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Abstract: Background: Extended-spectrum β-lactamases (ESBL) in Escherichia coli are a serious
concern due to their role in developing multidrug resistance (MDR) and difficult-to-treat infec-
tions. Objective: This study aimed to identify ESBL-carrying E. coli strains from both clinical and
environmental sources in Lusaka District, Zambia. Methods: This cross-sectional study included
58 ESBL-producing E. coli strains from hospital inpatients, outpatients, and non-hospital environ-
ments. Antimicrobial susceptibility was assessed using the Kirby–Bauer disk diffusion method and
the VITEK® 2 Compact System, while genotypic analyses utilised the Illumina NextSeq 2000 sequenc-
ing platform. Results: Among the strains isolated strains, phylogroup B2 was the most common,
with resistant MLST sequence types including ST131, ST167, ST156, and ST69. ESBL genes such as
blaTEM-1B, blaCTX-M, blaOXA-1, blaNDM-5, and blaCMY were identified, with ST131 and ST410 being the
most common. ST131 exhibited a high prevalence of blaCTX-M-15 and resistance to fluoroquinolones.
Clinical and environmental isolates carried blaNDM-5 (3.4%), with clinical isolates showing a higher
risk of carbapenemase resistance genes and the frequent occurrence of blaCTX-M and blaTEM variants,
especially blaCTX-M-15 in ST131. Conclusions: This study underscores the public health risks of
blaCTX-M-15- and blaNDM-5-carrying E. coli. The strengthening antimicrobial stewardship programmes
and the continuous surveillance of AMR in clinical and environmental settings are recommended to
mitigate the spread of resistant pathogens.
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1. Introduction

Antimicrobial resistance (AMR) is a global concern, with the World Health Organi-
sation (WHO) reporting that the rise of antibiotic-resistant bacteria could render essential
drugs ineffective for the treatment of common infections [1,2]. The misuse of antimicrobials
in livestock feed [3], human medicine [4], and agriculture has significantly contributed to
about 50–80% of the emergence and spread of AMR [5,6]. The WHO’s Global Report on
AMR highlights alarming levels of bacterial resistance to commonly used antimicrobials
worldwide, leading to ineffective treatment for common infections, such as urinary tract
infections, respiratory tract infections, gastrointestinal infections, and bloodstream infec-
tions [5,7]. In the absence of successful preventative measures, it is projected that by 2050,
AMR may become a leading cause of mortality globally. Estimates suggest that mortality
directly attributable to AMR rose to 1.2 million in 2019, with projections indicating up to
10 million deaths annually by 2050 if appropriate measures are not implemented [5].

AMR poses a particular threat in sub-Saharan Africa (SSA), where the projected
mortality rate is the highest at 23.5 deaths per 100,000 people [8]. In central SSA, the
mortality rate attributed to AMR is 20.7 (14.9–27.7) per 100,000 individuals [9]. Countries
like Zambia face a considerable public health challenge from AMR, though data on its full
impact is limited. A 2019 study reported 3700 deaths directly attributable to AMR and
15,600 associated with AMR, ranking the country 191st globally [8,10,11].

Multidrug-resistant (MDR) infections, especially from pathogens such as Escherichia
coli, pose significant risks due to limited treatment options. These infections lead to severe
conditions and therapeutic challenges, particularly in paediatric patients and intensive
care unit (ICU) patients [12]. The prevalence of MDR pathogens has risen, with increasing
resistance rates observed in recent years [13]. The WHO recognises MDR bacteria as a
global health threat, stressing the need for timely detection and treatment to reduce high
mortality and morbidity rates [14].

E. coli is a member of the ESKAPE group of pathogens, including Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp.—and is ranked among the top six most deadly MDR microorgan-
isms [15]. It is usually associated with the production of extended-spectrum β-lactamases
(ESBL), and its isolates commonly harbour plasmids containing ESBL genes, which con-
fer resistance to various antibiotic classes, including tetracyclines, β-lactams, quinolones,
macrolides, sulfonamides and aminoglycosides [4].

ESBL production has become a global problem in recent decades, primarily associated
with E. coli, Klebsiella species, and other members of the Enterobacteriaceae family, with recent
studies reporting a rise in β-lactamase production in these organisms [15]. In SSA, ESBL-
producing E. coli is increasingly recognised as a significant pathogen in invasive infections,
such as bacteremia, posing a severe threat to clinical practice. ESBLs are plasmid-borne
enzymes that hydrolyse β-lactam rings in penicillins, broad-spectrum cephalosporins,
and monobactams, leading to the loss of bactericidal activity [16]. A Zambian study
previously reported a high positivity rate (31.8%) for ESBLs in E. coli isolates from clinical
and environmental specimens [16]. Another study from Indonesia found an 85% prevalence
of ESBL-producing E. coli [17,18]. However, little is known about the horizontal gene
transfer of resistant bacteria in this region [9,10,14,19]. In Zambia, there is growing concern
over rising AMR rates, particularly regarding frequently used empirical treatments [20].

The misuse of antibiotics creates unnatural selective pressure in clinical and natural
environments, harming human and animal health [4,21]. Bacterial resistance arises natu-
rally from genetic mutations or the acquisition of new resistance genes through horizontal
gene transfer mechanisms [22]. Resistance to third-generation cephalosporins in bacte-
rial pathogens is linked to ESBL gene acquisition, with ESBL-producing enteric bacteria
colonising 14% of the global population and increasing by 5.4% annually [23,24].

The global spread of blaCTX-M-15, the predominant CTX-M variant, is associated with
other variants such as blaCTX-M-14, -15, -27, and blaCTX-M-55, indicating the potential for trans-
mission between humans and animals [25,26]. A study in the Netherlands reported that
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blaCTX-M 15 was the most prevalent (31.3%) ESBL type, with similar findings in Sudan,
Egypt, and Saudi Arabia [27]. Recent studies in Zambia have also identified blaCTX-M genes,
particularly blaCTX-M-15, in E. coli isolates from urinary tract and bloodstream infections [26].
Further studies revealed similarities in plasmid backbones among ESBL-producing E. coli
strains from different lineages, including strains isolated from animals such as chickens,
cattle, and swine, as well as humans [28]. The multiple transmission levels of strains,
plasmids, and possibly genes within Zambia require the investigation of the key drivers
using a “One Health” approach to combat the current ESBL epidemic.

Therefore, this study sought to analyse the genetic profiles of ESBL-producing E.
coli strains in Lusaka, Zambia, to assess their distribution, transmission dynamics, and
potential public health implications. We hypothesised that the genetic characteristics of E.
coli isolates from clinical and environmental sources are similar, underscoring the urgent
need for coordinated efforts to address this growing threat.

2. Results
2.1. Prevalence of Antimicrobial Resistance

A total of 980 samples were analysed, comprising 480 clinical and 500 environmental
samples. Overall, 632 samples (332 clinical and 300 environmental samples) (64.5%) tested
positive for E. coli. Of these, 31.8% (201/632) of E. coli isolates (141 clinical and 60 environ-
mental) were identified as ESBL-producers on the VITEK compact system. Out of these
isolates, 34.8% (49/141) and 15% (9/60) from clinical sources (urine, pus, and blood) and
environmental sources (water, meat, medical equipment, and vegetables), respectively,
were subjected to Whole-GenomeSequencing (WGS).

The E. coli isolates were susceptible to amikacin (AMK) (100%), ertapenem (ERT)
(94.8%), imipenem (IMP) (96.6%), meropenem (MEM) (96.6%), ciprofloxacin (CIP) (91.4%),
levofloxacin (LEV) (86.3%), amoxicillin-clavulanate (AMC) (69%), cefazolin (KZ) (91.4%),
ceftriaxone (CRO) (91.4%), and gentamicin (CN) (68.9%). All ESBL isolates exhibited
extremely high resistance to ampicillin (94.8%), followed by nitrofurantoin (NIT) (48.3%),
trimethoprim-sulfamethoxazole (SXT) (41.3%), and tetracycline (TET) (41.3%) (Figure 1).

Ceftriaxone (CRO), ampicillin (AMP), amoxicillin-clavulanate (AMC), cefuroxime
(CXM), ciprofloxacin (CIP) and trimethoprim-sulfamethoxazole (SXT) were linked to multi-
ple phylogroups (A, B2, F, C, D G), with phylogroup B2 being the most common for both
environmental and clinical isolates (Table 1).

Table 1. Characterisation of AMR genes and phylogroup in ESBL-producing E. coli strains.

Resistant Phenotype
Phylogroup

Environment Clinical

AMP_AMC_CXM_NAL_CHL B2
CRO_AMP_AMC_CXM_CIP B2 A, B2, F
CRO_AMP_AMC_CXM_CIP_CHL B2
CRO_AMP_AMC_CXM_CIP_CHL_CN A
CRO_AMP_AMC_CXM_CIP_CHL_MEM_IMP A
CRO_AMP_AMC_CXM_CIP_CN B2 A, B2
CRO_AMP_AMC_CXM_CIP_NAL A, B1
CRO_AMP_AMC_CXM_CIP_NAL_SXT C
CRO_AMP_AMC_CXM_CIP_NAL_SXT_CN A
CRO_AMP_AMC_CXM_CIP_SXT A, B2, C, D, G
CRO_AMP_AMC_CXM_CIP_SXT_CHL B2
CRO_AMP_AMC_CXM_CIP_SXT_CN B2
CRO_AMP_AMC_CXM_CIP_SXT_CN_IMP_MEM C
CRO_AMP_AMC_CXM_CIP_SXT_NAL B2 A, B2
CRO_AMP_AMC_CXM_SXT_CHL B1
CRO_AMP_AMC_SXT_CHL B1
CRO_AMP_AMC_SXT_CHL_CN B1
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Table 1. Cont.

Resistant Phenotype
Phylogroup

Environment Clinical

CRO_AMP_AMC_SXT_CIP_NAL A, C
CRO_AMP_CXM_CIP_NAL B2
CRO_AMP_CXM_CIP_SXT B2
CRO_AMP_CXM_CIP_SXT_AMC_NAL B1, B2
CRO_AMP_CXM_CIP_SXT_NAL B2
CRO_AMP_CXM_CIP_SXT_NAL_CHL_CN B2
CRO_AMP_SXT_CXM_CHL B2
CRO_AMP_SXT_CXM_CIP B2

Key: AMP (ampicillin); AMC (amoxicillin-clavulanic acid); CXM (cefuroxime); NAL (nalidixic acid); CHL (chlo-
ramphenicol); CRO (ceftriaxone); CIP (ciprofloxacin); SXT (trimethoprim-sulfamethoxazole); CN (gentamicin);
MEM (meropenem); IMP (imipenem).
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The distribution of phenotypic antibiotic resistance among clinical and environmen-
tal E. coli isolates in Table 2; no significant differences was observed among the gene
distribution in clinical and environmental E. coli.
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Table 2. Antibiotic susceptibility patterns in E. coli genes.

Antibiotic
Clinical Sources Environmental Sources

Resistant Intermediate Susceptible Resistant Intermediate Susceptible p-Value

Tetracyclines 4 (3.39%) 2 (1.69%) 28 (23.72%) 2 (1.69%) 0 (0%) 47 (39.83%) 0.07
Chloramphenicol 0 (0%) 1 (0.84%) 33 (27.96%) 1 (0.84%) 5 (4.24%) 43 (36.44%) 0.33
Aminoglycosides 15 (12.71%) 8 (6.78%) 11 (9.32%) 14 (11.86%) 11 (9.32%) 22 (18.64%) 0.71
Trimethoprim 25 (21.18%) 0 (0%) 9 (7.62%) 20 (16.94%) 2 (1.69%) 20 (16.94%) 0.24
Fluoroquinolones 0 (0%) 1 (0.84%) 33 (27.96%) 0 (0%) 0 (0%) 48 (40.67%) 0.32
Lincosamide
Streptogramins’ B 3 (2.54%) 12 (10.17%) 19 (16.1%) 2 (1.69%) 13 (11.01%) 33 (27.69%) 0.33

Sulphonamide 18 (15.25%) 2 (1.69%) 14 (11.86%) 17 (14.4%) 12 (10.17%) 10 (8.47%) 0.07
Disinfectants 1 (0.84%) 1 (0.84%) 32 (27.12%) 1 (0.84%) 0 (0%) 48 (40.67%) 0.41

The distribution of AMR genes and β-lactamase production in ESBL-producing E. coli
strains from clinical and environmental isolates (Figure 2). Resistance patterns between
CRO-AMP-CXM-CIP and CRM-AMP-AMC-CXM and CIP SXT showed a strong correlation
with blaCTX-M 15, while susceptibility was observed for blaOXA-10, blaNDM_5, blaCTX-M 14,
blaTEM 141, blaTEM-206, blaTEM-216 and blaTEM-214.
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Figure 2. Heat map indicating the abundance of phenotypically resistant AMR genes and β-lactamase
production in ESBL-producing E. coli strains from clinical and environmental isolates. Darker colours
indicate stronger correlations, while lighter colours represent weaker correlations. Key: AMP
(ampicillin); AMC (amoxicillin-clavulanic acid); CXM (cefuroxime); NAL (nalidixic acid); CHL
(chloramphenicol); CRO (ceftriaxone); CIP (ciprofloxacin); SXT (trimethoprim-sulfamethoxazole);
CN (gentamicin); MEM (meropenem); IMP (imipenem).

Quinolone (10%) AMR genes were the most prevalent group, followed by resistance
genes for β-lactams, aminoglycosides, genes encoding for efflux pumps (approximately
7.5% respectively), resistance genes for fosfomycin, sulphonamide, tetracycline, trimetho-
prim, macrolides (approximately 5.0% respectively), colistin, mercury, bleomycin, phenicol,
tellurium, silver, nitrofuran, rifamycin, and arsenic (approximately ≤ 2.5%, respectively)
(Figure 3).
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Figure 3. Distribution of AMR genes in antibiotic classes in ESBL-producing E. coli obtained from
clinical and environmental sources.

The distribution of phylogenetic analysis of E. coli isolates across clinical and envi-
ronmental demonstrated a diverse distribution pattern among different phylogroups. The
findings indicate that phylogroup B2 (59.2% vs 66.7%) was the most prevalent, followed by
phylogroup A (20.4% vs 11.1%), B1 (8.2% vs 11.1%) and C 2.0% vs 11.1%) respectively. The
other phylogroups such as D (4.1%), D, B2 (2.0%), F (2.0%) and G (2.0%) were common in
clinical isolates and exhibited lower frequencies respectively (Figure 4).
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2.2. Distribution of MLST Sequence Type and O-Antigen Serotype

The O-antigen serotype and sequence type (ST) were further identified for bacterial
typing to differentiate strains. A total of 14 distinct STs were identified, ST131 (n = 22,
37.9%), ST167 (n = 8, 13.8%), and ST69 (n = 4, 6.9%) being the most prevalent in clinical
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isolates, whilst ST131 (n = 4, 6.9%) and novel STs (n = 2, 3.5%) dominated environmental
isolates (Figure 5). Overall, 11 different O-antigen serotypes were identified in Figure 5,
with O25 (n = 30, 51.7%) and O101 (n = 7, 12.1%) being the most common in clinical isolates,
and O25 (n = 5, 8.6%) and O101 (n = 2, 3.5%) being found in environmental isolates. The
most prevalent strain across clinical and environmental samples was E. coli O25-ST131
(n = 21, 36.2%), followed by ST167-O101 and ST69-O25, each with 4 isolates (8.6%). ST167-
O25 was identified in 3 clinical isolates (5.2%). The rest of the serotypes and sequence types
exhibited low prevalence (1.7%) in clinical and environmental isolates.
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2.2.1. Prevalence of Resistance Genes for Trimethoprim, Sulphonamides, Tetracyclines, and
Acquired Quinolone Resistance

The prevalence of trimethoprim resistance genes in E. coli was observed as follows:
dfrA12 (13.8%), dfrA14 (17.2%), and dfrA17 (50.0%). There was a higher presence in clinical
isolates (87.5%). The most prevalent resistance genes were sul2 (72.4%) and sul1 (63.7%),
predominantly found in clinical samples (over 80%). tet (A) was the most prevalent
tetracycline resistance gene (63.75%), with a high presence in clinical isolates (83.7%), while
tet (B) was found in 94.1% of the clinical isolates. The acquired quinolone gene aac (6′)-ib-cr5
was present in 32.7% of the isolates, and in 15.7% of environmental isolates, while qnrS1
was found in 66.7% of environmental and clinical isolates. qnrB1 (5.1%) and qnrS1 (5.1%)
were found exclusively in clinical isolates. The high prevalence of resistance genes in E. coli
isolates, particularly those associated with macrolide-lincosamide-streptogramin B (MLSB)
resistance, was notable. The mdf(A) gene was present in 100% of isolates, while mph(A) was
found in 65.8%. Phenicol resistance genes catA1 and catB3 were detected in 15.4% of the
isolates, and floR and cmlA1 were found in 1.9% of the E. coli isolates (Table 3).

Table 3. Distribution of detected AMR genes in clinical and environmental E. coli isolates.

AMR Genes Overall
n (%)

Environmental
n (%)

Clinical
n (%)

Trimethoprim
dfrA12 8 (13.8) 1 (12.5) 7 (87.5)
dfrA14 10 (17.2) 0 (0.0) 10 (100.0)
dfrA1 1 (1.7) 0 (0.0) 1 (100.0)
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Table 3. Cont.

AMR Genes Overall
n (%)

Environmental
n (%)

Clinical
n (%)

dfrA17 29 (50.0) 6 (20.7) 23 (79.3)
dfrA27 1 (1.7) 1 (100.0) 0 (0.0)
dfrB4 1 (1.7) 0 (0.0) 1 (100.0)
Sulphonamides
sul1 37 (63.7) 7 (18.9) 30 (81.1)
sul2 42 (72.4) 7 (16.7) 35 (83.3)
sul3 0 (0.0) 0 (0.0) 0 (0.0)
Tetracycline
tet (A) 37 (63.7) 6 (16.2) 31 (83.2)
tet (B) 17 (29.3) 1 (5.9) 16 (94.1)
tet (M) 0 (0.0) 0 (0.0) 0 (0.0)
Acquired quinolone
resistance
qnrB1 3 (5.1) 0 (0.0) 3 (100)
qnrS1 3 (5.1) 2 (66.7) 1 (33.3)
qnrB6 0 (0.0) 0 (0.0) 0 (0.0)
aac (6′)-ib-cr5 19 (32.7) 3 (15.8) 16 (84.2)
MLSB
mdf(A) 58 (100.0) 9 (17.6) 42 (82.4)
erm(B) 5 (8.6) 0 (0.0) 5 (100.0)
mph(A) 38 (65.8) 6 (16.2) 31 (83.8)
Phenicols
catA1 8 (15.4) 1 (12.5) 7 (87.5)
catB3 8 (15.4) 0 (0.0) 8 (100.0)
floR 1 (1.9) 0 (0.0) 1 (100.0)
cmlA1 1 (1.9) 0 (0.0) 1 (100.0)
Disinfectants
qacE 43 (82.7) 8 (19.0) 34 (81.0)
sitABCD 40 (76.9) 7 (17.9) 32 (82.1)

2.2.2. Prevalence of β-Lactam AMR Genes in in ESBL-Producing E. coli Strains

In all ESBL-producing E. coli isolates from both clinical and environmental samples,
only the blaCTX-M-15 gene was observed across a wide range of sources. It was present in
34.5% of isolates and 10.4% of pus, while in blood, water, meat, equipment, and vegetables
its presence ranged from 1.7% to 5.2%. The blaEC gene was found in 60.4% of urine isolates,
20.7% of pus isolates, and3.5% to 5.2% of other sources. The blaOXA-1 gene was prevalent
in 25.9% of urine isolates. Additionally, two isolates (1.7%) were positive for the blaNDM-5
gene. The blaCTX-M-14, blaCTX-M-55 and blaTEM genes were detected in 1.7%, 1.7% and 3.5%
of the isolates (Table 4), respectively.

Table 4. Genotypic characterisation of β-lactam AMR genes in ESBL-producing E. coli strains.

Beta-Lactam Urine Pus Blood Water Meat Equipment Vegetables

blaCTM-X-14 1 (1.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

blaCTM-X-15 20 (34.5%) 6 (10.4%) 1 (1.7%) 2 (3.5%) 1 (1.7%) 1 (1.7%) 3 (5.2%)

blaCTM-X-55 1 (1.7%) 1 (1.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

blaCTM-X-27 8 (13.8%) 1 (1.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (1.7%) 0 (0.0%)

blaOXA-1 15 (25.9%) 1 (1.7%) 0 (0.0%) 1 (1.7%) 0 (0.0%) 1 (1.7%) 1 (1.7%)

blaTEM-1 16 (27.6%) 2 (3.5%) 0 (0.0%) 2 (3.5%) 0 (0.0%) 2 (3.5%) 1 (1.7%)

blaTEM 2 (3.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
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Table 4. Cont.

Beta-Lactam Urine Pus Blood Water Meat Equipment Vegetables

blaTEM-1 16 (27.6%) 2 (3.5%) 0 (0.0%) 2 (3.5%) 0 (0.0%) 2 (3.5%) 1 (1.7%)

blaEC 35 (60.4%) 12 (20.7%) 2 (3.5%) 2 (3.5%) 1 (1.7%) 3 (5.2%) 3 (5.2%)

blaNDM-5 0 (0.0%) 1 (1.7%) 0 (0.0%) 1 (1.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

3. Discussion

The present study focused on the genetic diversity and AMR of E. coli in clinical and
environmental isolates in Lusaka, Zambia. As a part of this investigation, the genomes of
58 ESBL-producing E. coli isolates were sequenced using WGS. The findings revealed that
E. coli in this region has a growing pan-genome, indicating significant genetic diversity.
The phylogenetic clustering, STs, and phylogroups of the E. coli isolates also displayed
considerable alignment with global variation in resistance genes.

In Zambia, the misuse of antibiotics, particularly third-generation cephalosporins,
has been reported to be a driver for the high resistance observed in humans, animals,
and the environment [29,30]. The rise of antibiotic resistance in E. coli is a major public
health concern, with studies indicating that resistance rates vary among antibiotics. No-
tably, this study found that about two-thirds of the E. coli isolates exhibited resistance
to at least one antibiotic from multiple classes, with the highest rates observed for ampi-
cillin, cefazolin, ciprofloxacin, tetracyclines, and sulfonamide/trimethoprim. In contrast,
carbapenems showed low resistance rates, and no resistance to amikacin was detected
in any of the isolates. These findings are consistent with a study conducted in Yemen,
which reported resistance rates greater than 90% for ampicillin and cefazolin in clinical
isolates [31]. Similarly, a study in Saudi Arabia reported high resistance to nitrofurantoin
(85.4%) and ampicillin (over > 80%) in urine isolates [32]. A study in Turkey also reported
high resistance rates to ampicillin (87.3%) and cefuroxime (71.6%) in patients with urinary
tract infections (UTI), though lower rates were observed in outpatients [33]. The MDR
pattern observed in this study could be attributed to factors commonly associated with low
and middle-income countries. These factors include the misuse of antibiotics, the absence of
effective antibiotic stewardship programmes, limited access to quality healthcare, and the
inadequate regulation of antibiotics [9]. This finding aligns with several other studies, in-
cluding those conducted in Nigeria, which reported the occurrence of MDR and extensively
drug-resistant (XDR) E. coli in poultry [34]. A study in Benin reported resistance rates to
ciprofloxacin (91.3%), levofloxacin (86.3%), and sulfonamide (58.6%) [35]. These resistance
rates call for implementation of strategies to address AMR in a One Health approach.

This finding that antimicrobials are frequently employed in Zambia poultry farming is
consistent with reports of their widespread availability, especially in the absence of robust
antimicrobial stewardship programmes [36]. A study by Fenollar-Penadés et al. (2024) [37]
showed a lower resistance rate to ampicillin (76.9%) in faecal isolates from breeding hens,
which highlights the varying levels of AMR in different environments. The persistence
of resistant E. coli on farms also raises concerns about cross-contamination within and
between flocks.

Globally, the prevalence of ESBL-producing bacteria has risen, with reported cases
ranging from 33% to 91% [38]. In Southern Africa, ESBL genes found in isolates from human,
animal, environmental, and hospital settings are increasingly common [39]. The most
prevalent ESBL gene in this study was blaCTX-M, followed by blaTEM. A Tanzanian reported
similar findings, with blaCTX-M and blaTEM observed in 88.1% and 51.1% of the UTI cases,
respectively [40,41]. This trend has been supported by numerous studies globally, which
have shown the predominance of the blaCTX-M gene, ranging from 80% to 100% [22,39].
Studies in Bangladesh [42] and China [43] reported the prevalence of the blaCTX-M gene to
be 85.71% and 39.5%, respectively, while studies in Zambia have also demonstrated a high
prevalence of blaCTX-M in humans and animals [25,26]. E. coli isolates are positive for ESBL-
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encoding genes, blaCTX-M and blaTEM, suggesting that human, animal, and environmental
isolates are distributing ESBL-producing E. coli.

This study identified the genes responsible for observed resistance phenotypes in E. coli
in Zambia, both in clinical and environmental isolates. A study in Egypt found that the most
prevalent ESBL genes were blaTEM (64%), followed by blaSHV (30%) and blaCTX-M (22%) [44].
A study conducted among intensive care unit patients in Yemen found 100% of blaTEM
genes and 33.3% of blaCTX-M genes [45]. Similarly, a study in Lebanon revealed the presence
of blaCTX-M (92%) and blaTEM (86%) in isolates from wound infections [46], consistent with
the findings of this study. The high prevalence of the blaTEM and blaCTX-M genes reported
in our study and other study indicate the potential of bacteria to hydrolyse beta-lactam
antibiotics. Hence, this requires urgent attention regarding strategies to promote rational
use of antibiotics to reduce AMR.

The widespread prevalence of blaCTX-M among ESBL-producing bacteria can be ex-
plained by the high transfer efficiency of conjugative plasmids-carrying blaCTX-M allele.
This allele has been frequently reported as being most successfully transferred through
horizontal gene transfer [47]. The rapid spread of the blaCTX-M gene contributes to the
unpredictable changes in the epidemiology of AMR, making it a public health concern [48].
Commensal E. coli may serve as a reservoir for these resistance genes, potentially facilitating
human transmission. The high frequency of this gene in clinical and environmental isolates
highlights the increasing threat that antibiotic-resistant bacteria pose to public health. Its
ability to spread quickly contributes to rising rates of antibiotic resistance, complicating
treatment options and posing significant challenges for infection control.

The continued relevance of E. coli as the primary pathogen linked to UTIs is connected
to alterations in the prevalence of certain phylogroups, especially B2. Notably, bacterial
isolates classified as part of the B2 phylogroup are commonly linked to infections outside
the intestines, such as UTIs. The rise in frequency might correlate with a greater number
of virulence-associated genes compared to the other phylogroups. This discovery is why
almost half of the ESBL E. coli isolates in the present study belong to the phylogenetic
group B2. All isolates were positive for O25b-ST131, an ST linked to a pandemic clone
belonging to the B2 phylogroup. A study conducted in a Mexican hospital reported that
the phylogroup B2 caused 54.4% of UTIs. Among these infections, 46.5% were found to be
of the ST131-O25 clone [49].

The pandemic-distributed ST131 clone of the O25:H4 serotype significantly contributes
to hospital- and community-acquired UTIs worldwide. In the present study, multiple
extended-spectrum cephalosporin and fluoroquinolone resistance genes were identified
in the E. coli ST131 strain, with further evidence suggesting that ST131-type E. coli may
acquire resistance genes more effectively, thereby impacting treatment. The ESBL gene
blaCTX-M-15 and ST131 were common in clinical and environmental isolates. The virulent
ST131 E. coli is a predominant lineage among extraintestinal pathogenic E. coli (ExPEC) and
has played a significant role in the global dissemination of blaCTX-M-15. It has been reported
in human and non-human sources in Nigeria [22], Tunisia [50], and China [51].

Two novel MLSTs, ST13383 and ST10955, were identified in this study, harbouring sev-
eral AMR genes such as aminoglycosides, blaCTX-M 15, blaEC and blaTEM-1, sulphonamides,
quinolones (qnrS1), and tetracyclines (tet[A] and tet[B]). Ciprofloxacin, a widely prescribed
antibiotic in Zambia, may be linked to the carriage of aac (6′)Ib-cr and blaCTX-M ESBL due to
its high prescribing rate. Previous studies have reported the connection between quinolone
resistance and sub-lineages of ST131. In a study by Castillo et al. (2024), [37] it was re-
ported that qnrB (85.4%) and qnrS (24.4%) were higher in faeces from breeding hen chickens
compared to the present study, which observed a lower prevalence. This difference may
be attributed to differences in antibiotic usage practices or environmental conditions in
breeding hen farms.
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Over the past decade, the global dominance of short-term carbapenem resistance
has fluctuated, with the prevailing ST shifting from ST131 (43.1%), which exhibits higher
virulence but lower antibiotic resistance, to ST410 and ST167, which demonstrate higher
resistance and slightly reduced virulence [52]. A study in Spain reported that ST131 strains
accounted for 42.3%, followed by China (19.05%), the US (18.85%), and the UK (17.45%) [51].
These findings are consistent with the results in the current study, which showed a high
prevalence of ST131 in both environmental and clinical isolates [53]. These results suggest
that E. coli isolates could pose a risk to humans, animals, and the environment due to MDR.

This study found that phylogroup B2 was dominant in all isolates, followed by phy-
logroup A. However, in Mexico (35%), a report showed that the prevalence of phylogroup
A isolated from patients with UTIs was higher than that of phylogroup D [54].

The present study demonstrated considerable clonal diversity among ESBL-producing
E. coli strains. The emergence of multiple separate clonal groupings underscores the
complex structure of their genetic relationships. This diversity facilitated the prevention
of outbreaks due to the simultaneous presence of numerous populations. In line with
the initial hypothesis, genetic characteristics were found to be similar in both clinical and
environmental sources.

4. Materials and Methods
4.1. Study Site and Sampling

This study employed a three-tier cross-sectional design and was conducted between
July 2022 and March 2023, involving humans, animals, and the environment. The human
component was conducted at the University Teaching Hospital (UTH), a referral tertiary
and highly specialised facility comprising five hospitals: the Adult Hospital, Children’s
Hospital, Mother and Newborn Hospital, Eye Hospital, and Cancer Disease Hospital (CDH).
UTH, with a capacity of approximately 1652 beds, serves as a national referral hospital for
all ten provinces of Zambia. Lusaka Province, where UTH is located, has a population of
approximately 3,079,964 [55] and an estimated household of 687,923 [56]. The animal and
environment components were conducted within the UTH hospital environment and in
sixteen sub-administrative districts (communities) of Lusaka Province.

A convenient sampling method was used to collect 980 clinical samples (urine, blood,
pus, cerebrospinal fluid [CSF]) and environmental samples (borehole water, hospital equip-
ment, fish, meat, and vegetables). A total of 58 isolates were selected from ESBL-positive
isolates, which showed suspected MDR and non-ESBL isolates to be resistant to more than
three classes of antibiotics for sequencing. Clinical samples were obtained from the micro-
biology laboratory, while environment samples were collected from the UTH environment
and transported to the laboratory within three hours.

4.2. E. coli Isolation and Identification

The isolation of E. coli colonies from clinical (human) specimens was performed
on Xylose Lysine Deoxycholate (XLD) agar (Oxoid Ltd., Basingstoke, Hampshire, UK),
MacConkey agar (Oxoid Ltd., Basingstoke, Hampshire, UK), and Hichrome chromogenic
UTI agar (HiMedia Laboratories Pvt. Ltd., Mumbai, India). Urine samples were directly
inoculated onto Hichrome chromogenic UTI agar (HiMedia Laboratories Pvt. Ltd., Mumbai,
India). All the cultured plates were incubated at 37 ◦C for 18 to 24h. The presumptive
identification of the isolates was performed by plating the isolates on Eosin Methylene Blue
(EMB) agar Oxoid Ltd., Basingstoke, Hampshire, UK) incubated further for 18 to 24 h at
37 ◦C.

The environmental samples were inoculated directly into buffered peptone water
(BPW) (Oxoid Ltd., Basingstoke, Hampshire, UK) for enrichment at 37 ◦C for 3 h. A loopful
of the culture was then transferred onto CHROMagar™ ECC (HiMedia Laboratories Pvt.
Ltd., Mumbai, India) agar plates at 37 ◦C for 18 to 24 h to isolate E. coli. A series of
biochemical tests, including triple sugar iron (TSI) agar, lysine iron agar (LIA), Simmons
citrate agar (SCA), and sulphide indole motility (SIM) agar (Oxoid, Basingstoke, UK),
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were used for the presumptive phenotypic identification of the isolates. Biochemical
confirmation of the E. coli isolates was performed using the Vitek II System (bioMérieux
SA, Marcy-l’Étoile, France).

4.3. Antimicrobial Susceptibility Testing

The E. coli isolates studied were subjected to antimicrobial susceptibility testing ac-
cording to the Kirby–Bauer disk diffusion method specified by the Clinical and Laboratory
Standards Institute (CLSI) [57,58]. The antibiotics (Oxoid, Basingstoke, UK) tested included
nalidixic acid (NAL) (30 µg), amoxicillin-clavulanate (AMC) (60 µg), amikacin (AMK)
(30 µg), ceftazidime (CAZ) (30 µg), ampicillin (AMP) (25 µg), ceftriaxone (CRO) (30 µg),
chloramphenicol (CHL) (30 µg), cefepime (FEP) (30 µg), ciprofloxacin (CIP) (10 µg), lev-
ofloxacin (LEV) (10 µg), meropenem (MEM) (10 µg), ertapenem (ETP) (10 µg), imipenem
(IMP) (10 µg), nitrofurantoin (NIT) (300 µg), and trimethoprim-sulfamethoxazole (SXT)
(5 µg). All the plates were incubated at 37 ◦C for 24 h. Susceptibility testing of the isolates
was also performed on the Vitek II System (bioMérieux SA, Marcy-l’Étoile, France). The
choice of antimicrobial drugs was based on the common drugs used for the empirical treat-
ment of E. coli infection in Zambia. Results were interpreted as susceptible, intermediate
or resistant based on the Clinical Laboratory Standards Institute (CLSI) guidelines [57].
E. coli isolates that exhibited resistance to at least three classes of antimicrobial agents
were classified as multidrug-resistant (MDR) [59]. E. coli ATCC 25922 was used as a
reference strain.

ESBL detection was performed by using the double-disk synergy test between clavu-
lanic acid and extended-spectrum cephalosporins (ceftazidime and cefotaxime) on Müeller–
Hinton agar plates [60] after incubation at 37 ◦C for 24 h. ESBL-positive isolates on the
Vitek II System (bioMérieux SA, Marcy-l’Étoile, France) were automatically flagged by
the system.

4.4. Whole-Genome Sequencing and Bioinformatics Analysis

Genomic DNA was extracted using the QIAamp DNA Mini Kit (QIAGEN, Hilden,
Germany) and quantified using the Qubit Fluorometer (ThermoFisher Scientific, Waltham,
MA, USA) following the manufacturers’ protocols.

Libraries were prepared using the Nextera DNA Flex Library Preparation Kit (Illumina
Inc., San Diego, CA, USA) following the manufacturer’s instructions. They were then
sequenced on an Illumina NextSeq 2000 sequencer using a 2 × 150 paired-end protocol
(Illumina Inc., San Diego, CA, USA) at the National Institute for Communicable Diseases
in Johannesburg, South Africa. The quality of the raw sequence reads was assessed using
FastQC v.0.11.9 [61]. Fastp was used to remove adaptors and low-quality reads.

The filtered reads were used as input for de novo genome assembly using the Shovill
v.1.1.0 package (https://github.com/tseemann/shovill; accessed on 22 November 2023)
and incorporated the SPAdes v3.14.1 algorithm [62]. The quality of genomes was assessed
using QUAST v.5.0.2 [63]. The threshold for high-quality genomes was set at <200 contigs
and an N50 > 40,000 bp. Furthermore, CheckM v.1.1.3 [64] was used to determine the level
of completeness and contamination of the assemblies. A threshold of greater than >90%
was used for completeness, while a threshold of less than 5% was used for contamination of
less than 5% [63]. Bactinspector v0.1.3 (https://gitlab.com/antunderwood/bactinspector;
accessed 11 December 2023) was used to identify the sequenced isolates as E. coli.

The sequence types (ST) for the bacteria were identified using the E. coli Multi-locus
Sequence Typing (MLST) scheme, MLST v.2.19.0 (https://github.com/tseemann/mlst;
accessed 27 December 2023), at 100% identity. Genomes were screened against the seven
housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, recA) and assigned an ST that matched
specific allele profiles. Based on a concatenated alignment of these gene sequences obtained
from WGS using the neighbour-joining (NJ) method, a phylogenetic tree with 1000 boot-
strap replicates was constructed. The evolutionary distances were calculated using the
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maximum composite likelihood method. All positions containing gaps and missing data
were excluded from each sequence pair.

The assembled genomes were annotated using Prokka v.1.14.6 [65] and used as input
for pangenome analysis (the totality of genes of all strains in the dataset) using Panaroo
v1.2.7 (https://github.com/gtonkinhill/panaroo; accessed on 2 January 2024). A core
genome sequence alignment of 3060 core genes (i.e., gene families present in 99% of
genomes) was generated. Single-nucleotide polymorphisms (SNPs) were extracted from
the core genome alignment using SNP-sites v.2.5.1 [65]. The core SNP alignment was used
as input for building a maximum likelihood phylogenetic tree using RAxML v.8.2.12 [65]
with a generalised time reversible (GTR [66] model of nucleotide substitution and gamma
distribution of rate heterogeneity. The phylogeny was annotated and visualised using
iTOL [67].

The serotyping of the E. coli isolates was performed using SerotypeFinder online tool
(https://cge.food.dtu.dk/services/SerotypeFinder/, accessed on 2 January 2024). The
genome assemblies were screened for the presence of AMR genetic determinants using
the AMRFinderPlus v.3.10.23 software (https://github.com/ncbi/amr#ncbi-antimicrobial-
resistance-gene-finder-amrfinderplus; accessed on 27 January 2024) and the ResFinder
online tool (https://cge.food.dtu.dk/services/ResFinder; accessed on 15 March 2024),
with identity thresholds of 85% and 98%, respectively. Additionally, a plasmid incompati-
bility database from PlasmidFinder (https://cge.food.dtu.dk/services/PlasmidFinder/,
accessed on 17 March 2024) was utilised to identify and profile plasmids. Using the
Complex Heatmap package in R, AMR phenotypes, genes, and plasmid replicons were
compared across the human and environmental compartments.

4.5. Data Analysis

The data were organised in Excel® 21 spreadsheets and then transferred to STATA® 22
for analysis. We used R version 3.3.2 to examine the rates of resistance (R%), intermediate
(I%), and susceptibility (S%), as well as the link between antibiotics and the phylogroups.

5. Conclusions

This study highlights the significance of genetic diversity and AMR of E. coli isolates
from Lusaka’s clinical and environmental sources. The high prevalence of ESBL-producing
E. coli, particularly strains harbouring blaCTX-M-15, emphasises the urgent need for effective
surveillance and interventions to address the growing threat of antibiotic resistance in
healthcare and environmental settings. Implementing robust infection control measures
and antimicrobial stewardship programmes in healthcare settings is vital to mitigate the
spread of these resistant pathogens and protect the public. This study had some limitations.
First, the sample size was relatively small and restricted to one geographical region, which
may limit the generalisability of the findings. Future research should expand the sample
size and geographical scope to enhance understanding of AMR in clinical and environ-
mental contexts. Mobile genetic element analysis should be incorporated to assess their
role in transmitting resistance genes. Furthermore, developing and implementing robust
antimicrobial stewardship programmes and policies is critical for mitigating the spread of
antibiotic resistance in Zambia and beyond.
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