors altering the homeostasis of neurodevelopmental trajectories
during the intrauterine and early postnatal periods, as well as during childhood and
early adolescence [1,2]. This model is supported by the higher prevalence observed in
patients as compared to healthy controls of different indirect markers of neurodevelopment
disturbances, such as minor physical anomalies [3,4] or neurological soft signs [5], which
have been described alongside neuroanatomical [6,7] and neurofunctional changes [8,9].

From this view, other ectodermal tissue derivatives, such as dermatoglyphics, have
captured much attention as early intrauterine neurodevelopmental markers [10–12]. The
dermatoglyphic patterns are grooved configurations on palms and soles’ surfaces con-
formed by the alternation of epidermal ridges and sulci. These patterns are established
from the 6th to the 24th week of gestation when their formation is complete, and they remain
unchanged over the lifetime [10,11]. This process occurs in parallel with several crucial cen-
tral nervous system development processes, such as neural proliferation, cortex migration,
and prosencephalic development [13–15]. Thus, dermatoglyphics represent evidence of a
particular neurodevelopmental window, and dermatoglyphic alterations may be informa-
tive about early deviances in this process. The consideration of dermatoglyphics as indirect
markers of neurodevelopmental alterations is supported by the high occurrence of dermato-
glyphic deviations in chromosomal syndromes and neurodevelopment-related disorders
caused by genetic and environmental factors [16]. Considering the neurodevelopmental
roots of SSD, several studies have reported quantitative and qualitative dermatoglyphic
differences between patients affected by these disorders and healthy controls. Generally,
patients tend to present simplified dermatoglyphic configurations and higher bilateral
asymmetry [17–19]. Indeed, dermatoglyphic pattern deviances have been highlighted as a
relevant schizophrenia risk factor through an umbrella review [20].

Family and twin-based studies have determined dermatoglyphic heritability in vari-
able but significant levels (h2 = 0.65 to 0.96) [16,21,22]. While little is known about
dermatoglyphics-specific genetic determinants, a recent GWAS identified 18 loci associated
with fingerprint type that highlighted the role of pathways related to limb development [23].
Nonetheless, information as to which extent the dermatoglyphics’ genetic and environ-
mental determinants are shared with those of SSD is still missing. Among the mechanisms
proposed to mediate gene and environment interactions on SSD and dermatoglyphic mor-
phology, prenatal stress, and obstetric complications achieve importance [24–26]. In this
sense, several studies have shown a link between obstetric complications and dermato-
glyphic ridge count reductions in schizophrenia [12,19]. Then, fetal hypoxia seems to be a
common denominator in the obstetric adverse events associated with psychosis based on
gene–environment interaction studies and meta-analyses [25,27].

Oxygen level variation is required for several physiological processes to take place,
such as the formation of the neural fold [28], the neural tube closure [29] and oligoden-
drocyte proliferation and myelination [30]. Accordingly, the regulation of hypoxia and its
molecular mechanisms are considered essential for neurodevelopment and dysfunctions
in such homeostasis may lead to abnormal gene expression and lasting changes in neu-
ronal circuitry in the developing brain [31]. Interestingly, several reviews highlighted that,
among schizophrenia’s candidate genes, more than half of them met the criteria for a link
to ischemia-hypoxia and/or vascular factors [32,33].

Among the genes highlighted in Schmidt–Kastner’s studies [32,33], there is the
Cannabinoid Receptor 1 gene (CNR1). An increasing body of evidence has emphasized the
role of CNR1 in the genetic underpinnings associated with schizophrenia [34]. It has been
suggested that CNR1 mediates the relationship between environmental risk factors and
changes in brain structure and cognitive function in schizophrenia [35]. The CNR1 encodes
for the CB1 receptor, the main endocannabinoid receptor in the brain and an essential
central nervous system presynaptic receptor [36–38]. Additionally, the endocannabinoid
system plays a key role in the modulation of the dopaminergic neurotransmission sys-
tem [39]. Indeed, dopaminergic dysregulation has been largely associated with the presence
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of psychotic symptoms [40]. The fact that exogenous cannabinoids also impact the synthe-
sis and release of dopamine [41] indicates not only the endocannabinoid–dopaminergic
interaction, but also the importance of these synergies for the understanding of the etiology
of SSD and the response to different antipsychotic agents.

Even though the endocannabinoid system’s role in epidermal differentiation has
been barely studied, it is known that the CB1 receptor modulates human keratinocytes,
epidermal differentiation and skin development [42]. It has also been described involved
in the epidermal permeability barrier [43]. Such particular functions of CB1 are integrated
into the well-described roles of the endocannabinoid system in the regulation of cell-
fate processes during development, including cell survival, proliferation, differentiation,
and migration [44–46]. The CB1 receptors are expressed during early development in
neuroepithelial progenitor cells [44] and have been detected in the fetal brain as early as
week 14 in regions of the frontal cortex, hippocampus, caudate nucleus, putamen, and
cerebellum, mimicking their adult brain detection [47–49]. In addition, the CNR1 mRNA
shows evidence of upregulation during ischemia [50], emphasizing its expression sensitivity
to oxygen levels.

Considering the shared genetic background between the development of the brain
and dermatoglyphics and the role of the endocannabinoid system during these processes,
we hypothesized that CNR1 genetic variability influences both the dermatoglyphic configu-
rations and the liability towards SSD and that it also modulates the relationship between
dermatoglyphic pattern deviances and SSD risk. We aimed to investigate the common
underpinnings of SSD and dermatoglyphic patterns and combine phenomics of the der-
matoglyphic patterns with the CNR1 genetic data to identify specific biomarkers for charac-
terizing the liability toward SSD. Particularly, we examined: i) the genetic association of
two CNR1 polymorphisms with SSD, ii) the impact of the CNR1 variability on various der-
matoglyphic measures; and iii) whether CNR1 genetic variants modulate the relationship
between the dermatoglyphic variables and susceptibility to SSD.

2. Materials and Methods
2.1. Sample

The study sample consisted of 209 unrelated French Caucasian individuals, including
112 healthy controls (HC) and 97 individuals diagnosed with a SSD. All patients met the
DSM-IV criteria for SSD, confirmed through the Diagnostic Interview for Genetic Studies
(DIGS version 3.0) [51]: 82.5% schizophrenia, 15.5% schizoaffective disorder, and 2.0%
schizophreniform disorder. HC participants were recruited via local advertisements and
screened with DIGS 3.0 based on the following criteria: Caucasian ancestry, no family
history of schizophrenia, alcoholism, or bipolar disorder in first- or second-degree relatives,
and no personal history of DSM-IV Axis I mental disorders. Exclusion criteria for both
groups included chromosomal syndromes. Between controls and patients, there were
differences regarding sex distribution (41 HC males (36.6%) and 69 SSD males (71.1%);
χ2 = 24.86, p < 0.001) and age (HC = 25.85 (SD = 6.54) and SSD = 29.20 (SD = 7.75); U = 3624.5
p < 0.001).

2.2. Genotyping

All the individuals were genotyped for two SNPs in the CNR1 gene (6q15): the
rs2023239-T/C and the rs806379-A/T. These SNPs were selected based on their minor
allele frequency in European populations (>5%), their potential relevance in relation to
protein availability, and their role in the pathophysiological mechanisms associated with
SSD [52,53]. Genomic DNA was extracted from peripheral blood cells by means of pre-
cipitation using Genisol Maxi-Prep Kit (ABgene, Epsom, UK), and the selected variants
were genotyped using a fluorescence-based allelic discrimination assay (TaqMan, Applied
Biosystems, Foster City, CA, USA), with standard conditions.
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2.3. Dermatoglyphics Assessment

Bilateral finger and handprints were obtained from all participants using Speedball
Block Printing Inks (Speedball Block Ink, Utrecht Art Supplies, Cranbury, NJ, USA) by
engraving whole-hand as well as each fingerprint’s impressions on a white paper surface.
The use of a magnifying lens and digitalized images of all prints allowed finger figure
identification and palmar ridge counts.

On each finger, we identified the fingertip pattern based on the number of triradii
associated with each figure. A triradius is a Y-shaped point of convergence of ridges from
3 different directions. Then, the types of figures identified were arches (with zero triradii),
loops (with one triradius) and whorls/double-loops (with two triradii) (Figure 1A). After,
we calculated the pattern intensity index (PII) by adding up the total number of triradii
and dividing the sum by the number of fingers analyzed. This quantifies the number of
triradii in the ten fingers and measures the complexity of the finger configurations [16].
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Figure 1. (A) Different fingertip patterns (left to right): arch, loop and whorl with the triradius
marked with green circles. (B) Handprints where the triradii a and b are indicated. The total a-b ridge
count (TABRC) corresponds to the sum of the number of ridges between both triradii from the right
and left hands. Figures adapted from [12,23].

On the palms, we analyzed the a-b ridge count (ABRC) of both hands, which measures
the size of the second interdigital area of the hand located between the bases of the index
and medium fingers. This is made by counting the number of ridges between the triradius
a (in the base of the index finger) and the triradius b (in the base of the medium finger)
(Figure 1B). Then, we computed (i) the total a-b ridge count (TABRC), which is the addition
of the right and the left ABRC; and (ii) the a-b ridge count fluctuating asymmetry (ABRC-
FA), a measure of developmental instability, which is the absolute difference between the
right and the left ABRC.
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The final number of individuals analyzed for each dermatoglyphic variable varies
depending on the quality of the fingerprints. Dermatoglyphic variables assessment was
performed according to Cummins and Midlo [54], by one of the authors (M.F-V.) who was
blind to the status of the subjects, and in the same way as described in [12].

2.4. Statistical Analyses

All the data was processed in SPSS (SPSS 27.0, IBM SPSS Statistics for Windows,
version 27.0, released 2020, IBM Corporation, Armonk, NY, USA). The Hardy–Weinberg
equilibrium of the genotypes and the genetic models was tested using PLINK v1.07 [55],
a toolset designed to develop genetic association analysis in a computationally efficient
manner. Tests for sex distribution and age differences across diagnostic categories were
conducted using chi-square (χ2) and Mann–Whitney (U) tests, respectively (SPSS).

Based on the sample distribution and to maximize the power, all the analyses were
conducted assuming a minor allele dominance model. Then, the genotypes were di-
chotomized by grouping the minor and the heterozygous genotypes (rs2023239-TC/CC
(C-allele carriers (Ccar)) vs. rs2023239-TT, and rs806379-AT/TT (T-allele carriers (Tcar)) vs.
rs806379-AA).

Firstly, we examined the genetic association of CNR1-rs2023239 and CNR1-rs806379
genotypes with the risk for SSD. Secondly, we evaluated the effect of the dominant model
on each dermatoglyphic measure separately in each diagnostic group. Lastly, we explored
whether there was a modulation effect of the CNR1 variants on the relationship between
dermatoglyphic variables and SSD vulnerability. For this purpose, we tested the interaction
between the genotypes and each of the dermatoglyphic measures on the risk for SSD. All
the analyses were conducted with logistic or linear regressions, when appropriate, and
included sex as a covariate. When the nominal p-values (pnom) reached the significance
threshold (pnom ≤ 0.05), the empirical p-values (pemp) obtained after a 10,000 permutations
procedure are reported, with a significance threshold set at pemp ≤ 0.05. To comprehend
the effect of the significant interactions detected with PLINK, we subsequently obtained
the corresponding predicted probabilities and plotted them (SPSS).

We calculated the genetic power of our case-control sample using the Quanto v1.2.4 [56]
by assuming an additive model, a disease prevalence of 3% and the minor allele frequencies
observed in our sample. The two markers had an 80% power to detect a genetic effect with
an OR ≥ 1.48. For the post hoc statistical power calculation of the association analyses
between the polymorphisms and dermatoglyphic variables, we used G*Power 3.1.9 [57].
As regards the rs2023239, our sample was powered (1-β = 0.80, α = 0.05) to detect inter-
mediate effect sizes (d > 0.52, both in HC and SSD) in the between-groups comparison of
the dermatoglyphic variables. For example, it corresponds to a difference of 5.85 in the
TABRC or 0.19 in the PII between the TT genotype and Ccar. Concerning the rs806379, our
sample was powered to detect intermediate effect sizes (HC: d > 0.48; SSD: d > 0.56), which
represents a difference of 5.95 in the TABRC or 0.20 in the PII between the AA genotype
and Tcar.

3. Results
3.1. Dermatoglyphic Assessment

The dermatoglyphic data of the variables used in the analysis (TABRC, ABRC-FA, and
PII) are reported in Tables 1 and 2. As shown in these tables, there were no dermatoglyphic
differences between males and females in the whole sample or within diagnostic groups
(Table 1). Within patients, we did not observe any difference between left and right ABRC
or PII, while controls did present larger left-hand ABRC, but similar PII scores (Table 2).
Further data on finger figure frequencies are given in Supplementary Table S1.
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Table 1. Dermatoglyphic variability by group and sex. Description of the dermatoglyphic variability
between males (M) and females (F), and healthy controls (HC) and patients with schizophrenia-
spectrum disorders (SSD) in the whole sample and separated by diagnosis.

Dermatoglyphic Variables Whole Sample
HC SSDDiagnosis Sex

TABRC
Mean (SD) HC: 84.61 (10.41)

SSD: 82.85 (10.86)
M: 86.22 (9.24)
F: 83.68 (11.56)

M: 85.04 (9.33)
F: 80.22 (11.76)

M: 87.78 (9.01)
F: 84.62 (11.41)

Statistics β = −0.033=, se = 3.841,
W = 3.841, pnom = 0.050

T = 1.582
pnom = 0.116

T = 1.744
pnom = 0.086

T = 1.450
pnom = 0.150

ABRC-FA
Mean (SD) HC: 2.7 (1.96)

SSD: 3.5 (3.53)
M: 3.24 (2.64)
F: 3.70 (3.10)

M: 3.00 (2.81)
F: 3.56 (3.19)

M: 3.57 (2.40)
F: 3.74 (3.11)

Statistics β = −0.054, se = 0.062,
W = 0.754, pnom = 0.385

T = −1.038
pnom = 0.301

T = −0.693
pnom = 0.491

T = −0.296
pnom = 0.768

PII
Mean (SD) HC: 1.22 (0.32)

SSD: 1.12 (0.32)
M: 1.19 (0.33)
F: 1.10 (0.35)

M: 1.17 (0.03)
F: 1.15 (0.29)

M: 1.26 (0.30)
F: 1.03 (0.42)

Statistics β = 0.050, se = 0.652,
W = 0.006, pnom = 0.938

T = 1.339,
pnom = 0.184

T = 0.219
pnom = 0.828

T = 1.752
pnom = 0.090

Mean and standard deviation (sd) are reported for the total a-b ridge count (TABRC), the a-b ridge count
fluctuating asymmetry (ABRC-FA), and the pattern intensity index (PII) in all groups. The statistical tests applied
are either a T-test or a logistic regression covaried by sex, and the associated nominal p-values (pnom) are given.

Table 2. Dermatoglyphic variability by hand. Description of the dermatoglyphic variability between
right (R) and left (L) hands in the whole sample and separated by diagnosis.

Dermatoglyphic Variables Whole Sample HC SSD

ABRC
Mean (SD) R: 41.70 (5.55)

L: 44.14 (5.78)
R: 41.77 (5.86)
L:43.29 (5.60)

R: 41.87 (6.33)
L: 42.01 (5.10)

Statistics T= −3.186
pnom = 0.002

T = −2.540
pnom = 0.012

T = −0.154
pnom = 0.878

PII

Mean (SD) R: 1.16 (0.38)
L: 1.11 (0.42)

R: 1.19 (0.35)
L: 1.12 (0.37)

R: 1.20 (0.33)
L: 1.13 (0.35)

Statistics T = 0.544
pnom = 0.588

T = 1.294
pnom = 0.197

T = 1.216
pnom = 0.226

Mean and standard deviation (sd) are reported for the a-b ridge count (ABRC) and the pattern intensity index
(PII) in healthy controls (HC) and patients with schizophrenia-spectrum disorders (SSD). T-test was applied and
thus the T statistic and the associated nominal p-value (pnom) are given.

3.2. Case-Control Genetic Association Analyses

The minor alleles identified in our whole sample matched those described for the Euro-
pean Population from the 1000 Genomes (rs2023239-C-allele and rs806379-T-allele). The mi-
nor allele frequencies in our whole sample (HC and patients) were 0.359 (rs2023239 C-allele)
and 0.352 (rs806379 T-allele), showing some difference from those in the 1000 Genomes
European Population (0.157 and 0.446, respectively) (the detailed group frequencies are
displayed in Table 3). Despite these differences, the Hardy–Weinberg equilibrium analyses
conducted with PLINK indicate that the observed genotype frequencies do not depart from
the expected, fulfilling the equilibrium both in the whole sample (rs2023239 pnom = 0.13
and rs806379 pnom = 0.23) and within each group (HC: rs2023239 pnom = 0.70 and rs806379
pnom = 0.45; Patients: rs2023239 pnom = 0.42 and rs806379 pnom = 1). Neither allele nor
genotype frequencies differed between males and females.

Genetic association analysis showed that both CNR1 polymorphisms were signifi-
cantly associated with the disorders’ liability (Table 3). Regarding rs2023239, we detected
an overrepresentation of Ccar among HC compared to patients; therefore, the TC/CC geno-
types were associated with a protective effect (OR < 1). Concerning rs806379, we detected
an overrepresentation of Tcar among patients with SSD; then, the AT/TT genotypes were
associated with a risk effect (OR > 1).



Biomedicines 2024, 12, 2270 7 of 14

Table 3. Genetic association data of CNR1 polymorphisms with Schizophrenia-Spectrum Disorders.
Allelic and genotypic counts are given for the healthy controls (HC, n = 112) and patients with
schizophrenia-spectrum disorders (SSD, n = 97).

Alleles HC SSD Statistics Significance

rs2023239 (T/C) 121/103
(0.54/0.46)

147/47
(0.76/0.24)

χ2 = 21.39
OR [95%CI] = 0.376

[0.245–0.572]

pnom = 3.76 × 10−6

pemp = 1.00 × 10−4

rs806379 (T/A) 167/57
(0.75/0.25)

104/90
(0.54/0.46)

χ2 = 20.00
OR [95%CI] = 2.535

[1.679–3.829]

pnom = 7.73 × 10−6

pemp = 1.00 × 10−4

Genotypes HC SSD Statistics Significance

Additive model
rs2023239 (TT/TC/CC)

34/53/25
(0.31/0.47/0.22)

57/33/7
(0.59/0.34/0.07)

W = −4.182
OR [95%CI] = 0.377

[0.239–0.596]

pnom = 2.89 × 10−5

pemp = 1.00 × 10−4

Dominant model
rs2023239

(TT vs. Ccar)

34/78
(0.31/0.69)

57/40
(0.59/0.41)

W = −3.995
OR [95%CI] = 0.285

[0.154–0.528]

pnom = 6.46 × 10−5

pemp = 2.00 × 10−4

Additive model
rs806379 (AA/AT/TT)

64/39/9
(0.57/0.34/0.1)

28/48/21
(0.29/0.49/0.22)

W = 3.909
OR [95%CI] = 2.434

[1.558–3.803]

pnom = 9.28 × 10−5

pemp = 1.00 × 10−4

Dominant model
rs806379

(AA vs. Tcar)

64/48
(0.57/0.35)

28/69
(0.29/0.71)

W = 3.768
OR [95%CI] = 3.249

[1.760–5.996]

pnom = 1.65 × 10−4

pemp = 4.00 × 10−4

The case-control statistical comparison parameters are shown: chi-squared/logistic regression statistics (χ2/W),
Odds Ratio (OR) and confidence interval [95%CI], and both nominal (pnom) and empirical (pemp) p-values
after permutation.

3.3. CNR1 Genotypes Effect on Dermatoglyphic Patterns

We inspected the genotypic effect on TABRC, ABRC-FA, and PII within each diagnostic
group (Table 4).

Table 4. Description of the dermatoglyphic traits according to group and genotype for the two CNR1
variants.

SNP Diagnosis Genotype TABRC ABRC-FA PII

rs2023239
HC

TT 82.86 (13.56) 3.14 (2.40) 1.03 (0.41)
Ccar 86.84 (9.25) 3.88 (3.00) 1.29 (0.28)

SSD TT
Ccar

83.70 (11.15) 2.97 (3.05) 1.19 (0.36)
83.86 (8.93) 3.38 (2.72) 1.11 (0.33)

rs806379
HC

AA 87.49 (9.53) 3.90 (3.12) 1.18 (0.28)
Tcar 83.43 (11.75) 3.39 (2.47) 1.12 (0.43)

SSD
AA 85.94 (7.69) 3.06 (3.04) 1.23 (0.34)
Tcar 82.94 (10.91) 3.18 (2.88) 1.14 (0.31)

HC: Healthy Controls; SSD: Schizophrenia Spectrum Disorder; TABRC: Total A-B Ridge Count; ABRC-FA: A-B
Ridge Count–Fluctuating Asymmetry; PII: Pattern Intensity Index. Means (standard deviations) are given.

The data revealed effects within HC. First, the rs2023239-Ccar presented higher PII
scores as compared to TT-homozygous (β = 0.354, se = 0.140, 95%CI = 0.081:0.628, W = 2.537,
pnom = 0.017, pemp = 0.016. Second, the rs806379-Tcar had lower TABRC as compared to
AA-homozygous (β = −4.370, se = 2.089, 95%CI = −8.464:−0.276, W = −2.092, pnom = 0.039,
pemp = 0.038. No CNR1 effect on dermatoglyphic markers was detected in patients.

Lastly, we found that CNR1-rs2023239 variability significantly modulated the relation-
ship between the PII and SSD risk. The logistic regression model (including the rs2023239,
the PII and their interaction) was globally significant (W = 9.822, pnom = 0.044, pemp = 0.044),
as well as the interaction term (W = −2.361, se = 1.604, OR = 0.023, OR [95%CI] = 0.001:0.526,



Biomedicines 2024, 12, 2270 8 of 14

pnom = 0.018, pemp = 0.039). Subsequently, the predicted probabilities were obtained and
plotted (Figure 2). The scatter plot showed that the relationship between the SSD risk and
the PII was inverse depending on the rs2023239 genotype. More specifically, the individuals
who were rs2023209-Ccar and had a higher PII presented a lower predicted probability
towards SSD risk. In contrast, AA-homozygous and the same high levels of PII depicted
the opposite relationship with the risk.
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pattern intensity index (PII) on the risk for schizophrenia-spectrum disorders (SSD). A lower predicted
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4. Discussion

This study aimed to investigate the shared genetic underpinnings of SSD and dermato-
glyphic patterns by assessing whether CNR1 genetic variability influences the relationship
between dermatoglyphic pattern deviances and SSD liability. To the best of our knowledge,
this is the first study to explore the role of the endocannabinoid system in dermatoglyphic
pattern variability, and the derived results point towards the combined effect of CNR1 and
dermatoglyphics on modulating the risk towards SSD.

First, our results suggest that the two CNR1 polymorphisms (rs2023239 and rs806379)
may play a role in predisposing individuals to SSD. As reviewed by Gouvêa et al. [34],
although numerous association studies have explored the impact of CNR1 variability
on schizophrenia, SSD, and other related clinical outcomes with largely negative results,
the existing data is quite heterogeneous in terms of population origin and SNP selection.
Regarding our sample, particularly in the HC group, the observed allelic frequencies differ
from those reported in the European population of the 1000 Genomes Project. Several
factors may account for this discrepancy. First, the 1000 Genomes data represents the
broader European population, while our sample is exclusively of French origin, which
may introduce specific population variations. Second, the limited size of our sample could
also be related to certain hazardous deviations of the observed allelic frequencies in the
reference population. However, such potential bias may be mitigated by the fact that the
genotypic frequencies in our whole sample and in each group separately fulfill the Hardy–
Weinberg equilibrium. However, sampling bias is a potential factor that can occur in studies
with limited sample sizes, and therefore, results should be interpreted carefully, especially
when extrapolating our findings to other populations. Therefore, as emphasized by the
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above-mentioned review, new investigations on the CNR1 role in the risk for psychiatric
disorders are needed.

Focusing on the rs2023239, while there is no previous evidence of its association with
the risk for psychosis per se, a modulation effect in the evolution of the psychopathological
features and brain structural changes along the course of first-episode psychosis has been
described [34,58]. This polymorphism has also been associated with the risk of metabolic
syndrome in patients with SSD [59]. On the other hand, previous studies failed to associate
the rs806379 with the risk for schizophrenia in a Brazilian sample [34], or with the risk
for metabolic syndrome [59]. However, considering other phenotypes associated with
psychosis, evidence indicates that, under exposure to early psychosocial adversity, the
rs806379 modulates impulsivity control in healthy adolescents [60]. These associations
may be driven by mechanisms unrelated to protein sequence since they lie in intronic
regions, but they may be related to expression regulatory mechanisms. In this sense, the
rs2023239 seems to influence CB1 receptor density in lymphocytes [52]. If lymphocyte CB1
levels mimic the central nervous system ones, receptor availability changes could result in
neurotransmission effects. Indeed, these two SNPs (rs2023239 and rs806379) in combination
with another (rs1535255) have been associated with low levels of CB1 receptor mRNA in
the cerebral cortex and the midbrain [53], reinforcing the evidence of the modulatory effects
of intronic variants on the receptor availability in the brain. It is also of interest that CB1
levels influence the expression of differentiation signals in various neuronal lineages [44]
and that several studies report altered endocannabinoid receptor concentrations in patients
with schizophrenia in the dorsolateral prefrontal cortex, the posterior and anterior cingulate
cortex [49,61–63].

Second, our findings link the CNR1 rs2023239 and rs806379 variants with PII and
TABRC variability inHC. On the one hand, we describe that the rs2023239-C allele is associ-
ated with higher PII, which means that this allele, observed in less frequency in patients
than in controls in our sample, is in turn related to higher dermatoglyphic complexity, as
represented by the presence of whorls and loop patterns. These results align with previous
data reporting lower finger dermatoglyphic patterns complexity assessed through the
frequency of the fingertip figures in schizophrenia and schizotypal traits [64–66]. On the
other hand, studies assessing TABRC as a developmental biomarker evidenced ridge count
reductions in patients with schizophrenia and with SSD, as well as in subgroups of patients
with reported perinatal complications [12,17–19]. Hence, the detected association of the
rs806379-Tcar with TABRC reductions in HC would also support previous findings from
case-control association studies

We would have expected also to find a CNR1 modulation effect on patients’ der-
matoglyphic measures. Nonetheless, these results could reflect, on the one hand, the low
expected penetrance that two single common variants have on these complex phenotypic
measures. On the other hand, considering a multifactorial and polygenic context, we must
consider the effect of different genetic and environmental forces underlying the dermato-
glyphic configurations, as in the risk for psychosis [12,19,67,68]. Therefore, by analyzing
two SNPs, it is noticeable that we are focusing on a particular biological pathway to assess
its effect on dermatoglyphic complexity and we should not forget that the developmental
stability patterns of an individual are shaped by its global genetic makeup together with
the environmental context [12,19]. Accordingly, our findings in HC and not in patients
could indicate group differences in the sensitivity to gene–environmental insults along
neurodevelopmental processes and, particularly, in the effects that such group-specific
ontogenetic patterns may have on dermatoglyphic markers.

Third, we assessed whether CNR1 modulated the dermatoglyphics SSD association.
The analyses revealed an interplay between the rs2023239 and PII on the liability for
these disorders. Individuals carrying the C-allele and with high PII scores showed a
reduced liability for SSD, contrarily to TT-homozygous with the same PII. The interac-
tion results are aligned with the case-control association data and the dermatoglyphic
modulation effect observed within HC. On the one hand, these findings emphasize the
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modulation role of CNR1 in the connection between dermatoglyphic markers and SSD,
showing that the relationship between this neurodevelopmental marker and SSD liability
can be inverse depending on the CNR1 genotypes. The intricacy of these inverse genetic
effects could be explained by the presence of differential adaptability, which allows
risk and protective genotypes to persist through generations by potentially conferring
adaptive effects to different environmental conditions. In the current framework, such
conditions could be related to prenatal insults predisposing to SSD and having variable
effects on the mechanisms involved in ectodermal derivatives development depend-
ing on the specific time of occurrence. On the other hand, our results relate the CNR1
gene to a particular neurodevelopmental marker, the dermatoglyphic configurations.
Many CNR1 × environmental interactions have been described involving cannabis use,
stressful life events and childhood adversity on SSD susceptibility, SSD brain-based phe-
notypes and other mental disorders [60,69,70]. This, together with evidence suggesting
a hypoxia modulation effect on CNR1 mRNA levels [50], could lead to thinking about
an interplay between CNR1 and adverse prenatal environmental factors impacting the
developmental trajectories reflected in dermatoglyphic and brain alterations. In this
sense, future studies extending our data by assessing obstetric and perinatal compli-
cations would be of great value to evaluate the environmental influences on the brain
and dermatoglyphic variables and pave the way for gene × dermatoglyphics studies in
neurodevelopmental disorders.

Lastly, some limitations should be acknowledged. First, new analyses in larger sam-
ples are needed to confirm our findings. Despite selecting two CNR1 variants based on
their relevance for SSD and neurodevelopment, the use of two SNPs neither represents the
polygenic background of schizophrenia and SSD nor the whole genetic determinants of der-
matoglyphic configurations. Further studies inspecting the role of genetic variants across
the endocannabinoid system or even genome-wide on dermatoglyphic measurements
captured through automated and multivariate approaches would help to comprehend
the relationship between SSD and dermatoglyphics and to develop predictive statistical
methodologies applied in the development of diagnostic tools. In this sense, the combina-
tion of genomic approaches with machine learning algorithms already developed based on
dermatoglyphic patterns [71] will potentially enhance the development of tools that better
identify vulnerable subgroups of patients with a higher burden of neurodevelopmental
alterations. Moreover, since dermatoglyphic patterns can be easily accessed and assessed,
they can become a very valuable asset for the development of these tools compared with
more invasive, inaccessible, or overall expensive markers.

In conclusion, our results add to previous evidence implicating the endocannabinoid
system with neurodevelopmental disorders, such as SSD, and represent new evidence
regarding the CNR1 gene in the development and variability of dermatoglyphic patterns.
While these data are consistent with the established role of the Cannabinoid receptor 1
in epidermal differentiation and skin development, and its involvement in psychosis
risk and environmental insults sensitivity, new research in larger samples is needed.
These data open new venues for investigation by reflecting the complexity and mul-
tifactorial nature of both dermatoglyphic patterns and SSD and pointing towards the
need to combine genomic and environmental data with different neurodevelopmental
markers, not only to understand the etiological mechanisms of SSD but also to develop
new tools to improve the characterization and treatment of individuals with a higher
neurodevelopmental burden.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12102270/s1, Supplementary Table S1. Description
of the finger figures frequency (%) between right (R) and left (L) hands in the whole sample, by
diagnosis and by sex.
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