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Abstract: Research over the past years has compared the enantiomers (S)-ketamine (esketamine)
and (R)-ketamine (arketamine) of the previously known racemic mixture called ketamine (R/S-
ketamine). Esketamine has been found to be more potent, offering three times stronger analgesic
effects and 1.5 times greater anesthetic efficacy than arketamine. It provides smoother anesthesia with
fewer side effects and is widely used in clinical settings due to its neuroprotective, bronchodilatory,
and antiepileptic properties. Approved by the FDA and EMA in 2019, esketamine is currently used
alongside SSRIs or SNRIs for treatment-resistant depression (TRD). On the other hand, arketamine has
shown potential for treating neurological disorders such as Alzheimer’s, Parkinson’s, and multiple
sclerosis, offering possible antidepressant effects and anti-inflammatory benefits. While esketamine is
already in clinical use, arketamine’s future depends on further research to address its safety, efficacy,
and optimal dosing. Both enantiomers hold significant clinical value, with esketamine excelling in
anesthesia, and arketamine showing promise in neurological and psychiatric treatments.
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1. Introduction

In the 1950s, Parke-Davis researched cyclohexylamines to discover an effective induc-
tion agent with analgesic properties, identifying CI395 and CI400. In 1965, Guenter Corssen
and Edward Domino tested CI-581, or ketamine, which proved effective for pediatric
patients, though further adult trials were needed. By 1968, ketamine was established as
a safe anesthetic and analgesic that preserved the airway’s reflexes without significant
post-operative nausea or hypotension. However, it was associated with vivid dreams
and hallucinations during recovery, particularly in adults, which led to its preference in
pediatric care. In the early 1970s, ketamine was introduced in the UK but was deemed
unsuitable as a sole anesthetic for adults, although it remained popular for pain relief and
in veterinary medicine [1–6].

Ketamine’s dissociative anesthetic properties have led to its unique role in clinical
practice, despite early drawbacks such as emergence reactions and cardiovascular stimu-
lation, which limited its use as a standalone anesthetic [7–11]. Combining ketamine with
benzodiazepines helped reduce these side effects [12–15]. While ketamine is often used
as a racemic mixture (R/S-ketamine), the more potent (S)-enantiomer has been preferred
for its better anesthetic and analgesic outcomes, though it can still cause somatic and
psychotomimetic effects, including perceptual disturbances and dissociation [16,17].

Ketamine metabolites, particularly hydroxynorketamine (HNK), have shown an-
tidepressant properties in preclinical studies, suggesting potential treatments that retain
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therapeutic benefits while reducing side effects [18–22]. (S)-ketamine has been found to
cause fewer psychotomimetic effects compared with the racemic mixture, while providing
stronger hypnotic and analgesic effects, faster recovery, and fewer cognitive side effects,
making it more suitable for anesthesia [23–25]. Both (S)- and (R)-ketamine affect multiple
systems, with (S)-ketamine having a higher affinity for the sigma receptors, contributing to
psychotomimetic effects. (R)-ketamine, however, may provide more lasting antidepressant
effects by promoting synaptogenesis, as evidenced by animal studies and early clinical
trials in treatment-resistant depression (TRD) [23,26,27].

Over 40 years of research comparing (S)- and (R)-ketamine has highlighted the supe-
rior pharmacological profile of (S)-ketamine, which is about three times more potent as
an analgesic and 1.5 times stronger as an anesthetic compared with (R)-ketamine. Human
studies have confirmed these findings, with (S)-ketamine offering better anesthesia qual-
ity and fewer side effects, such as involuntary movements, compared with the racemic
mixture [28,29]. Both (S)-ketamine and (R)-ketamine show antidepressant effects through
different mechanisms. (S)-ketamine blocks N-methyl-D-aspartate (NMDA) channels and
activates the opioid receptors, while (R)-ketamine likely acts on the sigma-1 receptors.
Both enantiomers inhibit glycogen synthase kinase-3 beta (GSK3β), contributing to their
antidepressant effects. In major depressive disorder (MDD) patients, (S)-ketamine nasal
spray has antidepressant effects but is less effective than intravenous racemic ketamine in
terms of its response rate, duration, and antisuicidal effects [30–32].

(S)-ketamine has been used for over 30 years in clinical settings for pain relief and anes-
thesia, primarily by blocking NMDA receptors and interacting with opioid, monoamine,
adenosine, and purinergic receptors. It also affects α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors, metabotropic glutamate (mGlu) receptors, and
L-type calcium channels. Its activation of the sympathetic nervous system makes it suitable
for anesthesia and sedation in unstable patients. Its neuroprotective, bronchodilatory,
antihyperalgesic, and antiepileptic properties have expanded its use to emergency settings
since the 1990s. It is particularly beneficial for neurological injuries, bronchospasm, seizures,
and sepsis, with fewer psychotropic side effects compared with racemic ketamine [33].

(R)-ketamine has shown positive results in animal models of neurological disorders,
with potential for treating social cognitive deficits by restoring anterior insular cortex
(aIC) function [34]. Lipopolysaccharide (LPS), a bacterial endotoxin, may play a role in
neurological disorders such as Alzheimer’s disease (AD), other dementias, and Parkinson’s
disease (PD) [35]. Studies indicate that (R)-ketamine may reduce systemic inflammation,
splenomegaly, and behavioral problems in mice treated with LPS [36], as well as in mod-
els of depression, colitis, and sepsis [37,38]. However, its mechanisms of action remain
unclear, requiring further research to explore its molecular pathways and identify new
therapeutic targets [39–44]. Depression is a risk factor for neurological conditions such
as AD, PD, and stroke, with a strong connection between psychiatric and neurological
disorders [45,46]. A Phase II study by Perception Neuroscience on (R)-ketamine (PCN-101)
in treatment-resistant MDD patients suggested that it may help prevent demyelination
and aid in remyelination in multiple sclerosis (MS) patients [47,48]. (R)-ketamine may
also help manage depression in neurological disorders such as dementia, PD, MS, and
stroke, potentially serving as a treatment or preventive drug. However, further randomized
clinical trials are necessary to confirm its efficacy in delaying or preventing these conditions.
Overall, (R)-ketamine has shown strong antidepressant and anti-inflammatory effects, but
further research is needed to understand its molecular mechanisms [47].

This review underscores the therapeutic promise of R/S-ketamine, specifically (S)-
ketamine and (R)-ketamine, by examining their mechanisms and their application in
addressing depression and related conditions within modern therapeutic frameworks. This
article provides an in-depth evaluation of both (S)-ketamine and (R)-ketamine as viable
antidepressant options, outlining several strengths as well as areas that warrant additional
exploration. It recognizes that while (S)-ketamine has demonstrated rapid antidepressant
effects in controlled clinical trials, its effectiveness in real-world settings remains question-
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able, particularly among larger and more diverse patient populations, where the results
have not consistently outperformed those of a placebo when used alongside traditional
oral antidepressants. This suggests that its effectiveness may be limited in practical appli-
cations. The safety issues related to (S)-ketamine usage are significant, as it can result in
side effects such as dissociation, dizziness, and cardiovascular complications, potentially
hindering long-term treatment adherence. Additionally, concerns about the risk of misuse
and dependence further restrict its application in nonclinical environments. This article
stresses the necessity for more research on (S)-ketamine, especially concerning its long-term
effectiveness, safety profile, and mechanisms of action, including its interactions with
various neurotransmitter systems. It proposes that personalized medicine approaches
and improved patient selection criteria could optimize treatment outcomes, particularly
for individuals with psychiatric comorbidities. In relation to (R)-ketamine, this review
points out a deficiency in the comprehensive clinical data, with the majority of evidence
coming from preclinical studies. It advocates for large-scale randomized controlled trials to
determine the antidepressant efficacy of the drug and establish optimal dosing strategies,
highlighting the variability in the biological pathways linked to its effects. By tackling these
limitations and suggestions, this review establishes a solid foundation for future research
into the therapeutic potential of ketamine in treating depression.

The literature in this article was accessed through PubMed using this review article’s
keywords: ketamine, esketamine, arketamine, depression, and psychiatric treatment (with
a direct link provided in the Supplementary File, leading to the relevant sources used for
extraction of the information). This search produced around 610 results, from which over
130 articles were selected, focusing on the most recent reports published on or after 2019,
along with some older studies required to explain the theoretical foundations.

2. Ketamine

Ketamine or R/S-ketamine is a combination of two enantiomers, S-ketamine and
R-ketamine (Figure 1).

Figure 1. Structural formulas of R/S-ketamine, S-ketamine, and R-ketamine.

Ketamine, an NMDAR antagonist traditionally used as an anesthetic, has gained
attention as a novel treatment for depression, particularly for severe and treatment-resistant
cases. Meta-analyses have offered important insights into the factors that may influence its
effectiveness, such as a better response in unipolar depression compared with bipolar de-
pression, prolonged benefits with repeated treatments, different methods of administration,
and indirect comparisons between the efficacy of racemic ketamine and the esketamine
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enantiomer [49,50]. MDD is a debilitating condition affecting millions globally, contributing
significantly to health and socioeconomic burdens. According to the World Health Orga-
nization (WHO), depression ranks third in terms of its global disease burden, placing an
immense strain on the societal costs due to disability. Traditional antidepressants that target
the monoamine system take 4–12 weeks to show improvements. However, recent studies
have highlighted the role of glutamate, particularly NMDARs, in depression. Glutamate,
the main excitatory neurotransmitter, plays a key role in neurodevelopment, memory, learn-
ing, and nerve growth. Ketamine, an NMDAR antagonist, has shown rapid antidepressant
effects at low doses. A single dose can quickly alleviate depressive symptoms, with effects
lasting up to a week, suggesting its influence on neuroplasticity. Multiple studies have
reported significant symptom remission within a week of ketamine administration, and
its efficacy has been demonstrated from Day 1 in patients with both unipolar and bipolar
depression. In addition to reducing depressive symptoms, subanesthetic doses of ketamine
have been effective in managing suicidal ideation [51].

Given the limitations of current antidepressants and the insufficient evidence support-
ing the monoamine deficiency theory of depression, there is growing interest in exploring
new targets for antidepressant treatment, particularly within the glutamatergic system.
Ketamine hydrochloride, a noncompetitive and nonsubtype-selective NMDAR antagonist,
has primarily been used as an anesthetic since the 1960s at doses of 1–3 mg/kg. A ground-
breaking pilot study in the year 2000 revealed ketamine’s rapid and robust antidepressant
effects when administered intravenously at subanesthetic doses to individuals with TRD.
Subsequent randomized clinical trials and meta-analyses have reinforced ketamine’s po-
tential as a novel and effective antidepressant. Most studies administered a single 40-min
IV infusion of (R,S)-ketamine (racemic mixture) at 0.5 mg/kg, showing response rates
of 50–70% in TRD patients. Many individuals reported significant symptom relief, in-
cluding reductions in depressed mood, anhedonia, and suicidal thoughts, within 2 h of
administration, with effects peaking at 24 h and lasting up to 2 weeks. Ketamine’s rapid
antidepressant effects contrast sharply with the delayed onset of traditional antidepressants
and challenge the monoamine deficiency hypothesis of depression. While monoaminer-
gic systems may not be the primary pathway for mood regulation, they might influence
downstream signaling pathways targeted by ketamine. The prolonged antidepressant
response observed after a single ketamine infusion, despite its short plasma half-life of
2.5 h, suggests that ketamine’s effects are mediated by activating key downstream signaling
pathways rather than its direct receptor interactions. Despite its promising results, ketamine
administration, even at subanesthetic doses, can cause mild and temporary dissociative
effects, neurocognitive and sensorimotor disturbances, and transient increases in heart rate
and blood pressure. Additionally, as ketamine is sometimes abused recreationally, there
is concern about potential neurotoxic effects from prolonged use. Identifying the precise
mechanisms behind ketamine’s antidepressant effects could lead to the development of new
rapid-acting antidepressants with fewer side effects and a broader clinical application [52].

Ketamine is an open-channel blocker of ionotropic NMDARs, which has been recog-
nized for its rapid antidepressant effects in individuals with depression and treatment-
resistant depression. This finding has not only led to the development of new, effective
treatments for mood disorders but has also offered valuable insights into the neurobiology
of these conditions. Additionally, it has revealed key mechanisms of synaptic plasticity
that are crucial for its therapeutic impact. The discovery of ketamine’s rapid antidepres-
sant effects in patients with depression and treatment-resistant depression has sparked a
revival in both clinical and preclinical neuropsychiatry. Ketamine’s swift efficacy suggests
that symptoms of depression can be quickly alleviated, even in patients with long-term
treatment challenges. Preclinical studies have tested this idea, finding that retinoic acid
receptor activation can induce rapid homeostatic plasticity similar to ketamine, though it
does not involve NMDARs or their signaling pathways. While retinoic acid signaling is
not required for ketamine’s antidepressant effects, its direct activation can produce similar
rapid antidepressant-like results, indicating that targeting homeostatic plasticity could be



Biomedicines 2024, 12, 2283 5 of 18

sufficient for antidepressant action. However, this hypothesis needs clinical validation.
Another important area of research is maintaining ketamine’s antidepressant effects. One
strategy could be to use ketamine to achieve rapid symptom relief and then target spe-
cific downstream signaling pathways to extend its effects, potentially reducing the need
for repeated ketamine dosing. This approach could help mitigate the need for ongoing
ketamine treatment in long-term depression management. Ketamine’s action has shifted
the research focus from traditional “slow” neurotransmission, involving monoaminergic
systems, to the role of fast glutamatergic neurotransmission in mood disorders. To fully
leverage the potential of fast neurotransmission in neurotherapies, it is crucial to develop
new therapeutics that target these rapid signaling mechanisms without disrupting their
essential functions in sensory processing, learning, and memory. Investigating parallel
signaling pathways and multiple mechanisms within single synapses could lead to new
treatments for neuropsychiatric disorders, aiming towards fewer side effects, rapid onset,
and sustained efficacy. Overall, ketamine’s ability to induce homeostatic plasticity rather
than addressing the underlying causes of depression suggests it may provide a tempo-
rary alleviation of symptoms. Identifying compounds that specifically target homeostatic
plasticity could represent a promising new therapeutic strategy [53].

The suggested mechanism through which ketamine exerts its antidepressant effect is
illustrated in Figure 2, while Table 1 shows a comparison of the antidepressant and side
effects of racemic ketamine, esketamine, and arketamine in both humans and animals.

Table 1. Comparison of antidepressant and side effects of racemic ketamine, esketamine, and
arketamine in humans and animals, according to [43].

Antidepressant effects—animal studies
Antidepressant effects: arketamine > racemic ketamine and esketamine

Racemic ketamine, esketamine, and arketamine
Decrease in immobility time in the forced swim test (FST)/or tail suspension test TST
Increase in sucrose preference in the sucrose preference test (SPT)

Side effects—animal studies
Side effects: arketamine < racemic ketamine and esketamine

Racemic ketamine and esketamine
Hyperlocomotion
Psychomimetic effects
Rewarding effects
Abuse liability

Arketamine
Mild effects on locomotion
Cognitive process profile (CPP) scores, motor coordinator deficits, and prepulse inhibition (PPI)
No serious adverse events were reported

Antidepressant effects—humans
Racemic ketamine, esketamine, and arketamine

Reduced score on the Montgomery–Åsberg Depression Rating Scale (MADRS)/Hamilton Depression Rating Scale (HDRS)
Ketamine therapy includes, among others, depression (even treatment-resistant), anxiety, suicidal ideation, post-traumatic stress
disorder (PTSD), obsessive–compulsive disorder (OCD), neuropathic pain, chronic pain, substance abuse and eating disorders;
esketamine: treatment-resistant depression and major depressive disorder with acute suicidal ideation or behavior

Side effects—humans
Racemic ketamine and esketamine

Headache
Dizziness
Dissociation
Rewarding effects
Abuse liability
Cognitive dysfunction

Arketamine
No serious adverse events were reported
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Figure 2. The proposed mechanism of ketamine’s antidepressant effect, according to [54], involves
the suppression of tonic GABAergic activity (1), which leads to a surge in glutamate release and
metabolism (2); this increased glutamate activity, through AMPA receptors (whose surface ex-
pression may be boosted by the reduced spontaneous activity of NMDA receptors) (3), promotes
BDNF-dependent (4) synaptic growth (5), ultimately contributing to rapid and sustained antide-
pressant effects. Akt, protein kinase B; ERK, extracellular signal-regulated kinase; mTOR, mam-
malian/mechanistic target of rapamycin; TrkB, tropomyosin kinase B.
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3. Esketamine

(S)-(+)-ketamine or (S)-ketamine, also known as esketamine, was approved by the
Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2019,
and is the only glutamatergic neuromodulatory agent authorized to augment the effects
of selective serotonin reuptake inhibitors (SSRIs) or serotonin–norepinephrine reuptake
inhibitors (SNRIs). Due to the high rates of partial responses or nonresponse to existing
antidepressants, researchers are exploring new pharmacological agents that target mech-
anisms beyond monoaminergic neurotransmission. While numerous compounds have
undergone Phase II and III clinical trials, it remains challenging to predict which will enter
the market in the coming decades. So far, only esketamine and brexanolone—a positive
allosteric modulator of the gamma-aminobutyric acid A (GABA-A) receptor—have been
FDA-approved for supervised use in patients with treatment-resistant depression and
post-partum depression, respectively. Furthermore, tolerability issues with the current
antidepressants underscore the need for novel pharmacological options to treat major
depression [55]. Esketamine nasal spray is recommended for adults with MDD who have
not responded to at least two antidepressants and are currently experiencing a moderate
or severe depressive episode. Both the FDA and EMA have outlined strict monitoring
protocols for esketamine’s use, including assessments before and after administration.
Esketamine works by blocking NMDARs, which are glutamate receptors. This leads to
increased glutamate release, activating other receptors that enhance synaptogenesis and
improve signaling via neurotrophic factors in brain regions involved in mood regulation. It
also restores dopamine transmission, which helps reduce symptoms such as anhedonia
(loss of pleasure), though it may cause psychotic-like effects due to dopamine release
in certain brain areas. Esketamine’s fast action is linked to the stimulation of the mam-
malian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, which
supports synapse formation and brain-derived neurotrophic factor (BDNF) production.
Recent research has highlighted the role of glutamatergic mechanisms in depression, with
abnormal glutamate levels observed in individuals with mood disorders. Ketamine, related
to esketamine, is thought to work by blocking NMDARs on GABA neurons, disinhibit-
ing pyramidal neurons, and enhancing synaptic plasticity via mTORC1 signaling. This
mechanism leads to increased synapse formation in the prefrontal cortex, offering rapid
antidepressant effects. However, other drugs targeting NMDARs, such as memantine
and lanicemine, have not shown similar efficacy in treating depression, suggesting that
additional mechanisms may be involved [31]. Intravenous esketamine has shown rapid
and lasting effects in patients with MDD who do not respond to standard treatments. It has
also demonstrated positive outcomes in treatment-resistant patients at an immediate risk of
suicide, as seen in Phase II studies. Similarly, intranasal esketamine has been investigated
for its rapid antidepressant effects in patients with depression and suicidal thoughts, with
notable benefits observed after just one dose. Esketamine’s antisuicidal effects are a major
reason for its study, as traditional antidepressants struggle to manage suicidal behavior
in patients with MDD. Recent advances in combining genomic and clinical evaluations to
identify markers of suicide risk have sparked interest in drugs that affect neural connectiv-
ity, immune responses, and inflammation. Dysregulated glutamate neurotransmission is
thought to play a key role in suicidal behavior, making ketamine and esketamine promising
treatments. Along with blocking NMDARs, ketamine also affects the opioid, serotonin,
muscarinic, and nicotinic receptors, which may contribute to its antisuicidal properties.
However, some studies have cautioned that the enthusiasm for esketamine as a treatment
for suicidal patients should be reassessed based on real-world experience. It is crucial to
combine careful suicide risk assessments with a compassionate understanding of the pa-
tients’ subjective experiences. Suicide, often driven by overwhelming negative emotions or
acute distress, should be viewed as distinct from typical symptoms of depression, requiring
a nuanced approach to treatment. The metabolite (S)-norketamine, formed through the
metabolism of esketamine by cytochrome P450, has been found to have a strong affinity
for NMDARs, even greater than that of (R,S)-ketamine and (S)-ketamine. Its inhibitor
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constant (Ki) is 1.7 µM compared with 0.53 µM and 0.3 µM, respectively. This metabolite
has demonstrated rapid and powerful antidepressant effects in rodent studies. While
preclinical research has highlighted the potential for esketamine abuse, (S)-norketamine
appears to carry a lower risk of psychotomimetic effects and addiction, making it a safer
alternative [55]. The study suggested that activation of AMPARs is not required for the
antidepressant effects of (S)-norketamine, as AMPAR antagonists did not block its ef-
fects. Instead, the antidepressant’s action appears to involve the BDNF, tropomyosin
kinase B (TrkB), and mTORC signaling pathways [41,56]. However, recent clinical ev-
idence found no correlation between norketamine levels—whether (S)-norketamine or
(R)-norketamine—and an antidepressant response following the administration of (R,S)-
ketamine in patients with treatment-resistant depression [41,57].

(S)-ketamine, recognized for its higher affinity for NMDARs, was investigated as a
novel antidepressant by Janssen Research & Development. In an initial trial, intravenous (S)-
ketamine at doses of 0.2 mg/kg and 0.4 mg/kg produced rapid and strong antidepressant
effects in individuals with TRD. Side effects included headache, nausea, and dissociation.
As the antidepressant benefits were similar between both doses, it was suggested that a
lower dose could provide better tolerability without sacrificing effectiveness. A fixed-dose
(S)-ketamine nasal spray was later developed and tested in TRD patients. Several Phase II
and III trials showed that combining intranasal (S)-ketamine with an oral antidepressant
was more effective than a placebo combined with oral antidepressants [58–61], though
some studies did not show positive results [62,63]. A large study with 297 TRD patients
found that continuing the (S)-ketamine nasal spray treatment delayed the time to relapse
compared with a placebo after 16 weeks of treatment. An open-label study explored the
long-term safety of (S)-ketamine nasal spray with an oral antidepressant, showing that
common side effects such as dizziness, dissociation, nausea, and headache were mild and
temporary, and declined with continued use. Cognitive performance either improved
or remained stable over time. Such long-term safety data are not yet available for other
forms of ketamine. According to the available evidence, the FDA and EMA approved
the (S)-ketamine nasal spray Spravato for adults with TRD when combined with an oral
antidepressant. However, concerns about its efficacy, safety, and abuse potential, and the
need for careful monitoring still limit its broader use [41].

Administration of S-ketamine increases muscle tone and saliva production while pre-
serving the functionality of reflexes such as swallowing, blinking, coughing, and gagging.
Cardiovascular effects include a dose-dependent stimulation of the sympathetic nervous
system, leading to increased heart rate, blood pressure, and cardiac output, though pe-
ripheral vascular resistance remains relatively unchanged. At high doses or with rapid
administration, there may be a slight suppression of breathing and increased mucus pro-
duction. S-ketamine can also cause bronchodilation through its action on L-type calcium
channels and has been noted for its anti-inflammatory effects, which may contribute to its
ability to reduce pain sensitivity. The impact of these anti-inflammatory effects in clinical
practice is still debated, although experimental data support their significance. Research has
shown that S-ketamine affects cerebral blood flow and can increase intracranial pressure, es-
pecially in patients with severe brain injury, if not carefully managed with normoventilation.
Psychotomimetic effects are uncommon at lower doses (0.125–0.25 mg/kg) but can occur
in up to 12% of patients at higher doses. At anesthetic doses (0.5–1 mg/kg), S-ketamine in-
duces dissociative anesthesia, characterized by catalepsy and analgesia, with some patients
experiencing open eyes and spontaneous movements, yet retaining some reflexes. While
patients may have vivid or unpleasant dreams, these effects are less frequent compared
with the racemate and can be mitigated with medications such as propofol or midazolam.
Common side effects include nausea, vomiting, dizziness, and impaired vision, which can
generally be managed with adjunctive medications such as 5-hydroxytryptamine type 3
(5-HT3) receptor antagonists or dimenhydrinate. The exact mechanism behind these side
effects is not fully understood but may involve interactions with serotonin receptors [33,64].
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The risk of dependence and the possibility of misuse associated with ketamine, espe-
cially in its esketamine form, pose significant challenges that have restricted its widespread
use in clinical settings, despite its promising effectiveness in managing severe and treatment-
resistant depression. The dissociative properties of ketamine and its association with
recreational “club drugs” have generated concerns about potential abuse and addiction,
particularly when not administered in controlled environments. These risks are heightened
by the short-lived nature of its antidepressant effects, which may lead patients to pursue
more frequent doses for symptom relief, thereby increasing the likelihood of dependence.
Moreover, temporary side effects such as neurocognitive disturbances and variations in
heart rate and blood pressure might discourage healthcare providers from prescribing it,
particularly for populations at a risk of substance use disorders. Regulatory agencies such
as the FDA and EMA have implemented strict monitoring guidelines for esketamine to
address these concerns, requiring supervised administration and diligent patient oversight,
which further limit its accessibility.

4. Arketamine

(R)-(-)-ketamine or (R)-ketamine, also known as arketamine, may serve as a fast-
acting antidepressant. Although (R)-ketamine is less potent than (R,S)-ketamine in inhibit-
ing NMDARs in laboratory settings, the degree to which (R)-ketamine produces NMDA
receptor-related side effects similar to (R,S)-ketamine in living organisms has not been fully
studied. Additionally, (R)-ketamine is metabolized into HNK, which may play a role in its
antidepressant effects [65].

Despite having a four times lower affinity for NMDARs than (S)-ketamine, (R)-
ketamine shows stronger and more prolonged antidepressant effects in rodents, with fewer
psychomotor side effects and a lower potential for abuse. It also surpasses (R,S)-ketamine
and the NMDAR antagonist lanicemine, also known as AZD6765 or AR-R 15896AR (a
low-trapping NMDA channel blocker), in producing long-lasting antidepressant effects
without significantly increasing the release of dopamine in the medial prefrontal cortex
(mPFC). Research has suggested that the antidepressant effects of (R)-ketamine may not be
linked to NMDAR blockade, lateral habenula (LHb) activity, or dopamine receptor activa-
tion. Further studies have shown that blocking AMPARs, transforming growth factor-β1
(TGF-β1) signaling, colony-stimulating factor 1 (CSF1R), and GABA receptors (GABARs)
inhibits (R)-ketamine’s antidepressant effects. This indicates that the activation of TGF-β1,
CSF1R, and AMPAR, and GABAAR inhibition are vital for its rapid and sustained antide-
pressant actions. In comparison with (S)-ketamine, (R)-ketamine’s prolonged effects may
involve the nuclear receptor binding protein 1 (NRBP1) in microglial cells of the mPFC. It
enhances NRBP1, BDNF, and phosphorylated cAMP-responsive element binding protein
(p-CREB/CREB) levels, contributing to its long-lasting antidepressant outcomes [66].

(R)-ketamine, through the BDNF-TrkB signaling pathway, helps restore reduced BDNF
levels in key brain regions such as the prefrontal cortex (PFC), hippocampal region CA3,
and dentate gyrus (DG) in rodents. It also increases serotonin (5-HT) release in the mPFC
and inhibits the overexpression of the nuclear factor of activated T-cells and the cytoplasmic
4 (NFATc4) gene in the PFC, highlighting the importance of BDNF-TrkB, NFATc4 signaling,
and 5-HT receptors in its antidepressant effects. Additionally, the activation of mTOR
and extracellular signal-regulated kinase (ERK) has been suggested as a potential mech-
anism of ketamine’s effects, although studies have shown mixed results, depending on
the depression model used. For instance, in a chronic social defeat stress (CSDS) model,
(R)-ketamine reversed reductions in ERK signaling but had no effect on mTOR, while
mTOR inhibitors did not block its antidepressant effects. Conversely, in a chronic mild
stress (CUMS) model, (R)-ketamine increased mTOR signaling without affecting ERK.
These differences suggest that various experimental factors influence the outcomes and
further investigation is needed. Furthermore, (R)-ketamine has shown benefits in reducing
depressive symptoms by targeting miRNAs, particularly miR-132-5p, and related genes
such as BDNF and methyl CpG binding protein 2 (MeCP2). It also has a mild impact on
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endoplasmic reticulum (ER) stress genes, suggesting that the unfolded protein response
(UPR) and the basic leucine zipper transmembrane transcription factor localized in the
endoplasmic reticulum (ER) that is cleaved in its transmembrane region in response to
the ER stress—OASIS family may play a role in its antidepressant effects. More research
is needed to clarify the exact mechanisms involved [67]. (R)-ketamine has demonstrated
anti-inflammatory properties and can reduce spleen weight in mice susceptible to chronic
social defeat stress (CSDS). This improvement is linked to reduced expression of the natural
killer cell receptor (NKG2D) in the spleen. Additionally, (R)-ketamine partially restores
changes in the gut microbiota, suggesting that its antidepressant effects may involve both
the brain–spleen and microbiota–gut–brain axes. While the metabolite (2R, 6R)-HNK has
been shown to have rapid and lasting antidepressant effects in some animal studies, not all
researchers have observed similar results. Some argued that (R)-ketamine’s antidepressant
effects are independent of (2R, 6R)-HNK, which is considered a pharmacologically inert
molecule with weak interactions across different biological systems. The precise role of (2R,
6R)-HNK in (R)-ketamine’s antidepressant action remains uncertain and requires further
investigation. Although preclinical research has explored various mechanisms behind
(R)-ketamine’s antidepressant effects, the exact pathways and target sites are still not fully
understood. However, these findings provide valuable insights for future studies and
potential clinical applications [67].

Currently, no (R)-ketamine drug formulations have been approved for market use,
but clinical research continues to assess its antidepressant efficacy and safety. A study by
Leal et al. [68] documented a single intravenous infusion of (R)-ketamine (0.5 mg/kg) in
seven patients with TRD. They observed rapid and significant antidepressant effects, with
improvements starting 60 min post-infusion, peaking at 240 min, and lasting in 43% of
participants for up to 7 days. Mild side effects such as blurred vision and dizziness were
reported, but there were no instances of dissociation or hemodynamic issues, suggesting
good safety. However, the open-label design of the study limited the strength of the findings.
To address this, the researchers conducted a randomized, double-blind crossover pilot trial
involving 10 patients. Over two weeks, both (R)-ketamine and saline were tested. While
depressive symptoms improved over time, there was no significant difference between
the (R)-ketamine and saline groups, raising questions about its antidepressant efficacy.
Participants in the second study had longer histories of depression and more psychiatric
comorbidities, which might explain the results. Previous studies have suggested that some
patients may require multiple doses for a response to its application [67].

A single administration of (R)-ketamine may not be sufficient to achieve the desired
antidepressant effects, which may require cumulative dosing. Additionally, the crossover
design used in some studies may not be ideal, as the optimal dosage and frequency for
(R)-ketamine treatment are still uncertain. Given that efficacy against depression is often
measured by Montgomery–Åsberg Depression Rating Scale (MADRS) scores, detecting
significant differences in small groups (such as the 10-patient sample in Leal et al.’s [69]
study) is challenging. Although this pilot study did not show that a single infusion of
(R)-ketamine was more effective than a placebo in treating depression, it did not completely
rule out its potential antidepressant effects. Moreover, (R)-ketamine has shown promising
safety and minimal side effects. Other recent research has further supported its antide-
pressant efficacy, particularly in treating bipolar depression. For instance, a study with
six bipolar disorder patients (Types I and II) who received intravenous (R)-ketamine at
doses of 0.5 mg/kg and 1 mg/kg a week apart showed favorable results. In the study, the
participants’ average MADRS scores dropped by over 50% after treatment, and there were
minimal dissociative or manic symptoms at both doses. This indicates that (R)-ketamine is
both effective and safe for its rapid antidepressant effects in treating bipolar depression [70].
These findings highlight the potential of (R)-ketamine as a promising antidepressant. Fu-
ture research will need larger sample sizes, flexible dosing schedules, and alternative study
designs, such as parallel subgroup approaches, to better understand its true antidepres-
sant effectiveness in clinical practice [63]. In 2018, China registered a large randomized
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controlled trial to compare the safety and effectiveness of (R)-ketamine with (S)-ketamine
and (R,S)-ketamine for treating TRD [71]. On February 19, 2021, the American company
Perception Neuroscience released Phase I data showing that higher doses of (R)-ketamine
(PCN-101) are required to cause perceptual changes compared with (S)-ketamine, with
doses below 150 mg being safe and well-tolerated. The company has also launched a
Phase II trial to further evaluate the therapeutic effects and side effects of (R)-ketamine
in TRD patients [72]. In preclinical studies, there has been debate about the antidepres-
sant effectiveness of (2R, 6R)-HNK, a metabolite of (R)-ketamine. Grunebaum et al. [73]
found that although patients with major depressive disorder (MDD) and suicidal ideation
had higher plasma levels of (2R, 6R)-HNK 24 h after receiving intravenous ketamine
(0.5 mg/kg), this did not correlate with significant clinical improvements in depression.
This finding suggests caution when interpreting the antidepressant effects of (2R, 6R)-HNK.
A Phase I clinical trial is currently in progress to better assess the antidepressant potential
of the drug [74].

While (R)-ketamine has demonstrated notable benefits in animal models of depression,
its antidepressant effects in clinical settings remain uncertain. To better understand its true
efficacy, along with the safety, potential for drug resistance, side effects, and abuse risks
associated with medium- to long-term high-dose use, further research is needed. This will
involve large-scale, multi-center, double-blind randomized controlled trials that examine
various dosing regimens, frequencies, and treatment schedules [67].

Figure 3 presents the proposed synaptic mechanisms of (2R,6R)- and (2S,6S)-hydr
oxynorketamine, while Table 2 provides Supplementary Information on studies involving
(R)-ketamine in nondepressive conditions.

Table 2. Research into the use of (R)-ketamine beyond depression, according to [67].

Condition References

Cognitive impairments [16,34,75–86]
COVID-19 [87–93]

Inflammatory disease [36,37,78,91,94–98]
Ischemic stroke [99–103]

Multiple sclerosis [48,92]
Organophosphate poisoning [104–108]

Osteoporosis [109–113]
Parkinson’s disease [114–118]

Perioperative anesthesia [13,96,119–126]
Substance use disorder [127–129]



Biomedicines 2024, 12, 2283 12 of 18

Figure 3. Possible synaptic mechanisms of (2R,6R)- and (2S,6S)-hydroxynorketamine, according
to [130]: (2R,6R)-HNK is believed to act on presynaptic terminals by increasing glutamate release,
potentially through pathways that overlap with mGlu2 signaling. This may occur as (2R,6R)-HNK
reduces the inhibition of cAMP release induced by mGlu2, or it may involve another mechanism
driving glutamate release. The increased glutamate subsequently activates AMPA receptors (AM-
PAR), leading to the enhanced release of brain-derived neurotrophic factor (BDNF), activation of
tropomyosin kinase B (TrkB) receptors, and the triggering of plasticity-related signaling pathways.
These pathways include the upregulation of protein kinase B (AKT), extracellular signal-regulated
kinases (ERK)/mitogen-activated protein kinases (MAPK), and mammalian/mechanistic target of
rapamycin complex 1 (mTORC1), all of which promote protein synthesis, increase AMPAR expression,
and support synapse formation, ultimately strengthening synaptic connections. Additionally, (2R,6R)-
HNK may interfere with TrkB/AP-2 (Activator Protein-2) interactions, preventing TrkB endocytosis
and stabilizing TrkB at the synapse. On the other hand, (2S,6S)-HNK moderately inhibits NMDA
receptors (NMDARs) and might enhance intracellular signaling through an NMDAR inhibition-
dependent mechanism, which includes the inhibition of eEF2 signaling, alongside increased AKT,
ERK/MAPK, and mTORC1 activity.
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5. Conclusions

Ketamine’s discovery has shifted the focus from slow-acting monoaminergic systems
to fast glutamatergic neurotransmission in mood regulation, opening new research avenues
in the treatment of depression. The drug’s ability to induce homeostatic plasticity suggests
it provides temporary symptom relief rather than addressing depression’s underlying
causes. Future research aims to extend the therapeutic benefits of ketamine by targeting the
downstream pathways, potentially reducing the need for repeated doses and mitigating
the side effects. The potential for new rapid-acting antidepressants with fewer risks and
broader applications is significant, but ongoing research is required to validate these
strategies and better understand ketamine’s mechanisms of action. Esketamine’s ability
to rapidly relieve depressive symptoms and lessen suicidal thoughts has made it a crucial
option for treating TRD. However, it requires strict monitoring due to potential side effects
and the risk of misuse. Its approval comes with stringent guidelines for administration and
supervision. Arketamine, with fewer side effects and possibly more potent antidepressant
effects than esketamine, shows promise but requires further research to verify its long-term
safety and effectiveness. While esketamine is already in clinical use, arketamine’s future
depends on additional trials to resolve outstanding concerns about its safety, efficacy, and
appropriate dosing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12102283/s1.
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